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A new method is presented for the calculation of thermodynamic properties from equilibrium statisti­
cal mechanics. Starting from the high-temperature expansion coefficients for the canonical partition 
function, error bounds are obtained, which are both rigorous and optimal. 

I. INTRODUCTION 

The high-temperature expansion method is one of 
the most widely used techniques in statistical mechan­
ics. It has been used to study the thermodynamic 
properties of crystalline solids,l binary alloys,2 

magnetic properties,3 pure fluids,4 fluid mixtures, 5 

and condensation from gases.6 The chief advantage 
of the method is its wide applicability. The main 
difficulties of the method are twofold: (1) The series 
of approximations converges rather slowly, and in 
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some cases the series does not converge at all at low 
temperatures. (2) The results are of unknown accuracy, 
when the series are extrapolated. 7 

The purpose of this paper is to develop a new 
method of high-temperature expansion which helps 
both of these difficulties. Starting from the coeffi­
cients in the usual (truncated) high-temperature 
series, we derive a new sequence of approximations, 
which (1) converges much more rapidly than the 
usual high-temperature expansion, and (2) gives 
precise upper and lower bounds for the partition 
function (and some other thermodynamic properties), 
at each order of approximation. These bounds are 
optimal in the sense that they are the most precise 
bounds possible, given the coefficients in the usual 
high-temperature series. 

II. STATEMENT OF PROBLEM: ASSUMPTIONS 

We consider closed equilibrium classical or quantum­
statistical systems which are described by canonical 
distribution law over energy E which we write as 

e-PE dtp(E), (1) 

where fJ is the reciprocal temperature, and dtp(E) is a 
density of states. We always assume that tp(E) is a 
nondecreasing function of E. We choose the (arbitrary) 
zero of energy to be the energy of the ground state of 
the system. Thus dtp(E) vanishes for E < O. 

The problem we pose is to find upper and lower 
bounds for the canonical partition function defined 
by the Stieltjes integral 

Q(fJ) == 100 

e-PE dtp(E), (2) 

when we are given values for the first 2M moments 
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1-' .. of the distribution function, defined by 

I-'n == f'" En dtp(E) (3) 

for n = 0, 1, 2, ... ,2M. 
In order for these moments to e.xist and be finite in 

a classical mechanical system, it is important to 
separate out the kinetic energy, and treat (2) as the 
configurational integral, and the moments I-'n as 
averages of powers of the potential energy only: 

I-'n = 1" vn dtp(V). (4) 

The integrals then are just configuration-space 
averages of powers of the potential energy. Having a 
potential-energy function of bounded variation is 
then sufficient to guarantee their existence. 

In quantum-mechanical spin systems (such as the 
Heisenberg model of ferromagnetism) the energy E 
in (3) may be taken to be the full spin Hamiltonian H. 
The moments may then be evaluated from the 
quantum-mechanical trace formula 

I-'n = Tr [Hn]. (5) 

The power of this method is that one may calculate 
the trace in any convenient basis. 

The usual form of the high-temperature expansion 
is now readily obtained by expanding the exponential 
in (2) in its power series and assuming that one can 
interchange the order of summation and integration, 

00 

Q(f3) = 2, ( - f3t I-'nl n !. (6) 
n=O 

By truncating this sum at successively higher (finite) 
numbers of terms, one obtains a sequence of approxi­
mations to the partition function. The higher the 
temperature, the smaller f3, and hence the series 
converges most rapidly at high temperatures. Un­
fortunately, the convergence is often slow at tem­
peratures of interest. 

Since the terms in the series (6) alternate in sign, 
successive partial sums give crude upper and lower 
bounds to the infinite sum. However, these bounds 
are not too useful in practice, because for sufficiently 
low temperatures the lower bounds become negative; 
hence they furnish no new information, since we 
knew anyway that the partition function cannot be 
negative. Similarly, these upper bounds become 
larger than Q(O), for low temperatures. But we knew 
already that Q(f3) < Q(O), so these upper bounds 
also fail to yield any information at low temperatures. 
Even when the temperature is high enough so that 
these bounds furnish some information, the magni­
tudes of the error limits are so large (for reasonable 

n ,....., 10), that one might be lead to the hasty con­
clusion that a small finite number of terms in the 
high-temperature expansion tells one little about the 
partition function. 

We hope to demonstrate in the following sections 
of this paper that such a conclusion is unduly pessi­
mistic. We will construct a new set of error bounds, 
based on precisely that information contained in the 
coefficients of the usual high-temperature series. Our 
new error bounds are far more precise, by more than 
a factor of a million in an example given in Sec. V. 

m. GENERAL THEORY 

We make use of mathematical results from the 
theories of continued fractions,S quasi-orthogonal 
polynomials and the moment problem,9 matrix 
algebra,IO and Gaussian-type integration9 ; reference 
should be made to these works tor further mathe­
matical background. Where possible, we follow the 
definitions, terminology and notation of Shohat and 
Tamarkin9 (to be referred to as ST in the following). 

Considerlla the function fez) defined by the Stieltjes 
integral 

l(z) == roo d tp(E) 
Jo z + E 

(7) 

over the nondecreasing distribution dtp(E). The inte­
grand may be expanded according to a finite geometric 
series, with remainder term 

lIE E2 --=---+-
z + E Z Z2 Z3 

(-Et-1 (_E)n -'" + + (8) 
zn zn+1(z + E) 

Inserting this series into the integrand in (7) gives 

1 50
00 

1 5orl) l(z) = - dtp(E) - "2 E dtp(E) 
Z 0 z 0 

The coefficients of the inverse powers of z, are 
recognized to be just the moments fln defined by (3). 

• H. S. Wall, Analytic Theory of Continued Fractions (D. Van 
Nostrand, Inc., New York, 1948). 

• J. A. Shohat and J. D. Tamarkin, "The Problem of Moments," 
Mathematical Surveys 1 (American Mathematical Society, Prov­
idence, R.I., 1950) 2nd ed. 

10 J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford 
University Press, London, 1965). 
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Thus the formal expansion of the integral (7) has 
the form 

fez) = I!:!!. _I!:l + fi2 _ .•. + (-lr-~ fin-l 
z Z2 Z3 Zn 

+ ... + _1_ roo (_E)n dW(E). (to) 
Zn+l Jo z + E 

As long as the remainder term is kept, this is just an 
identity. However, if we let n -+ 00, (to) becomes a 
formal expansion of the integral in inverse powers of z: 

fez) '" fio _I!:l + fi2 - ~ + • . . . (11) 
Z Z2 Z3 Z4 

This is ordinarily an asymptotic, but not convergent, 
series. In order to form a more useful expression, we 
replace this series by its "corresponding continued 
fraction" 

C(z)=~ 
Z +OC_2 __ 

1+~ 

z + OC~4,--_ 
1 + . . . . (12) 

The coefficients OCn appearing in this expansion are 
determined from the moments fin' by the requirement 
that a formal expansion of C(z) in powers of (lIz) have 
just the same coefficients as those appearing in (11). 
Values of the first few OCn may be derived directly from 
this definition by equating coefficients of (l/z)n in 
these expansions: 
OC1 = fio, 

OC2 = fil/fio, 

~ _ (fi2fio - fiD 
""3 - , 

fiofil 

OC4 = (filfia - fi~)fio , 
fil(fi2fio - fii) 

(l3a) 

(l3b) 

(13c) 

(l3d) 

( 2 .a a 2222 ) OC - fiofilfi2fi4 - fiofilfi4 - fiofilfi2 - fiofllfia + fiofilfi2fi3 
5 - 2 2 • 

fioC filfia - fi'0(fiofi2 - fil) 

(l3e) 

Obviously this direct matching method cannot be 
practically applied to higher orders. Explicit general 
expressions for the ocn in terms of the fin can be 
written down,9 but they involve determinants of high 

(z + <X.)X1 - (<x.<x.)h. 

-(<x.<x.)h1 +(z + <X3 + <x.)x. 

order, and are not useful in practice. A convenient 
recursive method for evaluating the OCn is given in 
Appendix A. In applications, we have always used 
this recursive method, which we will refer to as the 
product-difference (PD) algorithm. It follows from 
the general theory9,1l that OCn ~ 0, provided that WeE) 
is a nondecreasing function which vanishes for E < 0. 

An infinite continued fraction such as (12) has a 
mathematical meaning only as a limit. If we consider 
a sequence of "approximants" Cn(z) , which are the 
finite, truncated fractions obtained by setting ocn+1 = 
ocn+2 = ... 0, then C(z) is defined to be 

C(z) = lim Ciz). (14) 
n-+oo 

Infinite subsets of Cn(z) may also be considered in 
this limit. In particular, the subsequence of the even 
approximants C2n(z) and the odd approximants 
C2n_ 1(Z) will phiy an important role in finding our 
error bounds. 

First we consider the even approximants C2n(z). 
We claim that the following continued fraction 
Ae(z) has its approximants of order n exactly equal 
to the even approximants C2n(z): 

Ae(z) = OCI 
Z + OC2 - OC...!2'-.OC.!!.a _____ _ 

z + OCa + OC4 - OC...:4~OC.!!.5 ____ _ 

Z + OC5 + OC6 -'" 

(15) 

The equality A~(z) = C2n(z) may be verified by 
truncating (12) and (15) at appropriate points and 
rearranging the rational functions thus obtained. 
[Definition: A continued fraction whose approximants 
match a subset of the approximants of another 
continued fraction, is called a contraction of that other 
fraction. Thus Ae(z) is a contraction of C(z). In this 
particular case the contraction Ae(z) has the special 
name, "the associated continued fraction of even 
order, of the corresponding continued fraction C(z)."] 

We now claim that an exactly equivalent, but more 
useful, expression for A~(z) is the following: 

A~(z) = Xl,. 

where Xl is the first component of the solution to the 
following set of n simultaneous linear equations: 

=0 

=0 

+Ox .. _. -(<x ... _.<x ... _1)h .. _1 +(z + <X ... _ 1 + <x 2 .. )x .. = O. 
(16) 
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The equivalence of these two rather different looking 
expressions for A~(z) is demonstrated in Appendix 
B.ub 

The linear equations (16) are more conveniently 
examined in matrix notation: 

(17) 

where I is the n x n unit matrix, el is the unit vector 

at2 - (at2at3)! 

- ( at2at,)l (at3 + at') 

M= o - (at4at5)l 

The formal solution to these linear equations is 

(20) 

If we now transform to the basis in which the matrix 
M is diagonal, with eigenvalues ~jn' and transforma­
tion matrix U, 

(21) 

we have 

or 
Xl = .~>l(Z + ~in)-lUlPir (23) 

i 

Since the transformation U is orthogonal (M is 
real symmetric), we have Uli = U;/ and 

Xl = at1 ! (z + ~in)-lU~i (24) 
i 

or 

(25) 

where we have set 

(26) 

Thus we obtain the relation 

L
oo 

d1p(E) _ I' A e() 
- 1m n Z , 

o Z + E n .... oo 

= lim i p~(j). (27) 
n .... oo j=l (z + ~in) 

nb An equivalent result is given by Wall, Ref. 8, p. 226. 

(18) 

with n rows, and M is an n X n symmetric tridiagonal 
matrix 

(19) 

This is an integration formula for the function 
(z + E)-1 with respect to the weight function d1p(E). 
The obvious generalization of (27) to a function 
feE) is 

(28) 

Equation (28) is valid whenever the integral converges, 
provided feE) is analytic in a region including the 
positive real axis. In the integration formula (28), 
the weights p~(j) are obviously positive, from their 
definition (26), in which UI; is a real element of an 
orthogonal transformation matrix, and at1 is positive 
from (13a) , (3) and the positive definiteness of the 
distribution d1p(E). It is shown in the general theory 
of the moment problem (ST, p. 109) that all the 
~in are distinct and positive. 

The correspondence between continued fractions 
and matrix theory which we have just exploited, 
makes it clear why inverse functions play such an 
important role. The inverse of a tridiagonal matrix 
can be calculated directly as a continued fraction, 
allowing one to evaluate integrals of the Stieltjes 
transform type (27). General integrals of the type (28) 
can be calculated only after finding the eigenvalues 
and eigenvectors of the matrix in (19), whereas for 
finding its inverse, the eigenvalue calculation is not 
needed. 

What we have done here is to recast the theory of 
Gaussian-type integration with respect to an arbitrary 
weight function, into a form in which the positions 
and weights are determined by the solution to an 
eigenvalue problem for a real symmetric tridiagonal 
matrix. The usual form of this integration theory 
requires one to find roots of high-order polynomials.9 
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The numerical problem of finding roots of high-order 
polynomials is notoriously ill-conditioned.10 In con­
trast, our solution is obtained in terms of the well­
conditioned10 eigenvalue problem of a real symmetric 
tridiagonal matrix, which can be solved accurately by 
a variety of procedures, without the catastrophic loss 
of accuracy associated with the corresponding 
polynomial problem. 

The integration formula (28) was based on the 
even approximants C2n(z) to the corresponding 
continued fraction C(z). A second integration formula 
of this type can be found, starting from the odd 
approximants C2n_I(Z). The derivation follows steps 
analogous to those which have taken us from the 
even contraction Ae(z) (Eq. (15)] to the even integra­
tion formula (28). The only difference is that in Eqs. 
(16) and (19), the coefficient 1X2n is omitted. This of 
course changes the numerical values of the eigenvalues 
and the weights (in fact one of the eigenvalues now 
lies at E = 0), but the rest of the formal development 
remains unchanged, giving the odd integration 
formula 

(29) 

If we now apply these general results to integrating 
the particular function 

(30) 

we obtain two expressions for the canonical partition 
function (2), 

Q(f3) = L<Xl e-PE d1p(E), 

n 

= lim 2,p~U) exp (-f3~~n) (31) 
n-+ ex) j=l 

from (28), and 
n 

Q(f3) = lim 2, p~(j) exp (-f3~;n) (32) 
n-i' 00 j=l 

from (29). 

IV. ERROR BOUNDS 

In actual applications of interest in statistical 
mechanics, one has available only a finite number of 
moments Iln' say for n = 0, 1, 2, ... ,2M. Thus the 
infinite limiting processes called for in Eqs. (28) and 
(29) must be stopped at a finite value n = M. Thus 
we must add "remainder" terms to the truncated 
integration formulas. Expressions for these remainder 
terms are derived (ST, p. 119), which can be put into 

the form 

(<Xl M IX IX f(2MI(x) 
Jo feE) d1p(E) = j~/~(j)f(~~M) + 2M 2(~~)! 

(33) 
and 

where IX~ are the continued fraction coefficients for 
the moment problem in which 1-'1+1 replaces Il;; and 
where x is somewhere in the interval [0, 00]. Since 
the IXn coefficients are all positive (or zero), the re­
mainder terms for the even or odd approximations 
take the same signs, respectively, as the even or odd 
derivatives of feE). 

Applying these results to feE) = exp (-f3E), we 
see that the even derivatives in this case are positive, 
and the odd derivatives negative, uniformly on the 
whole range of integration. Thus we have the following 
two results, which supply our error bounds: (1) The 
even approximations to the partition function, 

M 

QM(f3) = L PM(j) exp (-f3~~M)' (35) 
;=1 

furnish a nondecreasing sequence of lower bounds to 
the partition function. (2) The odd approximations 
to the partition function, 

M 

QM(f3) = 2, PMU) exp (-f3~;M)' (36) 
i=l 

furnish a nonincreasing sequence of upper bounds 
to the partition function,uc 

Thus the possible error f in the approximate 
partition function QM({J) is 

fM ~ tCQM - QM), (37) 

where the Mth approximation to Q(f3) is 

(38) 

l1e The referee points out that error bounds for integrating 
functions, all of whose derivatives alternate in sign, have recently 
been obtained independently by G. A. Baker (phys. Rev. 161, 434 
(1967)], by a completely different method. Our bounds (33) and 
(34) are considerably more specific, in that the sign of the error is 
determined by the sign of a single derivative, whereas Baker requires 
all of the derivatives to alternate in sign. Our results can thus be 
applied to many other cases, such as functions, some of whose 
derivatives have a definite sign on the positive real axis, or are 
bounded there, etc. 
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Before presenting quantitative examples of these 
results in Sec. V, we can sketch here the qualitative 
behavior of these error bounds as a function of 
temperature T. For the even approximations, all of 
the eigenvalues ~:n are positive, since they must lie 
within the range of integration'(ST, p. 108), which is 
here the positive real axis. Thus the lower bounds (35) 
approach zero as T -- O. However, for finite T, they 
always remain positive, and never give the useless 
negative values produced by the usual truncated 
high-temperature expansion (6), at low temperatures. 

For the odd approximations, one may show that 
there is always one and only one eigenvalue (~~M) 
at the ground-state energy E = O. Thus the upper 
bounds tend, as T -- 0, to a finite positive value 
(between 0 and 1) equal to the weight PM(l). This 
finite value Q'X( 00) is the maximum possible fraction 
of the energy spectrum which can be degenerate 
with the ground state, and still be consistent with the 
known (first 2M) moments of the spectrum. 

We may remark finally that it can be shown by 
combining some theorems from the theory of the 
moment problem,9 that the bounds we have obtained 
are in fact the most precise which are possible, based 
on a given finite number of terms in the high tem­
perature expansion. In particular, we can explicitly 
construct distributions 'IjJ(E) which have precisely the 
same high-temperature expansion, through 2M terms, 
but whose exact partition functions lie at any point 
we may choose within the error bounds, including 
the upper and lower bounds themselves. These lower 
bounds are attained for the distribution 

M 

d'IjJ(E) = ~ p'M(j)t5(E - ~jM) 
;~1 

and the upper bounds are attained by taking 

M 

d'IjJ(E) = ~ PM(j)b(E - ~jM)' 
;~1 

Each of these positive distributions has the correct 
values of the known moments, and thus each is a 
counterexample against having more precise error 
bounds from the given information. 

V. TWO EXAMPLES 

In this section we apply these results to two ex­
amples for which exact results are known. The fi~st 
example is a classical particle in a V-shaped potential 
well: 

Vex) = (
X, 

00, 
Ixl ~ 1 
Ixl > 1. 

TABLE I. Fractional error in configurational integral 
for a V-well oscillator, using 1'0,1'1, ... , 1'12' 

T* 

0.02 
0.Q3 
0.04 
0.05 
0.06 
0.08 
0.10 
0.12 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 

(€) This work 

1.9 X 10-1 

4.2 x 10-2 

1.0 x 10-2 

2.6 X 10-3 

7.6 X 10-4 

8.2 X 10-" 
1.2 X 10-· 
2.2 X 10-6 

2.4 X 10-7 

1.2 X 10-8 

1.3 X 10-10 

4.7 x 10-12 

3.5 X 10-18 

4.0 X 10-14 

(E) Kramer's series 

9.9 x 10-· 
5.2 X 10-4 

1.3 X 10-5 

7.6 X 10-7 

7.6 X 10-8 , 

The configurational density of states in this case is 
simply 

_ {dV, 0 ~ V ~ 1 
dV'(V) - 0, 1 < V. 

This case thus corresponds to integration with 
respect to a constant weight over a finite interval, and 
hence the abscissas ~jn and weights p~ (j) are just 
those of Gaussian quadrature. We have checked a 
number of the ~;n and p~ (j) generated by our method, 
with those tabulated12 for Gaussian quadrature, and 
obtain agreement to 13 of the 14 figures carried in 
the calculation (which was carried out on a CDC 6400 
computer). This not only checks the method, but 
also verifies the expected numerical stability of the 
matrix formulation. The diagonalization was carried 
out using the Q-R algorithmP 

The moments in this case are given by 

From these moments the approximate configurational 
integrals QM (38) were constructed, along with the 
error bounds E in (37). 

The exact configuration integral for this V-well 
model is 

Q(fJ) = [1 - exp (-fJ)]JfJ· 

In all cases tried the QM converged nicely to this 
exact function, and every stage stayed within the 
error bounds. The error bounds decreased smoothly 
and rapidly as the number of moments was increased, 

12 Handbook of Mathematical Functions, National Bureau of 
Standards Applied Mathematics Series 55 (U.S. Government 
Printing Office, 1964), p. 916. 

13 J. G. F. Francis, Computer J. 4, 265, 332 (1961); V. N. Kub­
lanovskaya, Zh. Vych. Mat. 1, 555 (1961). 
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TABLE II. Number o.f mo.ments required to. o.btain 
an accuracy o.f better than 1 % in the co.nfigura­

tio.nal integral, fo.r a V-well o.scillato.r. 

T* This wo.rk Kramer's series 

0.04 12 68 
0.05 11 55 
0.06 10 46 
0.08 9 35 
0.10 8 28 
0.12 7 24 
0.15 6 19 
0.20 6 15 
0.30 5 10 
0.40 4 8 

until the fractional error reached about 10-14 , after 
which it was lost in the round-off error of the 14 
figure calculation. 

is 
The usual high-temperature series (6) for this model 

00 (-f3t 
Q(f3) = ~ ( + 1) i . 

n-O n . 

In Table lour error bounds are compared to those 
given by this usual high-temperature series, for a 
typical case of a 12-term series. Our method produces 
error bounds which are more than a million times 
smaller than the usual series, for the same number of 
terms. Furthermore, the relative advantage of our 
method increases as the number of terms kept in 
both series increases. 

If one asks for results of a given accuracy (say 1 %), 
Table II compares the number of terms which are 
required to obtain that accuracy, for a V-well 
oscillator. Considering the enormously increasing 
difficulty of evaluating higher terms in expansions 
for realistic statistical problems, the smaller number 
of terms required for a given accuracy is a great 
advantage for our method. 

The second example we consider is the two­
dimensional Ising model, for which we can compare 
our results with the famous exact solution of Onsager.14 

Of particular interest is the partition function for this 
model, when the number of sites N becomes infinite. 
In order to obtain finite moments as N ---+ 00, we may 
consider the high-temperature expansion of the 
partition function per site, which is defined by 

Q = lim (Q.",)l/N, 
N-+oo 

where QN is the partition function for a model with 
N sites. The high-temperature expansion for Q is 

.. L. Onsager, Phys. Rev. 65, I 17(1944). 

independent of N, and can be obtained by rearranging 
the hyperbolic tangent expansion of Kramers and 
Wannier3 and Onsager.I4 In general, the Nth root of a 
partition function need not be expressible as a Laplace 
integral (2) with a nondecreasing distribution function. 
Such a nondecreasing distribution does appear to 
exist for the two-dimensional Ising model in zero 
field, since the coefficients (OC2nOC2n+l) turn out to be 
positive (at least through n = 8). These are necessary 
conditions for a nondecreasing distribution, and 
sufficient conditions if true for all n. However, the 
distribution of states corresponding to this expansion 
is symmetric about E = 0 and extends to ± 00, rather 
than starting at 0 as we assumed in deriving the error 
bounds. Because of this extension to - 00, the error 
term in (34) is no longer applicable, and hence no 
upper bound (36) is furnished in this case. This failure 
of the upper bbundmight be expected in this case, 
since the model exhibits a phase transition at which 
the heat capacity becomes infinite,14 so that one 
could hardly expect to find upper bounds to thermo­
dynamic properties in this case. Nevertheless, the 
even error term (33) continues to be valid, and yields 
lower bounds which are remarkably accurate. In Fig. 
1 we have plotted the error in these lower bounds, as 
a function of the number of moments (2M) used, for 
the partition function at the critical temperature Tc of 
the infinite two-dimensional Ising model. For com­
parison, we have also plotted the error of the high­
temperature (hyperbolic tangent) series of Kramers 
and Wannier, 3 as a function of the number of terms. 
The greatly improved accuracy and rate of convergence 

0.0.0.0.5 

0.0.0.0.2 

OODD12':--':-4-~6--8'----11D--.J12L......-l-'--4-..J16 

2M---

FIG. I. FractiDn. error. in variDus approximatiDns to. partitiDn 
functlO~ Df the 2-dtmenStDnal Ismg mDdel Dn a quadratic lattice, at 
the cnttcal temperature, ~s a functiDn Df the number (2M) Df 
mDments used m cDnstructmg the apprDximatiDn. 
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TABLE III. Product-difference table for the corresponding continued fraction, including aU those terms 
which can be calculated using Ilo, Ill' Ill' 1l3, and Il •• 

2 3 4 5 6 

1 1 Ilo III (Polls - Ill) 1l0{Ps/l1 - Il:) (P~lllllall. - 1l01l~1l. - Ilolllll~ - I-'31-'11l1 + 2PoIlfl-'IfA.) 
2 0 -PI -PI - (PoPa - I-'aP1) Po{PIPa - P1P.) 
3 0 PI Ils (PoP< - 1l1PS) 
4 0 -Ps -I-'. 
5 0 P. 
6 0 

of our method is apparent. It is important to em­
phasize that precisely the same combinational 
information is required to construct our 2Mth-order 
approximation, as is required to find 2M terms in the 
usual high-temperature series. 
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APPENDIX A: CONSTRUCTION OF THE 
CORRESPONDING CONTINUED FRACTION 

The basic data we use are the moments f-ln' from 
which we want to construct the coefficients of the 
corresponding continued fraction (I 5). We set out 
the moments as the second column of Table III. The 
first column is initialized to zero, except for the (1,1) 
element Pn which is taken as unity. The table is then 
filled up by columns, proceeding to the right from 
column 3, according to a "product-difference" (PD) 
recursion relation 

Pii = PI,i-1 . Pi+1,i-2 - PI,i-2 . Pi+1,i-I' (AI) 

Within each column one starts at the top and works 
downward. When a triangular portion of the table 

blXI - (aJ!x2 +Oxa +OX4 0 

-(aJ!xI +b2X2 -(aJlxa +Ox4 0 

OXI -(aJlx2 +baxa -(aJlx4 0 

is complete, then the IXn are given by 

IXn = PI,n+1!(P1,n . PI,n-J. (A2) 
This scheme has many points in common with 

Rutishatiser's quotient-difference (QD) algorithm,15 
which starts from moment ratios, rather than the 
moments themselves, and produces the IXn by alter­
nating quotients and differences. Essentially the same 
results are obtained by the PD and QD algorithms. 
The main advantage of the PD method is that it 
saves all divisions until the end, whereas the QD 
algorithm may break down during iteration because 
of trying to divide by zero or a very small number. 

Both the PD and QD algorithms are rather sensi­
tive to round-off error, and must be carried out with 
double precision arithmetic. In this respect, the PD 
algorithm has an additional advantage, in that the 
entire recursion (AI) can be carried out in the field of 
exact integer arithmetic, completely avoiding the 
round-off error. 

The standard formal mathematical method of 
constructing the IXn is through the Hankel deter­
minants.9 Since the evaluation of the determinants 
needed requires ""n! multiplications and additions, 
compared to the ""n2 operations required to construct 
the PD table, it is clear that the recursion schemes 
are more suitable for calculation. 

APPENDIX B: PROOF OF EQ. (16) 

We wish to show that the first component Xl of the 
solution to the set of linear equations 

=0 

=0 

-(an-J!Xn-2 +bnxn- l -(aJlxn = 0 

OXn_2 - (an)!Xn-1 +bnxn = 0 

16 H. Rutishauser, Der Quotienten-Dijferenzen-Algorithmus (Birkhiiuser, Basel/Stuttgart, 1957); P. Henrici, Proc. Symp. Appl. Math.1S, 
159 (1963). 
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is equivalent to the value of the fraction 

-al 
f=-~ 

bl - a_2 __ 
b2 - a:.:..;a~ __ 

b3 -'" 

-an-I 

an 
bn- 1 - -. 

bn 

We solve the linear equations by Gaussian elimination, 
starting at the bottom. From the last equation, we have 

- (a,.)lxn = (-anlbn)xn- I • 

Substituting this into the second-to-Iast equation 
and solving gives 

~(an_l)lxn_l = ( -a~-~)xn_2' 
bn- l 

bn 

Similarly substitution of this into the third equation 
from the bottom gives 

JOURNAL OF MATHEMATICAL PHYSICS 

t ( -a
n

_2 ) -(an- 2) Xn-2 = . Xn-3 . 
b 

_ an-l 
n-2 

an 
bn- I --

bn 

It is by now clear that each of the factors in parenthesis 
represent larger and larger portions of the bottom of 
the fractionJ. At the last stage, 

1 ~ -(a2) X2 = b 
2 - a_3 __ 

ba-~ 
b4 -' 

-an 

bn 

Substituting this into the first linear equation, and 
solving finally for Xl' gives the desired result 

Xl = -al 

bi - a2 -"---
b2 - a::.;3~ __ 

ba -'" 
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Polynomial bases are derived for the irreducible representations of the group 0(5). The matrix elements 
of the infinitesimal generators are given. 

1. INTRODUCTION 

In recent years there has been a great deal of interest 
by physicists in the classical groups; see, for example, 
an excellent review by Behrends, Dreitlein, Fronsdal, 
and Leel (we refer to this paper as BDFL). Attention 
has been centered to some extent on the special 
unitary groups as describing the symmetries of 
strongly interacting particles. 

Recently the orthogonal group 0(4) has been 
recognized as useful in classifying families of Regge 

• Supported by the U.S. Office of Naval Research under Contract 
OOOI4-67-A-0305-0005. 

t On leave from McGill University, Montreal, Canada. 
1 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. Mod. 

Phys. 34, I (1962). 

trajectories.2 These ideas have also been extended to 
higher orthogonal groups in order to include internal 
symmetries on the same footing as space-time prop­
erties3

; in this connection the group 0(5) plays a 
special role as the largest subgroup of 0(6) ~ 8U(4). 

The fact that an O(n) symmetric system subjected 
to a reflection condition can have 8U(n - 1) sym­
metry4 may lend some additional interest to the 
orthogonal groups. 

For physical applications it is very useful to have 

2 D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 18, 863 
(1967). 

3 A. Salam and J. Strathdee, Phys. Rev. Letters 19,339 (l967). 
• D. G. Ravenhall, R. T. Sharp, and W. J. Pardee, Phys. Rev. 

164, 1950 (1967). 
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explicit matrix representations of the group generators; 
Clebsch-Gordan coefficients for reducing products of 
representations are also often needed. To calculate 
these in a simple form, polynomial bases for the 
irreducible representations are a useful tool. 

In this paper we derive polynomial bases for 0(5); 
the generator matrix elements appear as part of the 
derivation. The Clebsch-Gordan coefficients we 
leave for the future. 

2. COMMUTATION RULES AND PHASE 
CONVENTIONS 

The ten (Hermitian) generators of 0(5), the group 
of rotations in five dimensions, may be taken as 
Jii = -Ji ,; i ~ j; i, j = 1, .. " 5. Jij generates 
rotations in the if plane. 

The commutation rules for the J's are 

[J.i , Jk/ ] = i(tJt~il + tJilik - (Jillk - (Ji~iI)' (2.1) 

We define 

Sl = t(J23 + J14), S2 = i(J:u + J2J, 
SS = t(J12 + J34), T1 = j(JZ3 - J14), 

T2 = HJ31 - J24), Ta = i(J12 - J34), 

U± = J15 ± iI25 • V± = Ja5 ± iI45 • 

(2.2) 

Then S, T are two commuting spins which generate 
0(4) transformations.s We give the nonzero commu~ 
tators of the generators S, T, U±. V±. omitting the 
well-known rules for S±, Sa (and T±, T3) with each 
other; S±, T± mean S1 ± iS2 , Tl ± iT2 : 

[S3' U±l = ±!U±, [Ts, U±l = ±!U±, 

[S3' V±] = ±!V:/:, [Ts, V±l = =flV:/:, 

[S±. U'Fl = ± V±, [T:/:, U'fl = ± V'F' (2.3) 

[S.:I:' V'Fl = =fU±, 

[U:!:. V±l = =f2S.:I:' 

[T±. V±] = =fVl:' 
[U±. V'fl = =f2T±. 

All but the last two relations are summarized by the 
remark that U:!:' V± under 0(4) form a (t t) quartet 
of operators UB with 

8sts 

H H 
Un = -U+. U!_! = V+, 
H H (2.4) 

U_!_! = U_, U-H = V_. 

We use states in which S3' Ta are diagonal. If 
S3, Ta are plotted as Cartesian coordinates, the 
other generators move states as shown in the "root 
diagram," Fig. 1. 

A systematic derivation of the root diagram and the 
corresponding generators is described by BDFL; our 
generators are related to theirs by S± = (6)fE±1' 

& P. Roman, Theory of E{ementary ParTicles (North-Holland Pub!. 
Co., Amsterdam, 1964). 

FIG. 1. The 10 generators of O(5); the arrows show the amount by 
which the eight nondiagonal generators S ± , T ±, U ±, V ± move 
the point (S" T.) whose coordinates are the eigenvalues of the 
two diagonal generators. 

T± = (6)1E±3. U± = -2(3)lE:!:2' V± = 2(3)f~4' 
S3 = 2(3)lHl> Ta = 2(3)!H2' 

0(5) representations may be labeled by two non­
negative integers (P. q); they are the (1'1' ).2) of 
BDFL, or the (2,u2,,ul - ,u2) of Hamermesh.1I 

According to BDFL, p. 8, we need Hr - 3/) = 2 
quantum numbers to label states besides the eigen­
values of Sa, Ta; here r = 10 is the number of 
generators and I = 2 is the largest number of mutually 
commuting generators. We choose to use the pair 
S, T which label 0(4) representations. Thus our 
general state is Ipq; ST; SaTa); where there is no 
ambiguity we may suppress the pq labels. 

We adopt the Condon-Shortley phase convention 
for the Sand T spin states in each 0(4) basis. To 
define the relative phases of different 0(4) bases we 
invoke the 0(4) Wigner-Eckart theorem: 
(ST'; SaTal B:~ts 1ST; SaT3) 

= (SfT'11 B IIST)(SSasssl S'Sa>(TT3tta l T'T3) 
x [(2S' + 1)(2T' + 1)]-!-; (2.5) 

we use the double bar notation throughout to denote 
0(4) reduced matrix elements. We now ask that the 
reduced matrix element (S'T'II U liST) be positive 
when AS = 1. fj.T = t. when AS = t, AT = -t, 
when tlS = -i, AT = ! and negative when AS = 
--h AT = -to Here fj.S, fj.T = S' - S, T' - T. 
It then turns out that all matrix elements of U±, V± 
are positive except those of U+ with AS = t. fj.T = t, 
of U_ with fj.S = -t, AT = -to of V+ with AS = 
-t, AT = t, and of V_ with AS = t, AT = -i, 
which are negative. 

• M. Hamermesh, Group Theory (Addison-Wesley Pub!. Co., 
Reading, Mass., 1962). 
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3. THE REPRESENTATIONS (p,O) AND (0, q) 

The basic (1, 0) representation contains two 0(4) 
representations (1 0) and (0 1). The basis states 
at = Ii 0; 1 0), P = 11 0; -1 0), y = 10 1; 0 i), 
~ = 10 1; 0 -1) are shown in Fig. 2(a). It can be 
verified that we reproduce the correct commutation 
rules if we represent the generators by the differential 
operators 

Sa = Hato" - pap), Ta = t(yoy - 15(6)' 

S+ = atOp, S_ = Po", 
T+ = y156 , L = ~Oy, (3.1) 

U+ = Yap + ot06' U_ = pay + 150", 
V+ = otOy - 15op , V_ = yo" - P06. 

The representation (p, q) has dimension 

l(P + 1)(q + 1)(P + q + 2)(p + 2q + 3) 

according to BDFL. For q = 0 this is just the number 
of monomials of degree p in four variables. In fact 
we see that 

Ip 0; ST; S3Ta) 

otS+S3pS-S3yT+T3~ T-Ta 
(3.2) 

[(S + Sa)!(S - Sa)!(T + Ta)!(T - Ta)!]!· 

For these (p 0) states Sand T are not independent but 

T = !P - S. (3.3) 

Hence we may without ambiguity suppress T in the 
state label. S takes integer and half-integer values in 
the range 0 ~ S ~ p/2. 

The (0, 1) representation contains two 0(4) 
representations (t, i) and (0,0). The basis states 
'f} = Ii i; t i), ; = Ii t; -i, i), () = Ii i; t, -i), 
~ = It i; -t -i), A = 100,00) are shown in Fig. 
2(b). It can be verified that the commutation rules 
are reproduced if we write 

Sa = H'f}o~ + (joe - ~os - 'o~), 
Ta = H'f}o~ + ;os - (joe - ~o~), 

S+ = 'f}Os + ()o~, S_ = ;O~ + ,oe, (3.4) 

T+ = 'f}Oe + ;O~, L = (Jo~ + 'os' 
V+ = (2)l(AO~ - 'f}0;) , V_ = (2)lao;. - AO~), 
V+ = (2)~«()0;. + AOs)' V_ = (2)l(AOe + ;0;.). 

Now 'f}' - ;() + tA2 is an 0(5) scalar so to avoid 
duplication of representations we must discard 
states proportional to powers of it. The number of 
monomials of degree q in five variables is 

l-4(q + 1)(q + 2)(q + 3)(q + 4). 
The number of discarded states is the same, with q 
replaced by q - 2; the remaining number is just the 
required dimension of the representation (0, q). 

For (0, q) states, it turns out that S = T, so again 
we may suppress T from the state label; Stakes 

T3 T3 

~2 Y .( ~2 . ." 

fJ a A 

~ 2 
53 ~ 2 

53 

8 .t .8 

a b 
FIG. 2. The two basic representations of 0(5); (a) shows the four 

states of the (1,0) representation; (b) shows the five states of the (QI) 
representation. 

integer and half-integer values in the range 0 ~ 
S ~ q12. We find 

10q;S;SS) 
2S Aq

-
2S- 2",(;() - 'f}O'" 

=Ns'f} L (3.5) 
'" 2"x!(q-2S-2x)!(x+2S+1)! 

with 

Ns = {[(2S + 1)(q - 2S)! (q + 2S + 2)! 
x (q + I)! 2Q- 2S ]/(2q + 2)!}l. (3.6) 

To derive Eq. (3.5) we first assume 10 q; S; SS) = 
'f}2SF(A, 'f}' - ;(); since A and 'f}' -;fl are the 
only 0(4) scalars, this is the most general form with 
the correct 0(4) behavior. F is a polynomial of degree 
q - 2S in 'f};(nA and may be determined to within a 
multiplicative constant by the condition 

(o~o~ - osoe + iO~)'f}2S F = 0. (3.7) 

The operator in Eq. (3.7) obviously gives zero on the 
perimeter state 'f}Q/(q!)!; and since it is an 0(5) scalar 
and commutes with all the generators, it must give 
zero on every state. 

The normalization constant (3.6) is fixed by demand­
ing the equality of the matrix elements 

(S + i; S + is + il V+ IS; SS) 
and 

(S; SSI V_IS + i; S + is + i). 
In calculating these matrix elements with the states 
(3.5), one operates with V± on the right-hand state and 
identifies the coefficient of the left-hand state· one 
does not calculate scalar products. In this way all 'sums 
are avoided; the calculation is further facilitated by 
retaining only the AQ

-
2S term on both sides. From the 

equality of the matrix elements, together with the 
phase conventions, the ratio Ns1Ns+1 and the matrix 
element 

(S; SSI V_IS + i; S + is + i) 
= _ [(2S + l)(q - 2S)(q + 2S + 3)J! 

2(S + 1) (3.8) 

are determined. 
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The other states of the (SS) representation of 0(4) 
are easily constructed from the corner state (3.5) by 
repeated use of the generators S_, L. They are 
given [apart from an 0(4) scalar factor] by Eq. (2.2) 
of a paper by one of us.7 

The states (0 q) are closely related to the five­
dimensional hyperspherical harmonics. In fact, the 
harmonics are obtained from the states (0 q), apart 
from a numerical factor, by the replacement of 
'1]~O')' by the corresponding first-degree hyper­
spherical harmonics. 

4. THE GENERAL REPRESENTATION (p,q) 

The 0(4) content of the general representation is 
indicated in Fig. 3. The ST which appear are those in 
or on the rectangle whose corners are (ip, 0), (ip + 
iq, iq), (iq, ip + iq), (0, ip), and for which 2(S -
T) has the same parity as p. Representations with odd 
pare spinor representations in the sense that the 
component of angular momentum in any plane in the 
five-dimensional space (i.e., eigenvalue of any Jif) 

is half-odd; representations with even p have integer 
angular momentum. 

We wish to construct the representation (p, q) as a 
product of the representations (p, 0) and (0, q): 

Ipq; ST; SaTa) = L Ipq; S'S"; ST; SaTa) A8T(S'S"). 
8'8" (4.1) 

We have adopted the abbreviation 

Ipq; S'S"; ST; Sa1~> 

= L IpO; S'; S~T~) 10q; S"; S3 - S~Ta - T~) 
Sa'Ta' 

X (S'S~S"Sa - S~ I SSa)(T'T~T"Ts - T~ I TTs)· 

(4.2) 

Here T' = ip - S' according to Eq. (3.3) and T" = 
S". The coefficients A(S'S") in Eq. (4.1) are special 
stretched 0(4) scalar factors, i.e., special 0(5) 
Clebsch-Gordan coefficients with the 0(4) Clebsch­
Gordan coefficients removed. The generators are 
now the sums of those in Eqs. (3.1) and (3.4). 

According to BDFL Table V we can form an 0(5) 
(1, 0) quartet from (1,0) and (0, 1). In terms of our 
states it is 

(I.' = [(l.A + (2)1(b'1] - AO)]/(5)1, 

{J' = [{JA + (2)t(!5~ - r0]/(5)t, 

y' = [-y). + (2)t«(I.~ - (J'1])]/(5)t, 

15' = [-15), + (2)1«(1.' - (JO)]/(5)!. 

(4.3) 

We are concerned with these states because Ipq; ST; 
SaT3) must be orthogonal to any state which contains 
powers of them; such states would belong to rep-

7 R. T. Sharp, J. Math. & Phys. (to be published). 

T 
~P+Y2q • 

• • 
• • • 

~p • • 
• • 

~2P Y2P+~2q S 

FIG. 3. The 0(4) content of the 0(5) representation (pq) all 0(4) 
representations (ST) are included (shown by dots) for which the 
point (ST) lies in or on the rectangle tp:5: S + T:5: q + fP 
0:5: Is -: TI :5: fP ~nd for which 2(S + T) has the parity of P; 
the case Illustrated IS P = 2, q = 3; the scale is t that of Figs. 1 
and 2. 

resentations lower than (pq) in the product of 
(p 0) and (0 q). 

Corresponding to the states (4.3) we construct a 
(1,0) quartet of operators 13;. For example, 

ap = Gila" + (2)f(060~ - ai,) (4.4) 

is the (i 0) member. We probe by induction that 
0; Ix) = 0 where Ix) is any state of the representation 
(pq). Assume the statement true for Ix), and let G 
be a generator of 0(5). Then 

a;G Ix) = Go; Ix) + [a;, G) Ix) = 0 

since [a;, G) is a linear combination of a;. The state­
ment is true for the heaviest state (I."'1]Q/(P! q!)t so it is 
true for all since they can all be reached by repeated 
application of generators. 

We could determine the relative values of the 
A(S'S") in the state (4.1) by applying 0; and 0; to it 
and asking that the results vanish. But rather than 
apply them directly, we notice that (a;, o~) is a (i, 0) 
doublet a' under 0(4). In fact it is the sum of two 
composite doublets, one (all a;) formed from a (i 0) 
doublet in the p variables and a (00) singlet in the q 
variables; the other (060g - 0;.0,) formed from a 
(0 t) doublet in p and a (t i) quartet in q. The reduced 
matrix elements can be calculated using the 0(4) 
generalization of Edmonds'S Eq. (7.1.5), 

(S~T~; S~T~; S'T'II X· t IISaTa; SbTb; ST) 

x (S~T~II ASata IISaTa)(S~T~11 BSbtb II S bTb) 

X [(2S + 1)(2S' + 1)(2T + 1) 

x (2T' + 1)(2s + 1)(2t + 1)]1 

[S~ Sa sa] [T~ Ta ta] 
x X S~ Sb Sb X T; Tb tb , (4.5) 

S' SsT' T t 

8 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, N.J., 1957). 
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involving X coefficients or 9j symbols. We omit Edmonds' y's since in our case the ST, etc., labels are sufficient 
to identify the states. X in Eq. (4.5) is a composite 0(4) tensor: 

X:!ts = 1 A:;;~8,B::~s3't3-j3' x <SaS~Sb S3 - S~ I S Sa)<tat~tb ta - t~ I t ta)' 
8a't3' 

The condition 
0= (p - 1 q - 1; S'S"; S ± iTJI a' Ilpq; ST) 

= L (p - 1 q - 1; S'S"; S ± iTIl a' IIpq; SIIIS""; ST)A(SIII, S"II), 
S·S·' 

which holds for all S'S" and for S ± t, leads to two independent relations connecting A(S' + i, S"), A(S', S" -
i), A(S', S" + i). Solving these gives 

A S' 1. S" + 1 _ [ (q - 2S")(T + T" - T' + 1)(T - T" + T')(S" + 1)2 J1A(SI S") (4.6) 
( + 2' 2) - (2S" + 1)(q + 2S" + 3)(S" - S + S' + 1)(S" + S' + S + 2) ,. 

and a second equation in which the roles of Sand T are interchanged. Iterating these equations gives 

A S' S" _ N [ (T + T" - T')!(S + S" - S')!(2S" + 1) J1 
ST( , ) - ST (q _ 2S")! (T + T' - T")! (S" + S' - S)! (S + S' + S" + 1)! (S + S' - S")! 

x {[(T + T' + T" + 1)! (T' + Til - T)! (q + 2S" + 2)!]-1}1, (4.7) 

where N ST is a phase-normalization factor to be determined. The S'S" in the sum (4.1) are restricted to those 
for which ° ::;; S' ::;; p/2, ° ::;; S" ::;; q/2 and for which the arguments of the factorials in Eq. (4.7) are non­
negative integers, i.e., for which 2(S' ± S") have the parity of S and satisfy the inequalities max (tp - T, S) ::;; 
s' + S" ::;; ip + T, -S::;; S' - Sf! ::;; min (S, ip - T). 

From the phase conventions and the equality of the matrix elements 

(S + iT + i; S + is + tl U+ 1ST; ST) = (ST; STI u_ls + t S + i; T + iT + i), (4.8) 

the ratio NST/Ns+lT+l and the matrix elements in question are determined. Again we avoid summations in 
calculating the matrix elements (4.8) by operating in each case with U± on the right-hand state and picking out 
the coefficient of the left state, not by taking scalar products. The work is facilitated by working with the term 
IS' + i S" + t; S + iT + i; S + i T + i) in the state IS + iT + i; S + t T + i), where S' = HS -
T) + ip, S" =t(S + T) - ip; in this term the Sand T spins from the p and q spaces are stretched. 

By iteration NST can be expressed in terms of its value for a boundary state S + T = q + ip. Its value is 

NST = [(q + ip - S - T)! (q + 19p + S + T + 2)! (ip + S + T + 1)!J1 
(2q + p + 2)!(S + T - tp)!(p + q + 1)!(q + I)! 

x [(q + ip - S + T + I)! (q + ip + S - T + I)! Up - S + T)! (ip + S - T)! (2q + 2)!]1. (4.9) 

For the reduced matrix elements of the UV generators we find 

(S + i T + til V liST) = [(q + tp + S + T + 3)(tp + S + T + 2)(q + ip - S - T)(S + T - ip + 1)]1, 
(S - iT - ill·U liST) = - [(q + ip + S + T + 2)(ip + S + T + 1)(q + ip - S - T + l)(S + T - ip)]l, 

(S + i T - ill V liST) = [(q + ip + T - S + 1)(q + S - T + ip + 2)(ip + T - S)(tp + S - T + 1)]1, 

(S - iT + ill U liST) = [(q + ip + S - T + 1)(q + tp - S + T + 2)(ip + S - T)(tp - S + T + 1)]1. 

(4.10) 

This completes our results. The basis states are given by Eq. (4.1) with the coefficients A(S'S") given by Eq. 
(4.7) and the normalization factor NST by Eq. (4.9). The matrix element of the generators (other than the 
trivial ones S, T) are given by Eqs. (2.4) and (2.5) in terms of the reduced matrix elements (4.10). 

Instead of working with basic (1,0) and (0,1) representations one might use two independent (1,O)'s; then 
(Q 1) would appear as a composite state. In this way one would need eight independent variables instead of nine. 
Although we have not pursued this alternative course, we may note an analogy with SU(3) where states may be 
built from two independent quark (1,0) representations or from a quark and an antiquark (0,1) representation; 
the second course, to which this paper closely corresponds, involves a simpler isospin structure and leads to 
simpler formulas when the bases are used, for example, to compute Clebsch-Gordan coefficients,9 an important 
consideration in view of the large number of internal summations which arise. 

• c. K. Chew and R. T. Sharp, Nucl. Phys. B2, 697 (1967). 
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~t is shown that .. t~e mot~on of a ~rownian'particle in the Smoluchowski approximation may be de­
scrIbed by a Schro?mger-hk~. equatI~n definmg a complex probability amplitude whose norm is the 
same ~s the ~tocha:'tlc probablhty denSIty. Furthermore, t~e quantum dynamical operators have a physical 
meamng whIch arlse.s m a na~ural way, from the stochastIc nature of the process. These operators satisfy 
the usual commutat~on relations and th,!s .the uncertainty principle. Here the constant h is replaced by 
a parameter. depend.mg on ~he characterIstIcs of the system. In particular, the potential-energy operator 
for a BrownIan partIcle subject to no external forces can be interpreted as a Rayleigh dissipative function. 

I. INTRODUCTION 

The idea of giving an alternative interpretation to 
the quantum theory by essentially assuming, first, 
that to each of the fundamental particles one may 
associate a field "p which is a solution to the ordinary 
Schrodinger's equation, second, that this field is an 
average over random fluctuations originating in a 
subquantum level, and third, that this field exerts a 
"quantum-mechanical" force on the particle which 
begins to manifest itself strongly on the atomic level, 
originated 40 years ago in the work of de Broglie! 
and Madelung2 and was continued by Bohm et al., 
about 30 years later.3 Although some progress has 
been achieved in clarifying the physical concepts lying 
behind such ideas, the solution to the problem is far 
from being satisfactory and, furthermore, complete. 

In recent years many authors4 have revived this 
field trying to bring up a relationship between stochas­
tic processes and quantum mechanics and as one of us 
has pointed out,5 this is feasible in a quite simple way. 
Following the ideas. introduced in paper 1,6 we would 
like to set forth in a series of papers a different method 
·by means of which one can visualize some of the 
outstanding features of the general and complex 

·Consultant, Comisi6n Nacional de Energia Nuclear, Mexico. 
t Facultad de Ciencias, Universidad de Mexico. 
1 L. de Broglie, Compt. Rend. 183,447 (1926); 184,273 (1927); 

185, 380 (1927). 
2 E. Madelung, Z. Physik 40, 332 (1926). 
3 D. Bohm, Causality and Chance in Modern Physics (D. Van 

Nostrand Co., Inc., Princeton, N.J., 1957), and references there 
cited. 

• G. Della Riccia and N. Wiener, J. Math. Phys. 7,1372 (1966) 
and also some other references in Ref. 5. 

6 L. de la Peiia-Auerbach, Phys. Letters 24A, 603 (1967). (Here­
after this paper will be referred to as I.) 

6 N. Wax, Ed., Selected Papers on Noise and Stochastic Processes 
(Dover Publ., Inc., New York, 1954); see especially papers by S. 
Chandrasekhar and by M. C. Wang and G. E. Uhlenbeck. 

problem posed in the previous paragraph. This paper, 
which is the second one of the series, is devoted to the 
study of the possibility of describing the dynamical 
properties of a stochastic process defined by a simple 
diffusion or Smoluchowski equation using quantum­
mechanical methods. This description is therefore 
restricted in the sense of the limitations which are 
intrinsic in the derivation of Smoluchowski's equa­
tion,6 namely, that we shall be considering only time 
intervals of the particle long compared with its 
relaxation time. The more general case in which the 
particle is described by means of a Fokker-Planck 
equation will be dealt with in a forthcoming paper. 

In Sec. II we sketch the model for our discussion 
and from which stems Schrodinger's equation de­
scribing the stochastic process. Section III is devoted, 
using an adequate language, to a discussion of the 
physical interpretation of the "potential function" 
appearing in Schrodinger's equation derived in Sec. 
II. The most important physical example which can be 
treated within the context ofSmoluchowski's equation, 
namely, that of a free particle, is given in Sec. IV, and 
finally in Sec. V a discussion of our results is presented. 

II. DERIVATION OF SCHRODINGER'S 
EQUATION 

We describe the motion of a particle in the con­
figuration space through a real single-valued function 
p(x, t) where xU) is a stochastic process and p is the 
probability density at x(t). Then, we postulate that this 
probability density is conserved, namely 

op/ot + div (vp) = 0, (1) 

p satisfies a continuity equation. Here, v is the 
macroscopic or flow velocity of the particle, which in 

668 
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general may be written in the following way: 

(2) 

where ai = Ki/ {J is the ith component of the external 
force K, per unit mass, acting on the particle, divided 
by the friction coefficient (J, and hij is the diffusion 
tensor.6 Because p is a real positive single-valued 
function, we may now introduce a real function R such 
that 

(3) 

in terms of which Eq. (1) may be written as follows: 

aR/at = -t div v - v • grad R. (4) 

The question here arises if whether we can obtain an 
equation of the Schrodinger type defining a field 1p 
such that the probability density 1p1p* = p describes 
the same physicaL situation as Eq. (1). The answer to 
this question is dealt with in paper I where it is shown 
that if we introduce the function 

(5) 

where S is a real, single-valued function, then indeed 
Eq. (1) may be cast into the form 

i(a1plat) = -tlXV'21p + V1p, (6) 

together with 

v = IX grad S, (7) 

corresponding to an "irrotational" flow in configura­
tion space. This implies, of course, that the external 
force is conservative and IX is an undetermined 
parameter characteristic of the system. 7 

Equation (6) is a Schrodinger-like equation with a 
potential energy function V which in terms of Rand 
S is given by 

V = -as/at + tlX[V'2R + (grad R)2 - (grad S)2], 

(8) 

whose physical interpretation, in the quantum­
mechanical sense, is the main subject of this paper, 
but at this stage remains unknown. Notice should be 
made, however, that the definition of"P given by Eq. 
(5) satisfies the requirement that p = 1p*1p is a proba­
bility density. Therefore, Eq. (6) implies that 1p 
satisfies a Schrodinger-type equation with a potential­
energy function defined by Eq. (8) and its modulus 
squared gives the probability density for a Markoff 
process in the Smoluchowski approximation where the 
flow velocity is irrotational. 

, A brief discussion concerning the nature of ex is given in paper I. 

III. THE PHYSICAL CONTENT OF 
SCHRODINGER'S EQUATION 

As was pointed out in the previous section, the 
core of our discussion is to provide a physical meaning 
for the potential-energy function V appearing in Eq. 
(6). To accomplish this task it is convenient to 
introduce various definitions whose meaning will 
become clearer as we proceed with the argument. 

Let] be any operator. We define <1>av the mean 
value of] weighted with the probability distribution 
p in the usual way, namely, 

<])av == f]p dr, (9) 

the integration extending over all the configuration 
space. 

Also, we define the expectation value <1> of the 
operator J by 

<J) == f 1p*J1p dr, (10) 

where, in particular, if] is a c function then, trivially, 
<J) = <])av = /. 

From the results of the previous section, it is seen 
that the probability current J associated with our 
Brownian particle is given by 

J = pv. (11) 

On the other hand, if we restrict ourselves, for the 
sake of simplicity, to consider an isotropic diffusion 
tensor, hij = -boD, then Eqs. (2) and (7) yield 

v = a - (Dip) grad p = IX grad S. (12) 

Let us now define the operator v through the equation 

v == a - D grad (13) 
so that 

vp = vp. (14) 

Finally, in analogy with quantum mechanics the 
"momentum" operator will be defined by 

P == - imlX grad. (15) 

Let us now derive some results concerning the mean 
and expectation values of these operators using the 
definitions introduced above. 

The mean value of the momentum operator p is 
readily shown to be equal to zero. In fact, substitution 
ofEq. (15) into Eq. (9) and integration by parts, using 
the boundary condition that p must vanish at infinity, 
yields immediately the result 

<P)av = O. (16) 

Use of this result in Eq. (13) leads to another 
interesting equation, namely, that 

(v)av = i. (17) 
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In other words, the mean value of the flow velocity of 
the particle is proportional to the mean value of the 
external force per unit mass acting on it. We stress 
the fact that this result is a consequence of working 
with Smoluchowski's equation. 

On the other hand, the expectation value of the 
operator l' is given by 

(1') = I 1JI*~1JI dr. (18) 

Using Eq. (5), Eq. (18) may be rewritten as follows: 

(~) = -im (XJ 1JI*(grad R + i grad S)1JI dr, 

and therefore, 

(1') = -imet. (grad R) + met.(grad S). 

However, from its definition ~ is a Hermitian operator, 
hence 

so that 
(grad R) = 0, 

(~) = rxm (grad S). (19) 

This result is also quite interesting. Indeed, from Eq. 
(7) we see that (grad S) = rx-1(v), so that Eq. (19) 
reads 

(p) = (mv) = mf, (20) 

or that the expectation value of the "momentum 
operator" is equal to the mean value of the flow 
momentum associated with the particle. It is indeed 
this result which allows one to interpret p as the 
"flow momentum" operator associated to the Brownian 
particle. 

Let us now introduce the corresponding statistical 
deviations from the two average values defined at the 
beginning of this section. Define two quantities 
15] and althrough the equations: 

15]==]- (hav, 

al==l- <I), 
(21a) 

(21b) 

the two being equal if] is a c function. Then, the 
mean square deviations associated with 15] and a] are 

«c5/)2)av, «15/)2), «a/)2)av' and «al)2), 
the four being equal to each other when] is a c func­
tion. In particular, if we take for J the momentum 
operator we see, using Eqs. (16) and (20), that 

c5p = il - (P)av = P 
and 

ail = p - (mv) = l' - m(v)av' 
Then, 

Also, 
«a1')2) = (1'2) - (m(v) ... v)2. (22b) 

Moreover, since c5~ = ~, we see that 

«c5~)2)av = -ex2m2I div (grad p) dr, 

which vanishes due to the boundary conditions obeyed 
by p. Hence, 

(23) 

We are now prepared to undertake our task, 
namely, to arrive at a physical interpretation for the 
potential function V defined through Eq. (8). Let us 
then begin by calculating the expectation value of the 
square of the momentum operator p. We have 

(~2) = -m2ex2I1JI*V21J1 dr 

= -2m2ex J 'Ip*[-i(o'lp/ot) + V'Ip] dr, 

using Eq. (6). The integration is straightforward, 
yielding the result that 

(~2) = 2m2ex[(iC%t» - (V)] C24a) 
or 

(mexi(%t» = (il2/2m) + (mrxV). (24b) 

This equation is quite suggestive itself. Indeed if we 
define two operators, namely, 

t == imex(%t) (2Sa) 
and 

0== mexV, (2Sb) 

then Eq. (24b) takes the form of 

(t) = (~2/2m) + (0), (26) 

which has the conventional form for the relationship 
between the expectation values for the total energy 
t, the kinetic energy p2/2m, and the potential energy 
O. Thus, the operator 

fl = (p2/2m) + 0 (27) 

could be interpreted as the Hamiltonian operator for 
the particle. However a certain amount of care has to 
be exercised when this analogy is carried up to this 
point. In fact, the term pi/2m is not the usual kinetic 
energy, but the kinetic energy associate!! with the 
microscopic flow of the particle and thus inherent in 
it there is a stochastic contribution. Also, V is not the 
external field but a complicated function whose nature 
is still unknown, but which of course might contain 
terms of a purely stochastic character. It is therefore 
necessary, before assigning any physical meaning to 
the formal results given by Eqs. (26) and (27), to 
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study more closely Eq. (26). For this purpose let us 
retrace our steps to our former equations. From Eqs. 
(8) and (25b) we see that 

0- = -ma.(oS/ot) + tma.2[V2R + (grad R)2 

- (grad S)2] (28) 

and let us eliminate the terms containing S, expressing 
them in terms of R. Notice first that through Eq. (12) 
we get that 

(grad S)2 = V2/a.2 

= a.-2[a2 + 4D2(grad R2) - 4Da· (grad R)], 

where use has been made of Eq. (3). Substitution of 
this result back into Eq. (28) yields 

0' = -ma.(oS/ot) + tma.2{V2R + (4D/a.2)a • grad R 

- (a2/a.2) 4- [1 - (4D2/a.2)](grad R)2}. 

At this stage it is convenient to emphasize the fact 
that a. is still an undetermined constant about which 
nothing has been said. The above equation shows, 
however, that some simplification results if we set 
a. = 2D, so that we shall introduce this value for the 
constant IX. The simpler form of the last equation thus 
reads 

0' = -2mD(oS/ot) + 2mD2[V2R + D-1a • grad R 

- (a2/4D2)]. (29) 

If we now take the gradient of both terms in this 
equation and use the fact that 

grad (as/at) = (2D)-loa/ot - grad (oR/at), (30) 

we get for grad 0' the expression 

grad 0' = -m(oa/ot) 

+ 2mD2 grad [V2 R + D-1a • grad R 

+ D-l(oR/ot) - (a2/4D2)]. (31) 

Let us now assume that the external force K is time 
independent. Then, since a = K/P, oa/ot = 0, and 
Eq. (31) can be readily integrated to give 

0' = 2mD[DV2R + a • grad R 

+ (oR/at) - (a2/4D) + <pet)], (32) 

where <pet) is an arbitrary differentiable function of 
time only. Comparison between this equation and Eq. 
(29) leads immediately to the following relationship, 
namely 

-as/at = oR/at + <pet). (33) 

This equation already yields some important results. 
Indeed, if we calculate the expectation value of the 
operator £, we get 

(£) = 2mD[i(oR/ot) - (as/at)]. 

But (£), oR/at, and as/at are all real quantities8 so 
that 

(oR/at) = <~~)&V = 0 (34) 

and therefore, 

(£) = -2mD(oS/of). (35) 

Comparison of Eqs. (33) and (35) thus implies that 

(£) = 2mD<p(t), (36) 

meaning that <pet) is a function which, multiplied by 
the constant 2mD, equals the expectation value of the 
total energy operator. 

Equation (33) together with Eq. (30) leads also to a 
relationship between Rand S, namely, 

R + S = -F(t) + (2D)-lA(r), (37) 
where 

of/at = <pet) and grad A(r) = a, (38) 

that is, consistently to what we assumed, the external 
force is given as the gradient of some scalar function 
and F is a function whose time rate of change is 
proportional to the expectation value of the total 
energy operator. 

Returning to our problem of disclosing the nature 
of 0', let us substitute Eq. (36) back into Eq. (32). 
This yields 

(£) - 0' 
= -2mD[DV2R + a • grad R + oR/at - (a2/4D)]. 

(39) 

Making use of Eqs. (3), (4), and (12) to express the 
first three terms of this equation in terms of v and a, 
leads immediately to the following expression: 

(£) - 0' = -2mD[(2D)-1(a - V)2 

- div v + t diva - (a2/4D)]. (40) 

If we now take the expectation value of (£) - 0' and 
use the fact that 

(div v) = -(2v· grad R) = -D-l(V' (a - v», 

where use has been made ofEq. (34), we finally obtain 
that 

(£) = (D) 

+ (tmv2 
- im(v - a)2 + mD div (v - a». (41) 

This equation lends itself to the following inter­
pretation: If we define an effective potential 

CPeff = 0' - im(v - a)2 + mD div (v - a), (42) 

then the expectation value of the total energy equals 

8 (t) is real because (ioloO is Hermitian. 
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the expectation value of the flow kinetic energy plus 
the expectation value of cPeff. The introduction of this 
effective potential is, however, somewhat artificial 
because the last two terms of Eq. (33) correspond to a 
kinetic energy and not to a potential energy. Indeed 
from Eqs. (24), (28), and (35) we find that 

(p2j2m) = -2mD2(',\,2R + (grad R)2 - (grad S)2). 

Furthermore, if we use Eq. (12) together with the fact 
that IX = 2D to eliminate grad S and the relationship 

v = a - 2D grad R 

to eliminate the R-dependent terms from the above 
expression, we reach the final result that 

(p2j2m) = (lmv2 - lm(v - a)2 + mD div (v - a», 

(43) 

so that the last two terms are related to the total kinetic 
energy of the particle and not to a potential energy. 
In this context, Eq. (41) has the conventional signifi­
cance, namely, 

(44) 

The discussion leading to Eq. (44) thus shows that 
the operator 0 can be interpreted as the potential­
energy operator for the quantum analog of the 
Brownian particle although we are not giving the set of 
rules whereby one can calculate this operator explicitly 
as a function of rand t, 'assuming that they exist. A 
more thorough discussion of this point will be given in 
a later paper. 

IV. THE BROWNIAN FREE PARTI€LE 

In this section we would like to illustrate the results 
obtained in the previous sections by applying them to 
the free-particle case. By free we mean a Brownian 
particle subject to no external forces. 

Let us study this case starting from Schrodinger's 
equation given by 

ichpjot = - DV2tp + Vtp. (45) 

For the potential V we take its value obtained from 
0, dividing by mIX after we have set the external force, 
and therefore a, equal to zero. Hence, from Eq. (28) 

V = -as/at + DV2R, (46) 

where use has been made of the fact that from Eq. (12) 

v = -2D grad R = 2D grad S (47) 

and hence the two gradients squared are equal. 
Then, Eq. (45) reads 

iotp/ot = -DV~ + (-as/at + DV2R)tp 

and using (5) we get 

oR/at = DV2R + 2D(grad R)2 (48) 

which is a nonlinear partial differential equation for R. 
This result has been obtained, noticing from Eq. (47) 
that V2 R = - V2S. 

Equation (48) yields interesting conclusions regard­
ing the spatial dependence of both Rand S. In fact, 
since (grad R) = (grad R)av = 0 we see that R can only 
be an even function in the variable r. But due to the 
structure of Eq. (48) the highest exponent of r can be 
two, so that 

R = 1r2 + n, (49) 

where 1 and n are only functions of time. Hence, both 
V2R and V2S are functions of time only. 

From Eq. (47), 

div v = -2DV2R (50) 

and hence div v is only a function of time. 
These results imply that V is a quadratic function 

of the velocity. In fact, from Eqs. (4), (32), and (50) 
we obtain that 

V = €pet) + 2DV2R + 2D(grad R)2 

and since V2 R is a function of t only, we can choose 1 
in Eq. (49) so that €pet) + 2DV2R = O. Hence, using 
Eq. (47), 

V = v2/2D, (51) 

which is the assertion we wanted to prove. 
Equation (51) leads us to conclude that even in the 

absence of an external force acting on the particle, its 
motion in the heat bath is affected by this latter one 
and that the interaction is proportional to v2

• Hence 
V may be interpreted as a Rayleigh dissipation 
function, in this simple case. 

Having established Eq. (51), we could follow alter­
natively one of two roads to accomplish the solution 
of Schrodinger's equation. First, to solve directly Eq. 
(48) to find R and then use Eq. (37) with A = 0 to find 
S. The second alternative is to use Eq. (51) directly in 
Eq. (45) and follow the same procedure leading to 
Eq. (48). This yields a system of two partial differential 
equations for Rand S which is easily solved. 

We choose to follow the first method because we 
already have the structure of the solution to Eq. (48). 
Also, for simplicity we consider a one-dimensional 
motion. Substitution of Eq. (49) into Eq. (48) yields 

1 = -(8Dt)-1, n = -t In ct 
and hence, 

R = -x2/8Dt - t In ct. (52) 

On the other hand, since 2DV2R = -€pet), we have 
that 

€pet) = (2t)-1 (53) 
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and therefore, 
F(t) = 1- In ct. (54) 

From Eqs. (52), (54), and the fact that R + S = 
-F(t), we get 

S = x2/8Dt - t In ct. (55) 

The constant c appearing in Eqs. (52), (54), and (55) 
must be fixed through the normalization condition 
which p must satisfy, namely, 

f
+OO 

-ct:J e
2R 

dx = 1. 

Using Eq. (52) we find that 

c = (47TD)-! 
and thus, 

p = (47TDt)-! exp (-x 2/4Dt). (56) 

With the explicit form for the probability density p 
we can now calculate all the relevant average values for 
the case. Indeed, using Eq. (10) we have the well­
known Einstein relation, namely, 

x2(8Dt2)-1, that is, it corresponds to a harmoniclike 
motion in the spatial coordinate x but with a force 
constant dying out to zero as t-2 in a way character­
istic of the system. Thus, Eq. (6) reads 

(61) 

which of course cannot be transformed into an 
"eigenvalue equation" H1p = E1p because of the time 
dependence of V. The physical meaning of this fact 
is that if the particle is initially in a certain state with 
a given energy, due to the friction forces between it 
and the heat bath it will lose energy continuously. 

Notice also that 

(0) = (m/4t2)(x2) = mD/2t 

and 

(t) = (fi2/2m) = mD/2t 

and hence, 

(62) 

which is the virial theorem for the free Brownian 
x2 = (x2) = 2Dt. (57) motion. 

Also, from Eq. (43) and (47) we see that 

(p2/2m) = mD/2t. (58) 

These last two equations provide a further interest­
ing analogy with well-known quantum-mechanical 
results. Indeed, using Eq. (15) defining p we can 
immediately obtain the commutator 

[x, fi] = xfi - fix = 2imD (59) 

and from Eqs. (57) and (58)9 

«LlX)2)( (Llfi)2) = (X2)(fi2) = 2m2 D2, (60) 

which is Heisenberg's uncertainty principle applied 
to the free Brownian particle. Emphasis should be 
made on the fact that these results stem out only from 
the assumptions concerning the stochastic process 
used to describe the problem and thus are not addi­
tional ones put into the theory itself. Also, the results 
provide a correct description of the motion only for 
times such that f3t » 1, a limitation inherent in the 
approximate nature of Smoluchowski's equation. 6 

Finally, it is interesting to mention a possible inter­
pretation of the motion of a force-free Brownian 
particle in terms of the Schrodinger-like equation 
describing it. Since by Eqs. (47) and (55) 

V = x/2t, 

we see that the potential energy V is given by 

• The first equality in Eq. (60) follows because i1p = P - m(v), 
but for the free particle, (v) = O. Also, (x) = O. 

V. CONCLUSIONS 

Throughout this paper we have shown that a 
particle of mass m undergoing a Brownian motion 
described in the Smoluchowski (or static) approxima­
tion may be also understood via a Schrodinger-like 
equation giving a probability amplitude 1p whose 
norm is equal to the probability density p appearing 
in the corresponding stochastic equation. This picture 
is valid if the flow velocity v associated with the particle 
is irrotational. This restriction merely simplifies our 
mathematical machinery and could be easily removed, 
but no further assumptions are introduced. Under 
these conditions, the following results are obtained: 
(a) The usual operators which have to be introduced 
explicitly into the quantum mechanics, such as the 
momentum of the particle, its energy, etc., appear 
here in a natural way together with their corresponding 
physical significance. The usual commutation relations 
for these operators also follow and are expressed in 
terms of a parameter depending only on the system. 
(b) To the potential-energy function appearing in 
Schrodinger's equation, an operator 0 may be asso­
ciated which can be interpreted as the "potential­
energy" operator arising from the external and 
frictional forces acting on the particle. However, no 
prescription is advanced on how to calculate this 
operator in terms of the coordinates and time. (c) 
The average kinetic energy of the particle is shown to 
consist of the ordinary kinetic energy of flow plus an 
additional term which represents the contribution 
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arising from the stochastic nature of the motion. (d) 
The Hamiltonian operator Ii defined as the sum of 
the kinetic-energy operator t plus 0 is such that the 
conventional energy equation is satisfied, namely, the 
expectation value of Ii equals the sum of the expecta­
tion values of t and O. ( e) When the method is applied 
to the case of a Brownian particle subject to no 
external forces, explicit evaluation of the mean-square 
deviation for the displacement and momentum 
shows that they satisfy Heisenberg's uncertainty 
relationship in terms of a constant characteristic of the 

JOURNAL OF MATHEMATICAL PHYSICS 

system. Furthermore, it is found in this case that the 
expectation value of 0 can be interpreted as a Rayleigh 
dissipative function associated with the macroscopic 
flow. Thus, no eigenvalue equation for Ii can be 
formulated. 

All these conclusions are valid within the approx­
imations inherent in Smoluchowski's equation, 
namely, that we are considering the particle at times 
long compared with its relaxation time. The removal of 
this limitation, as mentioned in the text, shall be 
dealt with in a forthcoming paper of the series. 
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1. INTRODUCfION 

Newman and Penrose1.2 have discovered a set of 
new constants of the motion. In linear field theories 
an infinite number of such constants of the motion 
exist, while in the nonlinear theory of general relativity 
only a finite number occur. An earlier attempt3 to 
understand the origin of these constants from the 
point of view of an invariant transformation ended in 
failure. That investigation started out from the assump­
tion that the field. equations were derivable from a 
variational principle and hence that Noether's 
theorem' connecting an invariant transformation to 
a conserved quantity would be valid. The conclusion 
was that the Newman-Penrose (N-P) constants, as 
generators of invariant transformations, generate a 
zero change in the field variables5 dy A = O. This does 
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not give any insight into the N-P constants, except to 
suggest that they are trivial from the point of view of 
transformation theory. Therefore, a further effort has 
been made to understand these constants without 
relying explicitly on Noether's theorem. It was hoped 
that an alternate approach to invariant transforma­
tions and conservation laws would give additional 
insight into these unusual constants of the motion. 

The principal characteristic of physically interesting 
differential conservation laws is that there exists a set 
of quantities tP such that (P, P = 0 whenever a set of 
field equations are satisfied, but not otherwise. For 
example, Noether's theorem results in the expression 

-dyALA == tP,p, (Ll) 
where dy A is the invariant transformation and LA = 0 
are the field equations for the field variables y A' 

Clearly, when the field equations are satisfied, i.e., 
LA = 0, the weak conservation law (P,p = 0 follows. 

An alternate approach to obtain an expression 
similar to (1.1) is suggested by Green's theorem. 
Green's theorem may be stated generally as follows: 
If LA = 0 are the field equations to be satisfied by the 
variables y A' the adjoint system of equation L +A = 0 
for variables Z A is defined by 

zALA(y) - yAL+A(Z) == CP,p • (1.2) 
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Suppose Z A can be chosen such that 

YAL+A(Z) == QP.p' 

Then by defining 

(1.3) 

tP ~ CP + QP, (1.4) 

Eq. (1.2) is reduced to an expression of the form of 
(1.1). If Z A can be identified with - by A, a correspond­
ence with an invariant, transformation results. For 
linear equations this identification is possible only if 
the system of equations LA = 0 is self-adjoint, i.e., 
LA == L+A. For nonlinear equations, the adjoint 
equations can be defined if we allow them to depend 
on the Y A as well as the Z A • However, in that case the 
significance is not dear. 

In Sec. 2 this approach will be applied to the scalar 
field as an illustration. The usual transformations 
giving energy-momentum conservation will be shown 
and finally a transformation giving the N-P constants 
will be written down. In order to illustrate the tech­
nique applicable to spinor equations, Maxwell's 
equations are treated in Sec. 3. All of this work is 
carried out in Minkowski space. Section 4 presents a 
summing up together with a brief discussion of what 
to expect in a curved space-time. 

2. THE MASSLESS SCALAR FIELD 

A. Invariant Transformations 

The massless scalar field cp(x) satisfies the linear 
field equation 

rtV 
CP./lV = 0, 

where the metric tensor is defined by 

ds2 = rJ/lV dx/l dxv 

= (dXO)2 _ (dX1)2 _ (dX2)2 _ (dX3)2. 

Green's theorem takes the form 

/lV,I. ..J.,.,,/lV _ ( ,I. v ,I. V) "PrJ 'f'./lV - 'f"/ "P./lV = "P'f'.. - 'f'''P.. .v· 

(2.1) 

(2.2) 

The scalar wave equation is clearly self-adjoint. Com­
parison with (1.2) identifies 

CV ~ ,I. v _,I. v. "P'f'.. 'f'''P .. (2.3) 

We can divide our further consideration into two 
cases: 

(i) cp"P./l;rr == QV. v, 

but 
,l.p =O=>m P =0' 
~,.p r,.p' 

(ii) "P;/l = 0 independent of cpo 

This implies that an expression of the form (1.1) 
results with QP = 0 even when cP is not a solution of 
the scalar wave equation. 

Case i: Under a Lorentz transformation, 

and (2.4) 
bcp = - CP.p~xp. 

Let "P = - bcp; then one easily finds 

CPrJ/lV"P./lV == QV.v, 

QV ~f cp(cp.p~xP).: _ tCP.pCP':~xv. (2.5) 

With this choice for "P, (2.2) takes the form 

_b..J.,.,,/lV,I. =tv • tV~tVa/l+~Mvp"w (2.6) 
'fJ'1 '+"/lV ,v, Jl ""2" pa' 

where t,... and MVPU are the canonical energy-momen­
tum tensor and angular-momentum tensor, respectively, 

v def,l. ,I. v t~ V P",I. ,I. til = 'f"/l'f'.. - /l 'YJ 'f'.p'f'.u, 
MVP" ~ tVPx" _ tVUxp. 

(2.7) 

Equations (2.4)-(2.7) show that in this manner 
we have recovered the results usually obtained through 
Noether's theorem. 

Case ii: Because the scalar wave equation is self­
adjoint, cp' = cp + "P will be a solution of 

'Y)/lV,l.1 = 0 
·1 '+' ,ltv , (2.8) 

if and only if cp is a solution of (2.1). Thus (2.8) rep­
resents an invariant transformation in that, solutions 
are mapped into solutions while the field equations 
are unchanged in form. This transformation may 
appear to be trivial, but we shall see shortly that it 
contains the transformations which generate the N-P 
constants. 

Consider the elementary solution 

"P(x) = D(x - x'), (2.9) 

where D(x) is the free-field propagator which satisfies 
the initial conditions 

D(x)l",o~o = 0, 

o oxo D(x)l",o=o = -~(x). 

(2.9') 

(2.9") 

In (2.9) D(x - x') is to be considered as a generalized 
function of x while x' is a parameter which identifies a 
particular one of the set of such functions. Thus, 

Jcp(x) = -D(x - x') (2.10) 

is an invariant transformation in the sense of Case (ii). 
Note that since x' is merely a parameter 

"P(x) = D(x - x')f(x'), (2.11) 

an arbitrary continuous function f(x' ) also satisfies 
the condition of being an invariant transformation of 
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cp(x). Similarly 

'P(x) = f D(x - x')f(x') d4x' 
JR'4 

(2.12) 

is a linear combination of such solutions and therefore 
is itself an invariant change in cp(x). In fact, this clearly 
represents the most general transformation of Case (ii). 
Therefore, by studying (2.10) we can hope to learn the 
significance of these transformations. 

B. Newman-Penrose Constants 

The generator of an invariant transformation is the 
constant of the motion resulting from that transforma­
tion. To determine the generator when 'P(x) is chosen 
as in (2.9), consider a region R4 bounded by two 
spacelike surfaces CT1 , and CT2 (Fig. 1) and let x' lie in 
CT2 • By application of Stokes' integral theorem one 
finds, when cp = 0, 

r tP,p d4x = f tPn p dCT - f tPnp dCT = 0, (2.13) 
JR4 0'2 0'1 

and where np is the future-pointing normal to CT1 and 
CT2 • The constant of the motion 

(2.14) 

is the generator sought for. Its value can be determined 
by evaluating the integral over CT2 : 

c = cp(x'). (2.15) 

This result is precisely what we should have expected, 
since from quantum field theory we know 

bcp = -i[cp(x), cp(x')] = D(x - x'). 

Clearly, choosing 'P(x) as in (2.11) merely gives us 

C = cp(x')f(x'). (2.16) 

The integral (2.14) is not suitable for the study of 
N-P constants. In the limit of X'D -+ + 00, the support 
of the integrand in Eq. (2.14) moves out to spacelike 
infinity. Actually we are interested in integrals taken 
in the limit of null infinity. To achieve this result, we 

/ 
/ 

/ 
/ 

/ 
/ 

X, 

:x 
" / " " " " " " " " a

1 

FIG. I. The region of integration R. is bounded by two spacelike 
surfaces extending out to spacelike infinity. The dotted lines indicate 
the support for the generalized function of x, D(x - x'). 

FIG. 2. The region of integration R. is now bounded by the null 
cone and a spacelike surface u.. The dotted lines again indicate the 
support of the generalized function of x, D(x - x'). 

distort CT1 into an outgoing null cone X. The region 
R4 in (2.13) is then bounded by X and CT2 as in Fig. 2. 
We find 

cp(x') = IN [2cp,p 1P + cplP,p]D(x - x') dT(3) , (2.17) 

where /P is the future-pointing null vector lying in X. 
Now taking the limit X'D -+ + 00, the support of 
D(x - x') on X moves out to null infinity. 

To complete the discussion of the N-P constants, it 
is convenient to introduce spherical coordinates 
(r, fJ, cp) on X such that the equation for S, the inter­
section of the support of D(x - x') with X, is given 
by r = r'. The parameter r is an affine parameter 
along the null rays: /p = axplar and /P,p = 21r. Equa­
tion (2.17) then becomes (the prime is now dropped 
from r') 

cp(x') = r ![~ cp + ! cpJ r2 sin fJ dfJ dcp (2.18) Js r ar r 

which can be recognized as the Kirchhoff integral 
theorem. 

In discussing the behavior of free fields at null 
infinity Newman and Penrose assume2 

/+1 cpi ( 1 ) cp =! HI + 0 !+2 . 
~=or r 

(2.19) 

Now, as X'D -+ + 00, S -+ null infinity. Therefore, the 
integral in (2.18) ,......, l/r2 and 

lim cp(x') = O. 
X'O~(l() 

However, if we had chosen 'P(x) as in (2.11) with 
(X'O)2 = f(x'), we would have obtained 

lim (X,O)2cp(X') = lim 4 f r2ar (rcp) sin fJ dfJ dcp. 
x,o .... 00 r-+ 00 J s 

(2.20) 

When this limit exists, it is the first of the N-P 
constants for the massless scalar field. From (2.19) 
and (2.20) we find 

C = -4f cpl sin fJ dcp. 
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Note that the invariant transformation is 

bcp(x) = -(x'0)2D(x - x'), 

and in the limit x'o -- ctJ, tJcp differs from zero only at 
null infinity. At every point tJ~ = O. This result not 
only agrees with the earlier calculations,S but explains 
it. The fact is that the N-P constants are surface 
integrals at infinity not because they come from a 
strong conservation law, but because the support of 
the invariant change in ~ is limited to a null cone, in 
particular, the retrograde null cone at infinity. 

To obtain the remaining N-P constants we require 
generalization of the transformations allowed by (2.12). 
Consider 

",,(x) =!(x')Pl"'Pnap1"" apn,D(x - x'). (2.21) 

We can construct (2n + 1) additional constants for 
each n ~ I where I is defined by the summation in Eq. 
(2.19). To obtain an infinite number of constants, the 
solution would have to be analytic at null infinity. 

3. ELECTRICITY AND MAGNETISM 

Maxwell's equations in empty space take the form 

pI'v - O· F - O<=>F*/lV - 0 .v -, [/lV,p] - ,v -, 

F*fJ.V - l.efJ.VP"F e - _e0123 - 1 - 2 1''' , 0123 - - . 

(3.1) 

The square brackets around indices indicates complete 
antisymmetrization of the indices; e/lVP" is a tensor 
constructed from the permutation symbol. Operating 
on the cyclic equations with ap and then applying the 
first of Eqs, (3.1), we obtain 

FfJ.V I' = O. ,. I' (3.2) 

To assure that a solution of (3.2) be a 'solution of (3.1), 
it is necessary and sufficient that (3.1) be satisfied on an 
initial spacelike hypersurface. Green's theorem for 
(3.2) now reads 

'lffJ.vFfJ.V .. p I' - F/lv'lffJ.v .. p I' == ('If/lVFfJ.v .. p - FfJ.v'lffJ.v .. p).p. 

(3.3) 

Just as for the scalar field, there are two cases here. 
The first, arising from the Lorentz transformation is 
of no further interest to us now. The second follows 
from the requirement 

'If/lv .. 
p 

I' = O. (3.4) 

Choosing tJF/lv = -'If/lV we see that "P/lV maps solutions 
of (3.2) into other solutions of the tensor wave 
equation. Thus, even if FfJ.v was originally a solution 
of Maxwell's equations, FfJ.V - "PfJ.V will, in general, not 
be a solution. The transformation we are discussing, 
then, is not an invariant transformation of Maxwell's 
equations, but of a somewhat more general system of 

equations, the tensor wave equation. Nonetheless, if 
the more general system (3.2) possesses N-P constants, 
we can also expect the more restrictive class, solutions 
of (3.1), to possess them unless the restrictions are such 
as to exclude them. Indeed, since the N-P constants 
are known to exist for the Maxwell field, we know a 
priori that the restrictions of the first-order equations 
(3.1) do not exclude them entirely. 

Because we are dealing with the Maxwell equations 
we can understand the nature of the restrictions 
imposed by the first-order equations. The more general 
system of equations (3.2) not only does not require 
charge conservation, and therefore may have solutions 
which exhibit monopole radiation, but each component 
separately behaves like a scalar field. Hence there are 
six states of polarization possible which, of course, 
include monopole radiation. As a result, the solutions 
of (3.2) will in general have six sets of N-P constants. 
Of all the solutions of (3.2), those which are solutions 
of Maxwell's equations certainly do not permit 
monopole radiation (charge is conserved), but even 
further, have only two transverse states of polarization. 
Therefore, we expect at most two independent sets of 
N-P constants. 

To see this point we have to follow the argument of 
the previous section. Choose 

( ) _ Sop''''D( ,). 'lffJ.v x - ufJ.V X - X , (3.5) 

1'/,,' = tV 0'" - 0"'01" as a function of x is to be 
I' V /l v /l v 

considered as a constant tensor of rank 2. The indices 
p' and a' are labels which are associated with x'. 
Therefore, o:~a' may also be considered a constant 
tensor with respect to x'. This identification is rein­
forced by the primes on the relevant indices. When there 
is no confusion, the primes will be dropped as on the 
left-hand side of Eq. (3.6) below. We find then that 

FpU(x') =f (jP''''{2FfJ.V II' + F/lVIP }D(x - x') dT Jf fJ.V ,I' .p (3) , 

(3.6) 

where II' is the null vector lying in the surface .N' as in 
Eq. (2.17). Thus P"(x') is the generator of the 
invariant transformation 

tJF/lV = -b:~a'D(x - x'), 

for the wave equations (3.2). 
In order to reduce the integrand in (3.6) to the 

independent data for solutions of the Maxwell equa­
tions, it is convenient to introduce a null tetrad and the 
corresponding tetrad components of the field. Choose 
II' and r as in (2.18). Let nP be the corresponding null 
vector lying in the retrograde null cone from x'. 
Scale n" so that on S, IPnp = 1. Then define np on .N' 
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by parallel transport along iP: np,tritr = O. Introduce 
two orthogonal spacelike unit vectors in S: all.all. = 
bll.bll. = all.bll. - 1 = -1. Define the complex null 
vectors 

.J2mll. = all. + ibll.. (3.7) 

Define mil. over .N' by parallel transport: mil. i P = O. 
Thus, at each point of .N' we have defined a null 
tetrad (III., nil., mil., fiill.) with the properties 

111.111. = nll.nll. = mll.mll. = [I'mI' = nll.mll. = 0, 

lll.nll. = - mll.nill. = 1. 
Next we can define the bivectors 

VII.Y = lll.mY - IVmll., 

(3.8) 

MII.Y = Ill.nY - [Ynll. - mll.niv + mVfiill., (3.9) 
UII.V = nll.fiiv - nVnill., 

and the complex-conjugate bivectors. Since the bi­
vectors written explicitly above satisfy the relations 

V*II.V = _iVII.v , 
M*lI.v = -iMII.Y, (3.10) 

U*"y = - iU"v, 
they form a basis on .N' for the expansion of 

FH"v ~ teFII.V + iF*II.V) 

~ <PsVII.V - <P1M II.V _ <PoU"v. (3.11) 

Because of the linearity of all of the operations 
involved, Eq. (3.6) can be rewritten for FC-JPtr. Then 
using (3.11) we have 

FC-)Ptr(x,) =1 {)P'tr'{V"V(2.1. 1" + .I. 1" ) .N' II.V 'f's," 'f's ,,, 

- M"V(2.1. 1" + .I. 1" ) 'f'l,,, 'f'1 ,,, 

- UII.V(2<po,p + <Po1P,p)}D(x - x') dTc3J' 
(3.12) 

Thus, we finally arrive at 

F~-)p,,(x') 

= J./~:"'U"V{2<Po,,,I" + 31",,,<Po}D(x - x') dT(3) , 

(3.13) 

where we have used the fact that D(x - x') is constant 
on S. From (3.13) we see then that specifying one 
complex function <Po on .N' (two real functions) a 
solution of the homogeneous Maxwell equations is 
determined. It is clear that suitable assumptions about 
the asymptotic behavior of FHP"(x') in the limit of 
null infinity will lead to nonvanishing weighted limits 
of (3.13). These limits are linear combinations of the 
N-P constants, 

To derive an explicit expression for the N-P 
constants it is necessary to define a null tetrad at x', 
LII., Nil., and Mil. which satisfy the same algebraic 
c;onditions as /11., n", mil., Eq. (3.8). Then defining 
<Po(x'), <PI(X'), and <Pa(x') in terms of this tetrad as in 
(3.12), we have 

(
<Po) = 1 (LII.Mv) <PI LII.Ny 
.I. oN'-
'f'2 M"N. 

X UII.V{2<Po.,J" + 3<Po1IC,IC}D(x - x') dT(3)' 
(3.14) 

Introducing once again spherical coordinates on .N', 
one can choose the origin of polar coordinates on S 
so that 

L"M.uI'Y = - 1. -lll,-l((J, rp), 
'2 

LpNyUI'V = 1. -lll,o(O, rp), (3.15) 
'2 

MpNvUI'V = 1. -lll,I(O, rp), 
'2 

where the -1 YI,m are spin-s spherical functions6.7 of 
spin weight -1. Then 

Q _ I' 1 ( ,0)4.1. 
m - 1m 16 X 'f'l+m 

~'o-+ co 

which agrees with the definition given by Newman and 
Penrose.s The higher-order N-P constants can be 
obtained in a similar manner to that outlined in Sec. 
2 and indicated in Eq. (2.21). 

4. DISCUSSION 

The above calculations can be easily extended to 
what Penrose8 calls basic free fields. These are fields 
which can be represented by wholly symmetric spinors 
with either dotted or undotted indices, but not both. 
Further, the basic free fields satisfy the first-order 
field equations 

VAK
1pABC ... = O. (4.1) 

Linearized general relativity is included in these basic 
free fields. The conformal tensor CII.VP" can be repre­
sented by a completely symmetric rank 4 spin or: 
1p ABeD' When the Einstein equations are satisfied, 
RII.v = 0, the only part of the curvature tensor which 
may be different from zero is the conformal tensor. 
Then the linearized Bianchi identities take the form of 

• E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966). 
7 J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, 

and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967). 
8 R. Penrose, preprint, reproduced in P. G. Bergman's A.R.L. 

Tech. Documentary Report 63-65 (1963). 
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Eq. (4.1) which may be taken to be a propagation 
equation for the conformal tensor itself. Unfortu­
nately, the extension of these ideas to the nonlinear 
gravitational theory has not yet been completed. 
However, preliminary results indicate that the ap­
proach given here is essentially correct. 

One question which naturally arises is whether one 
could find an invariant transformation which maps 
solutions of the first-order equations into solutions of 
the first-order equations rather than into solutions 
of the wave equation. This can be done by using the 
Hertz potentials9 to construct the fields. The Hertz 
potentials always satisfy the wave equation. Therefore, 
by the methods of this paper Hertz potentials may be 
mapped into Hertz potentials. Fields of spin s are 
related to the Hertz potentials by 2s differentiations. 
These fields then satisfy the first-order equations (4.1). 

The reason we have chosen not to present this 
approach in the main body of the paper is that we are 
interested in developing a method which may be 
applicable in a space-time with curvature. While it is 
true that a potential exists for Maxwell's field, spin 
1, even in a curved space-time, it is not true for any 

• R. Penrose, Proc. Roy. Soc. (London) 284A, 159 (1965). 
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other spin. In particular, it is not true for the gravita­
tional field. Preliminary calculations indicate that the 
Green's theorem approach to the wave equation for 
the field itself does show promise of giving an explana­
tion in curved space-time as well as it does in Minkow­
ski space. 

It is fairly clear, however, that for linear equations in 
flat space-time these constants of the motion are 
trivial. The invariant transformation is simply the fact 
that the solutions of the wave equation form a linear 
vector space. Therefore, the constants are not related 
to an intrinsic property of the field analogous to charge 
or energy. The situation may be different in a curved 
space-time or for nonlinear equations. 
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INTRODUCTION 

In recent years much attention has been given to the 
theoretical study of many-body systems with weak 
long-range forces. For the most part, this activity 
appears to be motivated not by the physical reality of 
the models, but rather by interest in the mathematical 
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singularities of various properties of such systems, for 
example, critical points, etc. 

The basis for interest in singularities is the com­
monly held feeling that the singularities of a function are 
"fingerprints" that determine the essential properties 
of the function. It is hoped that precise knowledge 
about the nature and location of singularities, to­
getherwith a few numerical values to fill in gaps, will 
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specify the function sufficiently well for practical 
purposes. 

This may be in fact a valid point of view. It is known 
to work very well, for example, in calculating the 
vibrational-frequency spectrum of a harmonic lattice 
with typical short-range forces. 

Whether this point of view is valid with respect to 
systems with weak long-range forces seems to be more 
doubtful. In this article an example is presented where 
knowledge of the precise nature and location of a 
singularity is irrelevant and even misleading in a 
practical sense. The frequency spectrum of a harmonic 
lattice with interactions that are weak and have a long 
but finite range is the example presented. 

From the work of Van Hovel and others2 it is 
known that the frequency spectrum of a harmonic 
lattice with interactions of finite range has certain 
kinds of singularities, depending on dimensionality. 
For example, in one dimension the typical singularity 
is inverse square root; in two dimensions the typical 
singularity is logarithmic. 

In the examples to be discussed here, the singulari­
ties predicted by Van Hove's arguments are the only 
ones present in the frequency spectrum and yet the 
shape of the spectrum is determined almost completely 
(e.g., over many decades in the distribution function) 
by a "false" singularity that the spectrum does not 
possess. 

MOTIVATIONS 

The present investigation was suggested by several 
observations and an analogy. First we make the 
observations. 

As is well known, a one-dimensional gas whose 
molecules interact with a finite-range potential does 
not undergo a phase transition, i.e., its thermodynamic 
properties are analytic functions of temperature, etc. 
If, however, a weak long-range interaction is added 
on, and the appropriate limit to infinite range and 
zero strength is taken, then in this limit the gas under­
goes a phase transition of the van der Waals type, and 
the thermodynamic functions have singularities in 
temperature, etc.3 

A three-dimensional gas whose molecules interact 
with a finite-range potential is known experimentally 
to undergo a phase transition, and some analytic 
properties of its thermodynamic functions are krlOwn 

1 L. Van Hove. Phys. Rev. 89,1189 (1953). 
2 The basic reference in this field is A. A. Maradudin, E. W. 

Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the 
Harmonic Approximatioll (Academic Press Inc., New York, 1963). 
Chapter III contains a comprehensive review and bibliography 
on singularities. 

3 M. Kac, G. Uhlenbeck, and P. Hemmer, J. Math. Phys. 4, 
216, 229 (1963); 5, 60 (1964). 

with moderate precision (e.g., its critical-point 
exponents). The corresponding three-dimensional van 
der Waals gas has been investigated theoretically4; 
in the limit of infinite range and zero strength, the 
analytic behavior of thermodynamic functions is 
entirely different than observed for finite-range inter­
actions. 

In this connection, attention is called to Van 
Kampen's treatment of condensation of a van der 
Waals gas.5 A remarkable feature of this work is that 
dimensionality and the limit of infinite range are not 
invoked explicitly. At first glance, the results appear 
to be valid for interactions of finite range and strength 
and they have the same character as those found in 
the limit. Clearly this theory cannot be entirely correct, 
because we know that condensation does not occur in 
one dimension except in the limit. Van Kampen's 
derivation, however, is so simple and plausible that it 
should be taken seriously, i.e., we should not imme­
diately jump to the conclusion that his results are 
correct only in the limit of infinite range. They must 
have some kind of validity even for finite range. 

The observations that have just been made suggest 
two conclusions. First, it is clear that thermodynamic 
functions are not continuous at the limit of infinite 
range and zero strength. Second, it seems likely, in 
particular from Van Kampen's work, that the behavior 
found in the limit is representative in some approximate 
sense of the behavior before the limit is taken. 

We are led to analogous conclusions by our 
investigation of the vibrational-frequency spectrum 
of a harmonic lattice with weak finite long-range 
interactions. 

Another related observation comes from work by 
Bowers and Rosenstock ,6 who calculated the frequency 
spectrum of a two-dimensional harmonic lattice with 
nearest- and next-nearest-neighbor interactions. They 
found that the distribution function G(w2

) of the 
spectrum changes substantially as the relative strength 
of next-nearest-neighbor interaction is varied. With 
only nearest-neighbor interactions, the function G(w2) 

has a logarithmic singularity at w2 = tW~ax. As more 
and more next-nearest-neighbor interaction is added 
on, the singularity remains logarithmic (as it must), 
but it shifts to higher and higher frequencies. When 
the nearest- and next-nearest-neighbor-interaction 
strengths are equal, the logarithmic peak falls on the 
upper limit w~ax of the spectrum. 

This example shows that striking quantitative 
changes in the spectrum can be produced by increasing 

• J. Lebowitz and O. Penrose, J. Math. Phys. 7,98 (1966). 
• N. Van Kampen, Phys. Rev. 135, A362 (1964). 
• w. A. Bowers and H. B. Rosenstock, J. Chern. Phys. 18, 1056 

(1950). 
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the range of interaction. However, the qualitative (i.e., 
analytic) behavior is not changed; Van Hove's 
theorem still holds. 

We bypass substantial literature, reviewed by 
Maradudin, MontroU, and Weiss,2 concerned with 
long-range interactions of ionic type; here, Van 
Hove's arguments do not apply, and all sorts of 
singularities are found. 

The analogy referred to earlier is concerned with 
the dual role of the integral 

1T II dOl d02(z - 2 cos 01 - 2 cos ( 2)-\ (1) 

-1T 

regarded as a function of the complex variable z. This 
integral can be evaluated exactly in terms of elliptic 
integrals. It has a logarithmic singularity at z = 4. 

One place that this integral appears is in the specific 
heat of a two-dimensional Ising lattice (square, 
isotropic, nearest-neighbor interactions).7 In this ex­
ample, z is a function of temperature; the specific 
heat has a logarithmic singularity at the temperature 
determined by the condition z = 4. 

Another place that this integral appears is in the 
frequency spectrum of a two-dimensional harmonic 
lattice (square, isotropic, nearest-neighbor inter­
actions).8 Here, z is a function of frequency. In conse­
quence, the distribution function G(w2) has a 
logarithmic singularity at the frequency determined 
by the condition z = 4. 

We must, however, not take this analogy too seri­
ously. Cases are known where it is false. For example, 
the distribution function G( w2) of a three-dimensional 
harmonic lattice is determined by an integral having 
the same structure as (1) 

1T I II dOl d02 d03(z - 3 cos 01 - 3 cos (}2 - 3 cos ( 3)-1. 

-Tr 

(2) 

This integral has square-root singularities, and so 
does G(w2). As far as is known,9 the specific heat of 
the corresponding three-dimensional Ising lattice has 
entirely different singularities, and cannot be ex­
pressed in terms of the same integral. 

The validity of this analogy with respect to systems 
with weak long-range forces in two dimensions is not 
known at all. 

If the analogy is good, then investigation of the 
frequency spectrum of a two-dimensional iattice with 

7 L. Onsager, Phys. Rev. 65, 117 (1944). 
8 E. W. Montroll, J. Chern. Phys. 15, 575 (1947). 
• The most recently published analysis is by G. A. Baker, Jr., and 

D. S. Gaunt, Phys. Rev. 155, 545 (1967). 

weak long-range forces may shed some light on prop­
erties of the corresponding Ising lattice. Even if the 
analogy is not good, such investigations still provide 
examples of the practical irrelevance of theoretically 
relevant singularities. 

The preceding observations and analogy were 
motivations for the analysis to be described now. 

ONE-DIMENSIONAL MODEL 

Before proceeding to the more interesting two­
dimensional model, we discuss a simple example in 
one dimension which illustrates the main point. 

Let Un be the displacement from equilibrium of the 
nth atom. Then in the harmonic approximation the 
potential energy may be written as 

The force-constant matrix A(m - n) clearly depends 
on only the separation 1m - nl. It should be noted 
that, for reasons of translational invariance, the force 
constants must obey the condition 

LA(m) = 0, (4) 
m 

or 

A(O) = - L A(m). (5) 
m*O 

In the nearest-neighbor model, the only nonvanish­
ing matrix elements are A(l) = A( -1) and A(O) = 
-2A(1). 

The long-range model to be analyzed here is defined 
by the special choice of force constants 

A(m) = ex exp -y(lml - 1); m ~ 0; (6) 

and A(O) is given by Eq. (5). The parameter y plays 
the role of an inverse length. Note that only nearest­
neighbor interactions remain in the limit of infinite y. 
On the other hand, small y means that interactions 
extend over many neighbors. 

WeisslO has analyzed the frequency spectrum of a 
related system. The essential differences which turn 
out to be of great importance, are: (1) He treats the 
nearest neighbors in a different way than the distant 
neighbors, and (2) his force constants alternate in sign, 
while ours all have the same sign. 

The dispersion relation is given by the standard 
expression 

W2(q) = L A(m) exp (iqm). (7) 
rn 

(Throughout this article we will normalize force 
constants and masses to suit our convenience. Here, 
for example, we have set the mass equal to unity.) 

10 G. H. Weiss, Bull. Res. Council Israel 7F, 165 (1958). 
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In the limit of an infinitely large lattice, the sum in 
Eq. (7) may be performed explicitly, leading to 

w2(q) = -2(1./(1 _ e-Y) + 2(1. cos q - e-
Y 

1 + e-2y 
- 2e-Y cos q 

(8) 

It is easy to verify that this reduces to the usual 
expression 

w2(q) = -2(1.(1 - cos q) (9) 

in the limit of infinitely large y. 
The behavior of w2(q) for small q determines the 

sound velocity, 

W2(q) ~ -[(1.(1 + e-Y)/(l - e-1)3]q2 + . . .. (10) 

We choose the coefficient (1. so that the long-wave­
length sound velocity is unity, 

(1. = (1.(y) = -(1 - e-1)3/(l + e-1). (11) 

Then the dispersion relation is 

2( ) (1 - e-Y)2 . 2(1 - cos q) 
W q = 

(1 - e-Y)2 + 2e-1(1 - cos q) 
(12) 

The maximum allowed frequency is W m , 

Wm = 2(1 - e-Y)/(1 + e-Y) = 2 tanh (yj2). (13) 

Thus the dispersion relation becomes 

2( ) 2(1 - cos q) 
W q = 

1 + (l/w;" - t) . 2(1 - cos q) 
(14) 

This form seems most useful for calculating. 
The density of states g(w) can be found by differ­

entiation, 
g(w) = dq/dw. (15) 

Note that in this one-dimensional calculation we use 
the distribution g(w) in w, rather than the distribution 
G(w2) in w 2 that is more customary in two and three 
dimensions. 

On inversion, q can be found as a function of w, 

q = 2 arc sin (1 + 4/w2 
- 4/w;")-!, (16) 

and the differentiation is elementary. The result is 

gem) = (1 - W2/W;")-!(1 + w2/4 - w2jW;")-!. (17) 

In the nearest-neighbor limit, y is infinite and 
Wm = 2. Then (17) reproduces the standard result: 
an inverse square-root singularity at the maximum 
frequency. 

In fact this is the only singularity possible. By a 
simple rearrangement, (17) is transformed into 

g(w) = 4 2 ( 4 2 _ W:)-l(1 _ w:)-!. (18) 
4 - Wm 4 - Wm Wm Wm 

For any finite y, the maximum frequency Wm is always 
smaller than 2, and so 

4/(4 - w;,.) > 1. (19) 

The inverse first-power singularity in the distribution 
function clearly al\yays lies outside the allowed range 
of frequency 

(20) 

Nevertheless, when y is very small, and Wm is also 
very small, the distribution function can be repre­
sented to a very good approximation by an inverse 
three-halves power singularity, 

g(w) r-.J (1 - w2/w;,.)-i. (21) 

This approxiination is good for frequencies of the 
order of 

(22) 

Once the frequency becomes larger than the upper 
limit in the inequality (22), then the inverse square­
root singularity takes over, and from then on the 
distribution function is approximately 

g(w) r-.J 4jw;"(1 - w2jW;")-!. (23) 

As an illustration of orders of magnitude, let us 
suppose that y = 0.01. Then the approximate (21), 
with the inverse three-halves power singularity, is 
numerically good for the frequency domain 

(24) 

and fails only when w2/w!, becomes greater than 
0.999. From a practical point of view, almost all of 
the spectrum is described by a "false" singularity, 
lying outside the physically allowed frequency domain. 

The distribution function g(w) in the limit of 
vanishing y is 

lim g(w) = (1 - w2/w;,.)-i. (25) 
1-0 

In the limit, the inverse square-root singularity 
disappears entirely. This illustrates the lack of con­
tinuity at the point y = 0 which seems to be character­
istic of systems with long-range interactions. 

[It may be noticed that the maximum frequency 
itself vanishes in the limit. This is a consequence of 
imposing the requirement that the long-wavelength 
sound velocity remain fixed as the limit is taken. By 
making a different choice of the coefficient (1.(y), then 
Wm can be kept different from zero in the limit.] 

The limiting form (25) is identical with the approxi­
mation (21), which is known, for long but finite-range 
interaction, to be a good approximation over a wide 
range of frequency. The limiting form (25) fails to 
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represent the correct distribution for long but finite­
range interaction only over a very small range of 
frequency near the true singularity. 

TWO-DIMENSIONAL MODEL 

Two-dimensional models are perhaps more inter­
esting because of the possible analogy with Ising 
lattice problems. However, they show essentially the 
same qualitative features as the one-dimensional 
model just discussed. 

What little is known about G(w2) for two-dimen­
sional lattices with long-range forces is summarized 
in Ref. 2. Attention has been given mainly to inter­
actions of ionic character, where the singularities are 
entirely different from those found in lattices with finite 
range interactions. 

The procedure used to get the distribution function 
g(w) in one dimension, based on Eq. (IS), does not 
work in two or three dimensions, and another approach 
is needed. Our procedure is simply to express the 
distribution function for the system of interest in 
terms of the known distribution function for the 
square lattice with isotropic nearest-neighbor inter­
actions. This idea has been used before, by Mazur,ll 
to relate properties of diatomic lattices to those of the 
corresponding monatomic lattices. 

Even this procedure is difficult to follow in general; 
so we work backwards. That is, we guess at a dis­
persion relation, chosen so that the actual distribution 
function can be related to the nearest-neighbor 
distribution function, and then we veJ;ify that the 
guessed dispersion relation arises from long-range 
interactions. It will be seen that this inverse method 
works nicely. 

The starting point for our calculation is the ex­
pression 

G(w2) =·(d[w2 - W2(Q1,Q2)])av (26) 

for the distribution function G(w2). The average, 
denoted by angular brackets, means an average over 
all angles 

7t 

(27) 

In a square lattice with isotropic nearest-neighbor 
interactions, the dispersion relation is given by 

W~(q1' q2) = 4 - 2 cos q1 - 2 cos q2. (28) 

This particular spectrum is indicated by the subscript 
zero. For convenience, we normalize units so that the 

11 P. Mazur, thesis, University of Maryland, 1956 (unpublished); 
see also, A. A. Maradudin, P. Mazur, E. w. Montroll, and G. H. 
Weiss, Rev. Mod. Phys. 30, 175 (1958). 

long-wavelength sound velocity is unity 

w~ ~ q~ + q~ + .... (29) 

The distribution function GO(w2) for this spectrum 
was found by Montroll8 ; it can be expressed in terms 
of the complete elliptic integral K(m) 

GO{(
2

) = (1/21T2)K[w(8 - ( 2)1/4]. (30) 

We use the notation of Ref. 12, where the variable 
m replaces the more conventional variable k, accord­
ing to m = k 2• This reference gives polynomial 
approximations for K(m) that are quite useful for 
numerical calculations. 

Now let us assume that the actual dispersion 
relation W2(Q1' Q2) can be expressed as a function F of 
the nearest-neighbor frequency, 

W2(q1' q2) = F[W~(q1' q2)]. (31) 

The actual form of the function F(x) will be discussed 
later. The inverse function is denoted by F-1(W2) 

(32) 

The derivative of F(x) is denoted by the standard 
F'(x). 

Next we observe that the delta function of afunction 
f(x) can be expressed, according to a familiar formula, 
in terms of the delta function of the variable x 

d[f(x) - a] = 1f'(xo)I-1d(x - xo), (33) 

where Xo is the root of the equation 

(34) 

(If this equation has several roots, then we must sum 
them all; but in the present instance, only one root 
occurs.) 

On making use of the above observation, we find 
that the distribution function G(w2) can be transformed 
to 

G(w2) = (d[F-1(w2) - W~(q1' q2)J>av . 

1F'[F-1
(W

2
)] 1 

(35) 

But the numerator is just the nearest-neighbor distri­
bution function Go, so that the desired distribution 
function is related to the known Go by 

G(w2) = Go[F-1(w2)]/IF'[F-1(w2)]I. (36) 

The rest of the calculation depends on specific choices 
of F(x). 

This function is not arbitrary. We want to choose it 
so that the interaction force constants fall off asymp­
totically in the desired way, with a long but finite 

12 Handbook of Mathematical Functions, M. Abramowitz and 
I. A. Stegun, Eds. (National Bureau of Standards Applied Mathe­
matics Series AMS 55 1964), see especially pp. 590-591. 
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range. Suppose that the potential energy in the har­
monic approximation is 

U = t ~ A(ml - m 2, nl - n2)u(ml , nl)u(m2, n2), 

(37) 

where u(m, n) is the displacement (in the z direction) 
of the atom whose equilibrium position is x = m, 
y = n. Then the force constants are A(ml - m2, 
nl - n2). The dispersion relation is given by 

W2(ql' q2) = ~ A(nl' n2) exp i(qlnl + q2n2). (38) 

On Fourier inversion, the force constants are evidently 

" 
= 4~2 ff dql dq2W2(ql' q2) exp -i(qlnl + q2n2)· 

-" 
(39) 

So a choice of F(x) implies a choice of A(m, n). 
The force constants for large separation are deter­

mined mainly by the frequency w2 for small ql and q2, 
and in this neighborhood, Eq. (29) shows that the 
variable x = w2 is essentially just the square of the 
vector q = (ql' q2). Then, with the corresponding 
definition of the vector n = (nl' n2), we can write 
approximately 

A(n)"'" ~ fd2qF(q2) exp (- iq • n). (40) 
47T 

Because only small q is involved, we may replace the 
correct finite limits of integration by infinity. The 
integration over angles is then trivial, and leads to 
a Bessel function of the magnitudes of the vectors n 
and q, 

A(n) '"" - dqqJo(nq)F(q2). 1 f"" 
27T 0 

(41) 

By imposing some desired form of asymptotic decay 
on the force constants A(n), this integral equation can 
be inverted to yield F(q2). 

This procedure, while feasible, leads to rather 
complicated formulas. Instead of following it closely, 
we combine it with other criteria for F(q2) , among 
which simplicity of form is important. 

The actual criteria are as follows. First, we ask that 
the force constants decay asymptotically as 

A(n) '"" (ny)«-i exp (-ny), (42) 

where IX is some extra parameter. This includes simple 
exponential decay as the special case IX = J. Then, we 
require that F(x) should approach x for sufficiently 
small x, so that the long-wavelength sound velocity is 
unity. A third criterion is that F(x) should become 

identical with x in the limit of infinite 1'; this corre­
sponds to the limit of only nearest-neighbor inter­
actions. A final criterion was that the choice should 
facilitate computation of the inverse function F-l and 
the derivative, so that Eq. (36) could be used con­
veniently. 

By inspection of tables of integral transforms, it 
appeared that the choice 

F(x) = (y2/1X)[1 - 1'2«/(1'2 + xY] (43) 

would lead to useful results. It clearly fits several of 
our criteria; let us check on the asymptotic form of 
A (n). When (43) is substituted in (41), the integral can 
be performed and the result for large n contains the 
modified Bessel function K«_l, 

~ 

A(n) f"J - I' (nyt-lK«_l(ny). (44) 
27TlXr( IX) 

If, furthermore, we put in the asymptotic form of the 
modified Bessel function, we obtain for large ny the 
limiting behavior 

A(n) f"J - y~ ~l (nyy-i exp (-ny), (45) 
27TlXr( IX) 2«-

which is in agreement with the criterion (41). 
While other choices of F(x) are no doubt possible, 

the present one appears to satisfy all of the natural 
requirements. In particular, it gives the nearest­
neighbor spectrum when I' becomes infinite, and it 
gives force constants that fall off approximately 
exponentially for large separation when I' is small. 
The rest of our discussion is restricted to the particular 
choice (43). 

The maximum allowed frequency in the nearest­
neighbor case is w~ = 8; so the maximum allowed 
frequency in the present case is w;,. = F(8). For 
convenience we normalize the actual frequencies as 
follows: 

(46) 

and our goal is to find the function G(z). One more 
bit of notation is useful: 

Q = 1 - 1'2./(1'2 + 8t. (47) 

Now we apply Eq. (36) to obtain G(z), 

G(z) = [(1 - QZ)1+l/o]-lG [ 1'2 - y2J. (48) 
o (1 _ Qz)lI« 

This formula, together with Eq. (30) for the function 
Go, solves the problem of finding the distribution 
function. 

It can be verified easily that G(z) approaches the 
correct nearest-neighbor result in the limit of infinite y. 
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6 r =0.2 
a =1.5 

4 

-5 
Log (i-Z) 

FIG. 1. Logarithm (to base 10) of the distribution function G(z) 
plotted against logarithm of the deviation 1 - z from the maximum 
frequency. 

When y is finite, the quantity Q is always less than 
unity. The reduced frequency z is by definition always 
less than unity. Thus the first factor in (48) cannot be 
singular in the allowed frequency range. The only 
possible singularity is the logarithmic one contained 
in Go. This is in accord with Van Hove's argument; 
when y is finite, the range of interaction also is finite. 

Now consider what happens when y is small. Then 
the quantity Q is only slightly less than unity. For 
most of the allowed frequency range, 1 - Qz is of 
order unity, and the argument of the function Go is 
small, of order y2. This means that we are far from the 
logarithmic singularity. The actual location of this 
singularity is 

1 - [y2IXj(4 + y2)"'] 
Z. = 1 _ [y2IXj(8 + y2)"'] . (49) 

(If y = 0.2 and 0( = l. then the singularity is at 
zs '" 0.994.) As long as z remains appreciably smaller 
than zs' the factor Go changes only slightly, and the 
distribution function is determined mainly by the 
first factor in (48). 

In the limit of vanishing y (or infinite range), the 
distribution function approaches 

lim G(z) = [(1 - Z)1+1/IX]-1. (50) 
y .... O 

In this limit, the singularity is not logarithmic; 
it is a pole or branch point, depending on our choice 
of 0(. 

For small but nonvanishing y, the distribution 
function is well approximated by its limit, provided 
that z remains sufficiently smaller than Zs' We see 
again, as in the one-dimensional model, that most of 
the frequency range is described, for practical or 
numerical purposes, by a singularity that lies outside 
the allowed frequency range. 

Figure 1 shows graphically how good the approxi­
mation can be. This was calculated numerically for 
the parameters 0( =! (corresponding to asymptotic 
exponential decay of force constants), and y = 0.2 
(or a range of the order of five lattice spacings). The 
ordinate is the logarithm (to base ten) of the distri­
bution function G(z), and the abscissa is the logarithm 
(to base ten) of the deviation 1 - z from unity. The 
limiting curve, for y = 0, would be a straight line 
passing through the origin with slope 5/3. The actual 
curve follows this limiting curve very closely up to the 
point (5, -3), and then the effect of the true logarith­
mic singularity begins to be felt. The limiting function 
(49) is a good approximation for about five decades 
of G(z), or for values of z ranging from zero up to 
about 0.999. If an experimenter presented data in just 
this region, we would probably decide by curve fitting 
that the singularity is an inverse 5/3 power, and not at 
all logarithmic. 

CONCLUSIONS 

What can we learn from the calculations just 
presented? The first point is that investigation of 
mathematical singularities, in many-body systems 
with weak long-range forces, can be misleading. In 
particular, singularities in the physically allowed 
range of variables may have very little relation to the 
general shape of the functions under investigation. 
Singularities outside the physically allowed region may 
dominate the singularities inside that region, except 
in very limited circumstances. 

The second point is that results obtained in the 
limit of infinite range and zero strength may be 
remarkably good approximations to behavior for 
finite but long range and small strength. Such approxi­
mations must fail eventually, but their failure may be 
insignificant from a practical point of view. 

The latter point perhaps explains Van Kampen's 
results5 on the van der Waals gas. His calculations, 
for interactions of long and finite range, probably 
provide a good approximation to the correct equation 
of state of the gas, except in a very small region near 
the correct transition. 
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Electrostatic Interactions of the Configuration dn-1sp 

CHARLES Rom 
Department of Mathematics, McGill University, Montreal, Canada 
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The matrix elements of the Coulomb interactions of the configuration d"-lSp were obtained for IrS 
coupling in the form of linear combinations of certain radial integrals. The method used can be extended 
to the configuration /"-ll'r. 

1. INTRODUCTION 

The spectra of the neutral and singly ionized atoms of the iron group show a strong overlapping between the 
configurations d'JI and dn-lsp. Furthermore, in some cases the configuration dn- 2S2p is not too far away. Thus 
in order to fit the experimental levels of the main odd configurations of the first and second spectra of the iron 
group to theoretically predicted values, it is necessary to consider the configurations (d + s)np, i.e., the three 
configurations dnp, dn-lsp, dn- 2S2p and the interactions among these configurations. The purpose of this paper 
is to use the Racah algebral in order to obtain in closed form the angular parts of the electrostatic~energy 
matrix elements for the configuration dn-Isp in L-S coupling. 

Theoretical results are available for all the configurations (d + s'JI in the first spectra of the iron group and 
for the configurations dnp + dn-:1sp of Sc II, Ti II, V II, and eu II. The author hopes to publish these results 
soon. 

According to the exclusion principle, the eigenfunctions of an atomic state are antisymmetric with respect to 
all electrons. An antisymmetric eigenfunction of the configuration dn-lsp can be written as 

1jJ(dn- lsp) = [n(n + l)rt[1jJ({dl ••• dn-l}snPn+l) - 1jJ({dl ••• dn- 1}snHP") 
.. -I .. -I 

....... ! 1jJ{{dl ••. d i - 1dn+1d1+1 ... dn-1}snPi) - ! 1jJ({dl ••• di_l dnd,+1 ... dn-1}SiPn+J 
/=1 i=l 

n-l n-l 
+ ! 1f'({d1 ••• di - 1dn+1di+l ••• dn_dSiPn) + ! 1f'({d1 ••• dJ-ld .. dJ+1 ... dn- 1}sn+1PS) 

1=1 i=1 

n-l 
+ ! 1jJ({dl '" d._1dndHI ••• dJ-:1dn+1dHl ••• dn-1}s,Pi)]' 

i¢i=l 

We then consider the matrix elements 

(dn- ispi nf e2/rii Idn-1sp) = n(n + 1) {d'HSpl e2/r .. ,n+1ldn-1sp). 
i<I=1 2 

(1) 

(2) 

By using the expansion (1) for 1f'(dn- 1sp) we obtain contributions representing the d-s, p-s, d-p, and d-d 
interactions, each interaction being characterized by the labeling of the electrons nand n + 1. 

2. THE d-p INTERACTION 

Since e"'/r ... n+1 acts only on the electrons nand n + 1, the matrix elements with i different fromjvanish. Hence 
from (1) and (2) the d-p interaction is given by 

(n - 1)[({d1 ' •• dn-z ..• dn}Sn-lPn+11 e2/r n.n+! l{d1 •.• dn- 2 • •• dn}Sn-lPn+l) 

- <{dl ' •• d .. _s ..• dn}sn-1Pn+ll e2/r n,n+l l{d1 •.. dn-a •.• dn+l}sn-tP .. )1. (3) 
We now specify 

l{d1 ' •• dn- 2 ••• dn}Sn-lPnH) == !dn-l(1I1S1Ll)Sn_l(S2Ll)Pn+1SL). 

Expanding by means of coefficients of fractional parentage2 yields 

Idn-l(1I1S1Ll)S .. _1(S2Ll)Pn+!SL) = ! [ldn-2(1I,S"L,,)diSlLJsn_l(S2LJPn+lSL) 
v,S,L, 

X (dn-2(v"S4.L.) dSl~ n dn-11l1Sl~)]' 
1 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press Inc., New York, 1958), henceforth referred to as ITS. 
• G. Racah, Phys. Rev. 63, 367 (1943). . 
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Recoupling the Sn-l and dn electrons and then coupling the electrons dn and Pn+l yields 

dn-l(V1S1Ll)Sn_1(SzL1)Pn+1SL) 

= ~ [ldn- 2(v,S,L,)sn_1(SsL,), dnPn+1(SsLs), SL)(SaL" dnPn+1(SsLs), SL I SaL,dn(S2LJPn+1SL) 
'.B,L. 
8.85L 6 

Similarly, by using also (7.11) ofITS we obtain 

l{d1' .. dn_2 ... dn+1}Sn-1Pn) = ~ [ldn-2(v,S,L,)sn_1(SaL,), Pndn+1(SsLs), SL) [exp 7Ti(Ss + L5)] 
v,8,L, 
8.86L 5 

X (SaL" dnHPnCS5L5), SL I SsL,dnHSzL1PnSL)(S,L,sn_1(SaL,)dn+1S2L1 I S,L,dn+1(S1Lr)Sn_1S2L r> 
x (dn- 2(v,S,LJdS1Ll I} dn-1v1S1Ll)]' (5) 

A. The Direct Part of the d-p Interaction 

From (3) and (4) the direct part of the d-p interaction is given by 

D.1. (d-p) = (n - 1)[({d1 ... dn- 2· .. dn}Sn-1Pn+ll e2jrn,n+1l{d1 ., . dn- 2·· . dn}Sn-1Pn+1)] 

= (n - 1) ~ [(dn-2(v,S,L,)sn_l(SaL,), dnPn+1(S5L5), SLI e2jr n,n+1 
v«8«L,8,85L5 

v,'8c'Lc'83'8.L5' 

X Idn-2(v~S~LDsn_1(S~L~), dnPn+1(S~L~), SL)(SaL" dnPn+1(S5L5), SL I SaL,dn(S2Ll)Pn+1SL) 

x (S~L~, dnPnH(S~L~), SL I S~L~dn(S~L~)PnHSL)(S,L,sn_1(SaL,)dnS2L1 I S,L,dn(SIL1)Sn_1S2L1) 

x (S~L~Sn_l(S~L~)dnS~L{ I S~L~dn(S{L{)sn_1S~LD(dn-l(v~S~L~)dS~L{ I} dn-lv{S{L~) 
x (dn-1(V1S1L1) {I dn- 2(v,S,L,)dS1L1)]. (6) 

The electrostatic interaction is of course diagonal in Sand L. Since the interaction is between the electrons 
nand n + 1, the quantum numbers of the first (n - 1) electrons must be the same on both sides. Thus in the 
summation of (6) we must insert 6(v,S,L" v~S~L~) and 6(Sa, S~). Since the matrix element of the interaction 
can be written as 

(dnPn+1S5L51 e2jrn,n+1IdnPn+1S~L~), 

it is apparent that we must have also 6(SsL5' S~L:J in the summation of (6). 
We then have 

D.1. (d-p) = (n - 1) ~ [(dnPn+1SsLsl e2jr n,n+1ldnPn+1SsLs)(SaL" dnPn+1(S5L5), SL I SaL,dn(S2L1)Pn+1SL) 
v,8.L, 
8385L 5 

Since 

X (SaL4' dnPn+1(S5L5), SL I SaL,dn(S~LDPn+1SL)(S,L,sn_1(SaL,)dnS2L1 I S,L,dn(SlL1)sn_lS2Ll) 

x (S,L,Sn_l(SaL,)dnS~L{ I S,L,dnCS~LDsn_1S~L{)(dn-2(v,s,L,)dS{L~ I} dn-lv~S~L{) 
x (dn-l(VlSlL1) {I dn- 2(v,S,L,)dS1L1). (7) 

(S,L,Sn_1(SsL,)dnS2L1 1 S,L,dn(S1L1)Sn_1S2L1) = (S,1(Sa), tS21 S,1(SI), tS2)(L,0(L,)2L11 L,2(Ll), OL1), 

we obtain from Eqs. (11.10) and (11.12) ofITS 

(S,L,Sn_1(SaL,)dnS2L11 S,L,dn(SIL1)Sn_1S2L1)(S,L,sn_l(SaL,)dnS~L{ I S,L,dn(S~L{)sn_1S2L~) 
1 (t S, Sa) (t S, = [exp 7Ti(2Sa + S1 + Sm(2Sa + 1)[(2S1 + 1)(2S{ + I)FW W 

t S2 SI ! S~ 
Similarly, using (11.8) ofITS yields 

(SaL" dnPn+1(S5LS), SL I SaL,dn(S2Ll)Pn+lSL)(SaL" dnPn+1(SsLs), SL I SaL,dn(S~LDPn+1SL) 

Sa). (8) 
S{ 

= [exp 7Ti(2Sa + 2S)](2Ss + 1)(2L5 + 1)[(2S2 + 1)(2S~ + 1)(2L1 + 1)(2L'1 + 1)] 

X w(Sa t S2) w(Sa t S~) w(L, 2 L1) w(L' 2 L{). (9) 
t S S5 t S S5 1 L Ls 1 L L5 
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As Sa and S5 do not appear in the coefficients of fractional parentage and the interaction matrix element of 
(7) does not depend on S5' we can sum the net spin contribution, denoted by R.C.sPln ' over Sa and S". Then 
from (8) and (9) we have 

2 R,C'SPln = I ([exp 7Ti(2S + SI + SD](2Sa + 1)(2S5 + 1)[2S1 + 1)(2Si + 1)(2S2 + 1)(2S~ + 1)]1 
SaS, s.s, 

X w(t S, Sa) w(t S, Sa) W(Sa t S2) w(Sa t S~). (10) 
t S2 SI t S~ Si t S S5 t S S5 

Use of the symmetry properties of the W's and repeated application of (11.15) ofITS yields 

2 R·C.sPln = b(SISi)b(SzS0· (11) 
SaSs 

Also from (8) and (9), the net contribution of the L-recoupling coefficients is given by 

R.C.a.m • = (2L5 + 1)[(2Ll + 1)(2Li + 1)]tW(L4 2 Ll) W(L4 2 Li). (12) 
1LL51LL5 

From Eqs. (16.15) and (16.17) oflTS we have 

(dnPn+1S5L51 e2/rn,n+1ldnPn+1S5L5) = tRk(dp,dp)[exp 7Ti(l + L5 + k)](21ICkI12)(11ICklll)W(~ ~ :J. (13) 

Using (14.12) ofITS, the fact that (1 + 1 + k) in the reduced matrix element must be even, and the triangular 
condition, (7.4) of ITS, for each triad of the W coefficient yields 

(dnPn+1S5Lsle2/r n,n+l IdnPn+1S5L5) = RO(dp, dp)[exp 7Ti(L5 + 1)](15)t 

x wG ~ ~5) + RZ(dp, dp)[exp 7Ti(L5 + l)](-yiWG ~ ~5). (14) 

Inserting (11), (12), and (14) into (7) gives for the direct part of the d-p interaction 

OJ. (d-p) = (n - l)b(SISDb(S2S~ 2 ([exp 7Ti(L5 + 1)](2L5 + 1)[(2Ll + 1)(2Li + 1)]1 
V.S,L4L , 

x W(L4 2 Ll)W(L4 2 Li)[(15)tRO(dP,dP)W(2 1 L5) + (¥iR2(dP,dP)W(2 1 L25)J 
1 L L5 1 L, L5 1 2 0 1 2 

Using Biedenharn's identity (Appendix I 3 of ITS) and then (11.12) of ITS yields 

D.l. (d-p) = (n - l)b(SlSDd(S2S2) 2 {RO(dp, dp)d(LILD + R2(dp, dp) 

(15) 

v,S.L. 

X [exp 7Ti(LI + Li + L4 + L + 1)](¥)t[(2Ll + 1)(2Li + l)]tW( ~1 Li 2 )W(LI Li 2) 
2L411L 

x [(dn-lvISILI {! dn-2(V4S4L4)dS1Ll)(dn-2(V4S4L4)dSiLi!} dn-lviSiLi)]}. (16) 

Due to the normalization of the fractional parentage coefficients we finally obtain for the direct part of the 
d-p interaction 

OJ. (d-p) = (n - 1)Fo(dp)d(LtL'I)d(SISi)d(S2S~) + (n - 1) I ([exp 7Ti(LI + L~ + L4 + L + 1)] 
v.s,L. 

X 10[21(2Ll + 1)(2Li + l)]tW(LI Li 2) W(LI Li 2 )b(SISDd(S2S0FaCdP) 
2 2 L4 1 1 L 

X (dn-l"lSILl { !dn-2(v,S,L4)dS1Ll>(dn-2(v,s,LJdSiLi! } dn
-
lviSiLJ.)}, (17) 

where we letS 

• G. Racah, Phys. Rev. 62, 438 (1942). 
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B. The Exchange Part of the d-p Interaction 

From (3) and (5) we obtain for the exchange part of the d-p interaction 

E.I. (d-p) = -en - 1)[({dl · .. d"_2· .. d,,}S,,-1PnH I e2/rn."HI{d1 ... d,,_2· .. d"H}S"_1P,,)] 

= (n - 1) 2 [(d"-2(V4S4L4)s"_1(SaL4)' dnPnH(SsLs), SLI e2/r n,nH 
.,8,L,8.8.L. 

v,' 8,' L,'8.'8.' L.' 

X Idn-2(v~S~L~)sn_1(S~LD, Pnd"+1(S~L~), SL)[exp 7Ti(1 + S~ + L~)] 
x (S3L4' dnP,,+1(SsLs), SLI S3L4dn(S2L1)PnHSL)(S~L~, dnHp,.(S~L~), SL I S~L~dnH(S~L{)PnSL) 
x (S4L4S"_1(SaL4)dnS2L11 S4L4dn(S1Ll)Sn_1S2L1)(S~L~s"_I(S~L~)dnHS~L{ I S~L~dnH(S~L{)s"_IS~L{) 
x (d"-2(V~S~L~)dS{L{ I} dn-1v{S{L{)(d"-1VlSIL1 {I dn-2(V4S4L4)dS1Ll)]. (18) 

By similar reasoning, as for the direct part, we must insert into the above sum 15 (V4S4L4 , v~S~LD, I5(SsL5 ,S ~L~), 
and 15 (Sa , S~. 

The net effect of the spin-recoupling coefficients is the same as for the direct part. However, here we must 
include exp (7TiSs) in the sum over S5: Also since Sa is the net spin of (n - 1) electrons and S is the net spin of 
(n + 1) electrons, (2Sa + 2S) must be an even integer. Thus 

exp (27TiS) = exp (27TiS3). 

Hence, as for (10), we can write 

2 [exp 7TiSs]R.C.sPin 
8.8. 

= 2 ([exp 7Ti(2Sa + Ss + SI + S;)](2S3 + 1)(2S5 + 1)[2S1 + 1)(2S{ + 1)(2S2 + 1)(2S~ + 1)J! 
8,8. 

X w(l S4 Sa) w(t S4 Sa) w(Sa ! S2) w(Sa ! S~). 
! S2 SI ! S~ S{ ! S Ss 1 S S5 

Using (11.16) oflTS to perform the sum over S5 and then (12.12) oflTS to sum over S3 yields 

L [exp 7TiS6]R.C·SPin 

8.8. ( ! S4 S1) 
= [exp 7Ti(SI + S{ + S2 + S~)][(2S1 + 1)(2S~.+ 1)(2S2 + 1)(2S~ + 1)J! X S~ S~ ! . (19) 

S ! S2 
The net contribution of the L recoupling coefficients is given by (12). Now by Eqs. (16.15) and (16.17) oflTS 

(d"Pn+lSsLsl e2/r n,nH Ip"d,,+1SSL5) = t Rk(dp, pd)[exp 7Ti(Ls + k)](1IICkI12)(211 Cklll) wG ! :J. 
Using (14.12) oflTS, the fact that (1 + k + 2) in the reduced matrix elements must be even, and the triangu­

lar condition, (7.4) of ITS, for each triad of the W coefficient, we obtain 

(d"Pn+1S5Lsl e2/r n,nH Ipn.dn+1SSL5) 

=[eXP 7Ti(Ls +l)][2R1(dP,Pd)W(2 1 1)+~R3(dP'Pd)W(2 1 3)J. (20) 
2 1 Ls 2 1 L5 

Inserting (12), (19), and (20) into (18) yields for the exchange part of the d-p interaction 

E.I. (d-p) = (n - 1) 2 {[2R1(dp, Pd)W(2 1 1) + ~RSCdp, Pd)W(2 1 3 )11 
v48,L,L. 2 1 L5 2 1 Ls ~ 

X (2Ls + 1)[(2L1 + 1)(2L{ + 1)J!W(L4 2 Ll) W(L4 2 L~)[exp 7Ti(SI + S{ + S2 + S~)] 
1 L Ls 1 L Ls 

(

! S4 SI) 
X [(2S1 + 1)(2S~ + 1)(2S2 + 1)(2S~ + 1)J! X S~ S{ 1 

S 1 S2 

X (dn-2(V4S4L4)dS{E11} d"-lV{S{L{)(d"-lV1SlL1 {I dn-2(V4S4L4)dS1Ll)}. 
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Using (12.12) of ITS to perform the sum over L5 finally yields for the exchange part of the d-p interaction 

E.I. (d-p) = (n - 1) ~ ([exp 7Ti(Sl + S~ + S2 + S~)][(2S1 + 1)(2S~ + 1)(2S2 + 1)(2S~ + 1)]1 
v,S,L, 

x X(:2 ~; :1) [30X(~ ~~ ~:)Gl(dP) + 105X(~ ~~ ~:)GaCdP)] 
S 1 S2 1 1 2 3 1 2 

X (dn- l
'J11 S14 {I d7l

-
2( 'JI4S4L4)dSl 4)(dn- 2( 'JI4S4L4)dS~ L; I } dn- l 'JI; S;L~)}, 

where Gl(dp) = l5Rl(dp, pd) and G3(dp) = 2hRa(dp, pd).3 
The net interaction d-p is then the sum of (17) and (21). 

3. THE DIRECT PART OF THE s-p INTERACTION 

From (1) and (2) the direct part of the s-p interaction is given by 

D.I. (s-p) = ({d1 ... d7l- l}snP7I+11 e2jr n,n+1l{d1 ... dn- 1}snPn+1) 

= (dn-Y"lSILl)S..(S2L1)Pn+lSLI e2/r n,n+1 Idn-l('JI~S~L~)sn(S2LDPn+lSL). 

(21) 

Since the interaction is between the electrons nand n + 1, the quantum numbers of the- first (n - 1) electrons 
must be the same on both sides. Hence 

Now, 

D.I. (s-p) = (dn-l('JIIS1LI)Sn(S2LI)Pn+1SLI e2/rn,n+1ldn-l('JIIS1LI)Sn(S~L1)Pn+lSL) 

= ~ [(dn-l('JIISIL1), SnPn+l(SaLa), SLI e2/r n,n+lldn-l('JIIS1LI), snPn+1(S~La), SL) 
888s' 

X (SILl' SnPn+1(SaLa), SL I SIL1Sn(S2Ll)Pn+1SL) 

X (SILl' SnPn+l(S~La), SL I SlLlSn(S~Ll)Pn+1SL)], (22) 

where La necessarily equals 1. 
Then from Eqs. (16.15) and (16.17) of ITS we have for the matrix interaction element 

(snPn+1SaLal e2/r n,n+1 ISnPn+1S~La) 

= ~(Sa, S3r~:Rk(sp, sp)[exp 7Ti(1 + La + k)](OIlCtIIO)(II1Ckll1)W(~ ~ ~). 

Using Eqs. (14.12), (11.12), and the triangle condition, (7.4) ofITS, for the triad (0 0 k) of the W coefficient, 
yields 

(23) 

Using the fact that S~ equals S3' we obtain from (11.8) of ITS that the net contribution of the S-recoupling 
coefficients becomes 

R,C'spin = (SI' 1 1(S3) , S I S1 1(S2)lS)(SI, t teSs), S I SII(S2)tS) 

= [exp 7Ti(2S1 + 2S)](2S3 + 1)[(2S2 + 1(2S2 + 1)]lw(:1 

Then we need to sum only over Sa and using (11.15) ofITS obtain 

I R,C'spin = [exp 7Ti(2S1 + 2S)]t5(S2' S2) = t5(S2' S2), 
8, 

since (2S1 + 2S) is an even integer. 
Also from Eqs. (11.8) and (11.12) of ITS we obtain 

R.C.a.m• = (Ll' 01(1), L I 40(L1)lL)(L1 , 01(1), L I L10(Ll)1L) = 1. 

(24) 

(25) 

(26) 
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Thus inserting (23), (25), and (26) into (22), we obtain for the direct part of the s-p interaction 

D.1. (s-p) = c5('I11S1Lt, 'I1iSiLDc5(S2' S0RO(sp, ps) = c5('I11S1L1, 'I1iSiLDc5(S2' S~)Fo(sp). (27) 

The Exchange Part of the s-p Interaction 

From (1) and (2) the exchange part of the s-p interaction is given by 

E.I. (s-p) = -({d1'" dn-1}snPn+ll e2jrn,n+ll{dl ... dn- 1}sn+1Pn) 

= _(dn-l(V1SIL1)Sn(S2Ll)Pn+1SLI e2jr 10,10+1 Idn-1("'lSlL1)Sn+1(S~LDPnSL). (28) 

Coupling the sand p electrons on both sides of (28) and then using (7.11) of ITS, yields 

E.I. (s-p) = I ([exp 1Ti(1 - Sa - La)](SnPn+1SaLal e2Jr n,n+1IPnsn+1S~La) 
8a83' 

X (SILl' SnPn+l(SaLa), SL I SlL1Sn(S2L1)Pn+1SL) 

X (SILt, Sn+1Pn(S~La), SL I SlLtSn+l(S~L1)PnSL)}. (29) 

Using Eqs. (16.15) and (16.17) of ITS, we obtain 

(snPn+lSaLal e2jr 10,10+1 IPnSn+lS~La) 

= c5(SaS~) 2, Rk(Sp, ps)[exp 1Ti(1 + k)](OIICk lll)(1IICkIIO) W(O 1 k). (30) 
k 0 1 1 

By the triangle rule, (7.4) of ITS, for the triad (0 k 1) of the W coefficient, k can only have the value 1 and thus 

(snPn+1SaLal e2jr 10,10+1 IPnSn+lS~La) = c5(SaS~)[R1(sp, ps)j3]. (31) 

Since Sa is a whole number and La equals I, 

exp 1Ti(1 - Sa - La) = exp 1TiSa • 

The net contribution of the S-recoupling coefficients is the same as for the direct part and hence is given 
by (24). 

Then since (2S1 + 28) is an even integer, we have from (24) 

~ (Sl t S2) _(SI t S~) .2 [exp 1TiSa]R,C'sPln = I [exp 1TiSa](2Sa + 1)[(2S2 + 1)(2S~ + 1)]·w W 
8a 88 t S Sa t S Sa 

= [exp 1Ti(S2 + S~)][(2S2 + 1)(2S~ + l)]tW(Sl t S2), (32) 
S t S~ 

using (11.16) ofITS for the sum over S3' 
Inserting (26) for the net contribution of the L-coupling coefficients (31) and (32) into (29), we finally obtain 

E.I. (s-p) = [exp 1Ti(S2 + S~)][(2S2 + 1)(2S~ + l)]tW(SI t S2) Rl(Sp, ps) . (33) 
S t S~ 3 

Then the net interaction s-p, T.I. (s-p), is obtained by adding (27) and (33), 

T.I. (s-p) = c5('I11S1Ll' ",~Si LD 

X kO(SP)c5(S2, S~) + [exp 1Ti(S2 + S~)][(2S2 + 1)(2S~ + 1)]1W(; : ~~)Gv.}, (34) 

where4 GV8 = [Rl(Sp,ps)/3]. 
4. THE d-s INTERACTION 

Although the d-s interaction can be obtained in the same fashion as the d-p and s-p interactions, it is much 
simpler to use the Dirac vector model.s 

, E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, England, 1935), Chap. VII. 
• p, A. M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, England, 1947), Chap. XI. 
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By Eqs. (16.22) and (16.23) of ITS, the direct interaction for the electrons d and s is given by RO(ds, ds). 
Hence the direct part of the interaction d-s for the configuration dn- 1sp is given by 

D.I. (d-s) = (n - I)RO(ds, ds) = (n - l)FO(ds) = (n - l)Fo(ds). (35) 

From Eqs. (16.22), (16.23), and (16.24) of ITS, the exchange interaction between the two electrons d and s 
is given by 

where4 

Ga. = [R2(ds, sd)/5]. 

Hence for (n - 1) electrons d, the d-s interaction will be given by 

E.I. (d-s) = -Hn - I)Ga• - U4(sal + ... + sa,,_) . s.]Ga• = -Un - 1 + 4S1 • S.JGa8 

= -Un - 1 + 2S2(S2 + 1) - 2S1(SI + 1) - !]Ga.c5(V1S1Ll> v~S~r:l)c5(S2' S2), (36) 
where as usual 

(dn- 1spl == (dn-l(V1S1Ll)S(S2Ll)pSLI, Idn-1sp) == Idn-\v{S{LDs(S2LDpSL). 

Then the net interaction d-s, T.I. (d-s), is obtained by adding (35) and (36), 

T.I. (d-s) = c5(V1S1L1, v~SiLi)c5(S2' S2) 

x {(n - I)Fo(ds) - Un - 1 + 2S2(S2 + 1) - 2SiSI + 1) - !]Ga.}. (37) 

5. d-d INTERACTION 

The d-d interaction of the configuration dn- 1sp is the same as the d-d interaction of the configuration dn
- 1 , 

and hence given by the well-known results of Racah.3 

Finally, it should be noted that starting from (1) and replacing d by I, s by l' and p by l", one can obtain the 
Coulomb interactions for the configuration In-II'l". The latter results are naturally more cumbersome since no 
explicit use is made of the fact that one electron has zero angular momentum. 
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Some Inequalities Involving Traces of Operators * 

C. L. MEHTAt 
Department of Physics and Astronomy, University of Rochester, Rochester, New York 

(Received 7 September 1967) 

We prove that for arbitrary completely continuous operators AI, A2, ... , An and for positive numbers 
PI, P2 , ... ,pn with !;=1 P"k l = 1, the inequalities, 

ITr (AI A2 ... An)1 ~ iT [Tr (AtAk)tPkjPk-1 

k=1 
n 

ITr exp (AI + A2 + ... + An)1 ~ II [Tr exp {lPk(At + Ak)}]Pk-1 

k=1 

hold. Further if aI, a2, ... , an are the annihilation operators of an N-dimensional harmonic oscillator, 
m and n are any positive integers, and p is a nonnegative definite operator, we prove the inequality 

ITr (pall' .. at al, ... a;)1 ~ IT [Tr p(atk a;)fflp/2ffl IT [Tr p(aJ, a;)np/zn. 
k=l 1=1 

Some consequences of these inequalities, related results, and some applications to correlation functions 
of the quantized electromagnetic field are discussed. 

1. INTRODUCTION 

It is well known that for any two arbitrary operators 
A and B, an inequality analogous to the Cauchy­
Schwarz inequality holds, i.e., that 

ITr (AB)1 2 S Tr (AtA) Tr (BtB), (1.1) 

where dagger denotes Hermitian adjoint operation. 
This result has recently been generalized by Thomp­
son1 for Hermitian, nonnegative definite operators, 
and an inequality analogous to Holder inequality has 
been proved. Thus if A and B are Hermitian, non­
negative definite operators, then one has 

Tr (AB) S [Tr APJI/p[Tr Bg)1/g, (1.2) 

where P and q are positive numbers and p-1 + q-1 = 1. 
The proof given in Ref. 1 does not state conditions 
under which the relation (1.2) reduces to an equality. 
However, it can readily be deduced from the dis­
cussion given there that this happens if and only if 
AI' is a constant multiple of Bg. 

In this paper we establish a number of inequalities 
which are analogous to, and may be considered as, 
generalizations of (1.2). Throughout this paper it is 
understood that the operators A, B, etc. belong to a 
class such that the traces appearing in (1.1), (1.2), and 

• Research supported in part by the U.S. Army Research Office 
(Durham). 

t Some of the research reported in this paper was carried out 
during the author's stay as Visiting Professor of Physics at Universite 
Laval, Quebec 10, Canada. 

I C. J. Thompson, J. Math. Phys. 6, 1812 (1965). The inequality 
(1.2) is proved in this reference for the case when A and Bare 
n X n positive-definite Hermitian matrices. The same proof is valid 
even in the case when A and B are any Hermitian, nonnegative­
definite completely continuous operators in a Hilbert space. 

elsewhere in this paper are all well defined. Our results 
are summarized in the following theorems. 

Theorem I: Let AI, A2 , ••• , An be a set of n (~ 1) 
completely continuous operators in a Hilbert space 
and let PI, P2, ... , Pn be positive numbers with 

Then 

ITr (A 1A2 ' •• An)1 S IT [Tr (AkAk)iPk]pk-\ (1.3) 
k=l 

where positive roots are to be taken of the operators 
AtAk on the right-hand side. 

Theorem II: LetA1 , A2 , ••• ,An andpl ,P2, ... ,Pn 
be as defined in Theorem I. Then 

ITr exp (A 1A 2 ' •• An)1 

S IT [Tr exp {tPk(A! + Ak)}]pk-1
• (1.4) 

k=l 

Theorem III: Consider a harmonic oscillator with 
N degrees of freedom. Let a1, a2' ... ,aN be the 
annihilation operators and at, aL ... ,a1 be the 
creation operators; they satisfy the commutation 
relations 

[ai ; ail = 0, 

[ai ; aJ] = ~t;. 

(1. Sa) 

(l.Sb) 

Further let p be a Hermitian nonnegative-definite 
operator. Then for arbitrary positive integral values 

693 
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of m and n the inequality 

ITr(pa! .. , a! a· ... a )1 
11 tm '1 in 

m n 
:s; II [Tr {p(ata ik)m}]1/2mII [Tr {p(a1,ail)"}]1/2n 

k=l [=1 

(1.6) 

holds. Here each of the indices iI, ... , im , A, ... , j" 
may take on any of the values 1, 2, .•. , N. Equality 
in (1.6) holds either as a trivial identity (0 = 0) or 
only when m = n =. 1 and ;1 = A . 

In Sec. 2 we prove Theorems I and II and also dis­
cuss a generalization of (1.2). Theorem III is proved 
in Sec. 3. A conjecture stating that an inequality of 
the form (1.6) also holds for arbitrary linear com­
binations of the annihilation operators is proposed 
and is proved in a special case. Some other related 
inequalities and their application to coherence func­
tions of the quantized electromagnetic field are 
briefly discussed in Sec. 4. 

2. PROOF OF THEOREMS I AND n 
To prove Theorem I, we make use of a result due to 

Fan2 : Let AI' A2 ,' ., ,A" be a set of n (~1) 
completely continuous operators in a Hilbert space 
Je. For each k(1 :s; k :s; n), let (tik ) , (tik ) ••• be the 
eigenvalues of the operator A1Ak arranged in a 
nonincreasing order. Then, for any positive integer 
N, 

li~ (Xii Al A2 ' •• A"lxi ) I S ~l [(t~1)(t~2) ••• (t~n)]t, 
(2.1) 

where Ix,), i = 1,2, ... , N are orthonormal vectors 
in :re. 

Using Holder inequality3 for positive numbers in 
(2.1) we can write 

(2.2) 

where PI' P2' ... ,p" are positive numbers and 
PI l + P"21 + ... + p-;.l = 1. 

If we now extend the summation over ; in (2.2) to 
include'all the eigenvalues of the operators AIAk , we 
obtain the inequality expressed by Theorem I, 

ITr (A 1A 2 ' •• An)1 S IT [Tr (AkA ",)t:Pk]Vk-
1

• (2.3) 
k=l 

It may be noted that when AI, A2 • ••• ,An 

are Hermitian nonnegative-definite operators, the 

2 K. Fan, Proc. Natl. Acad. Sci. U.S., 37, 760 (1951) [cf. Eq. (4)]. 
Author wishes to thank Professor G. S. Mudholkar and the referee 
for bringing this paper to his notice. This made possible the gener­
alization of Theorem I in the present form. 

S See for example, E. F. Beckenbach and R. Bellman, Inequalities 
(Springer-Verlag, Berlin, 1961), p. 20. 

inequality (2.3) reduces to 

" ITr (AlAs' .. An)1 :s; n [Tr (Ak)Vc]Jlk-t, (2.4) 
k=l 

and thus it is a generalization of (1.2). Relation (2.4) 
reduces to an equality if and only if either all the 
operators Ar l , A~8, ... , A~" differ from one another 
by constant multiplication factors, or one of the 
operators is identically zero. 

We prove Theorem II first in the case when 
AI, A 2 , ••• , A" are Hermitian operators. In this case 
the proof is based on the inequality (1.2) and the 
relation4 

Tr [exp (A + B)] :s; Tr [e-4eB
), (2.5) 

which holds for arbitrary Hermitian operators A and 
B. 

From (2.5) and (1.2) we obtain 

Tr {exp [AI + A2 + ... + A,,]} 

:s; Tr [e-4 1 exp (A2 + Aa + ... + An)] 
:s; [Tr eVI,dlyc

1 

X [Tr {exp (t (A2 + Aa + ... + A,,)}]"-t, (2.6) 

where PI and (t are positive numbers with Pll + (t-l = 
1. A repeated use of (2.5) and (1.2) inthis manner 
gives the required result 

Tr [exp (AI + A2 + ... + An)] 
n 

S II [Tr exp PkAk]Vk-1
• (2.7) 

k=l 

It may be noted that the equality in (2.7) holds if 
and only if the difference between any two of the 
operators PIAl' bAll' ... ,PnA" is a constant multiple 
of the identity operator. 

Next we consider the general case when AI' 
All' ... , An are arbitrary completely continuum oper­
ators. In this case we make use of another result due 
to FanS: Let A be a completely continuous operator 
in Je and let the eigenvalue A. and Pi of A and 
HAt + A), respectively, be so arranged that 

:1U'1 ~ :Ju'2 ~ .•• ; PI ~ P2 ~ Pa •.•• 

where jt denotes the real part. Then, for any positive 
integer N, N N 

L jtAi S L Pi' (2.8) 
i=1 i=1 

Equality in (2.8) holds if and only if A is a normal 
operator, 

From (2.8), it follows that 

I exp [fAi] I = exp [f jtAiJ ~ exp [~Pi]' (2.9) 
1=1 t=1 t-l 

---
4 See for example, S. Golden, Phys. Rev. 137, BI127 (1965); C. J. 

Thompson, Ref. 1. 
S K. Fan, Proc. Natl. Acad. Sci. U.S. 36, 31 (1950) {cf. inequality 

(12)]. 
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and hence on extending the summation over i to in­
clude all the eigenvalues of A, we obtain 

ITr eAl ~ Tr exp WAt + A)]. (2.10) 

On setting A = Al + A2 + ... + An in (2.10), it 
follows that 

ITr [exp (AI + A2 + ... + An)]! 

~ Tr [exp {t(Al + AI) + t(Ai + A2) + ... 
+ t(A~ + An)}]' (2.11) 

Theorem II [inequality (1.4)] now follows from (2.7) 
and (2.11). 

We now wish to make a few remarks concerning 
the inequality (1.2): 

If p is a Hermitian nonnegative-definite operator, 
which for convenience is normaled6 so that Tr p = 1, 
then for arbitrary operators A and B [cf. (1.1)], 

ITr (pAB)12 ~ Tr (pAtA) Tr (pBtB). (2.12) 

A generalization of (2.12) analogous to (1.2), namely 
the inequality 

Tr (pAB) ~ [Tr pAP)1/P[Tr pBQ)1/(I (2.13) 

also holds whenever p, A, B are Hermitian nonnega­
tive definite, and p commutes with both A and B. 
Here p and q are positive numbers with p-1 + q-1 = 1. 
Inequality (2.13) follows by replacing A and B in (1.2) 
by pllP A and pl/(lB, respectively. In a similar manner 
one can show that if p commutes with all the operators 
AI, ... ,An, of Theorem I, then 

ITr(pA1 " • An)1 ~ fr [Tr p(AkAk)iPk]Pk-" (2.14) 
k-I 

where b, ... ,Pn are positive numbers with 

Pl1 + ... + p;/ = 1. 

It should be noted that if p does not commute with 
both A and B then (2.13) is in general not true. 
[Similarly (2.14) is not true in general.] A counter 
example is provided by 

P = (01 0) A _ (1 2) B _ (2 1) 
0' -25' -12' 

p=i, q = 3. (2.15) 

Here Tr (pAB) = 4, whereas [Tr pAi]f[Tr pBS]* = 
63* < 4. 

Another situation where the inequality similar to 
(2.13) and in fact similar to the more general result 
(2.14) holds is discussed in Sec. 3 [cf. (3.1)]. 

• p. for example. may be taken to be the density operator describing 
the statistical state of a quantum mechanical system. Then Tr (pO) 
is the expectation value of the operator 0 in the state described by 
the density operator p. 

3. PROOF OF THEOREM ill AND SOME 
RELATED RESULTS 

In order to prove Theorem III, we first observe 
that it is sufficient to prove the inequality 

Tr [paJ1 ... aJ,a i1 ... ai,] ~ IT [Tr {p(a!kaik)/} ]1/1. 
k=l 

(3.0 

Here 1 is an arbitrary positive integer and p, {ail, 
{aJ} (i = 1, 2, ... ,N) are those as described in 
Theorem III (Sec. 1). 

To see that (3.1) implies (1.6), we make use of the 
Schwarz inequality (2.12) and obtain 

ITr [pat ... a~ a· ... a· ]12 
'11m '1 3n 

<Tr[pa~"·a~a. ·"a.] 
- '1 'm 1m '1 

X Tr [pa ~ ... a t a· ... a.]. (3.2) 
.11 :In :In 31 

From (3.1), (1.5a), and (3.2) we obtain the required 
result (1.6). 

We now proceed to prove the inequality (3.1). Let 
us suppose that in the expression ail ai2 ... ai, the 
operator ai occurs k1 times, a2 occurs k2 times etc., 
so that k1, k2, ... , k N are all nonnegative integers 
and 

k1 + k2 + ... + k n = I. (3.3) 

Using the commutation relations (1.5), we can then 
write 

a! ... a!a . ... a· = (atk1ak1) ... (atkNakN\ (34) 
'1 '1 '1 '1 lIN N J. • 

Further, if a denotes any ofthe operators aI' ... , aN, 
we have the relation 

atkak = ata(ata - 1)· .. (ata - k + 1), (3.5) 

which can easily be established by the method of 
induction, and use of the relation [a, at] = 1. On 
substituting (3.5) in (3.4), we obtain the relation 

at"'ata "'a il i~ il it 

N t t t 
= II aiai(a,a; - 1)· .. (a;a; - k; + 1). (3.6) 

;=1 

Next we represent the density operator p in the 
number representation 

p = 2 2 P{nJl,{ml) I {nj})({m;}I, 
(nl) (ml) 

(3.7) 

where 

(3.8) 

and In,) are the orthonormalized eigenstates of the 
operator aJa/: 

a1a, In,) = nj In;), (3.9) 

(nj I mi ) = t5 nsmi ' (3.10) 

The summations on the right-hand side of (3.7) runs 
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over all nonnegative integral values of nl, • • • , n N , 

ml"" ,mN' 
From Eqs. (3.6)-(3.10) we obtain the following 

expression for the left-hand side of (3.1): 

Tr Cpa t ... at a· ... a ] 
il il '1 ;1 

= 2 [P{nj),{nj) IT nj(n j - 1) ... (n, - k, + I)J. 
(nj} i=1 

(3.11) 

Since the product n,(nj - 1)' .. (n j - k j + 1) is 
always nonnegative, it is less than or equal to n~i 
(equality holding only if either nj = 0 or k j = 1). 
Also since p is a nonnegative-definite operator, the 
diagonal elements P{ni},{njl are all nonnegative num­
bers. We can therefore write 

Tr Cpa t ... a t a '" a ]./ '" P nklnkS· . .. nkN 
il il il il'::' '" {nil,{nj} 1 2 N 

{nil 

(3.12) 

~ fI{ 2 P{njl,{ni}n f}ki/I. 
j=1 {nil 

(3.13) 

In going from (3.12) to (3.13) we have used the HOlder 
inequality for positive numbers.s Simultaneous equali­
ties in (3.12) and (3.13) hold only either as trivial 
identities (0 = 0), or in the case when I = 1. 

Finally, it is easy to verify that the right-hand side 
of (3.1) is identical to that of (3.13). Inequality (3.1) 
and hence also Theorem III is thus proved. 

It is of interest to note a few related inequalities. 
Using the commutation relations (1.5) and the 
representation (3.7) of the operator p, one can easily 
show that for arbitrary positive integral values of I, 

Tr [pat· .. alla il ... ail] ~ Tr [pail' .. aizat ... ar). 

(3.14) 

Further, if b is any linear combination of ai' 
a2 , ••• ,aN' i.e., if 

N 

b = 2lXiai' 
i=1 

(3.15) 

where IX; are arbitrary complex numbers, we show 
below that the following inequalities hold: 

Tr [pbt!b!] ~ Tr [p(btb)'] ~ Tr [p(bbt)!] 

~ Tr [pb'bt' ]. (3.16) 

Here I is an arbitrary positive integer, and p, as 
before, is a Hermitian nonnegative-definite operator. 

From Eqs. (1.5b) and (3.15) we obtain the relation 

N 

[b, btl = A == 21IXil2 > O. (3.17) 
i=1 

From Eq. (3.17) we find that the eigenvalues of the 
operator btb are 0, A, 2A, •.. , and that the relations 

bt!b! = btb(btb - A) .•. (btb - fA + A), (3.18) 

blbt ! = bbt(bbt + A)' .. (bb t + fA - A), (3.19) 

= (btb + A)(btb + 2A)' .. (btb + fA), (3.20) 

hold. Relations (3.18)-(3.20) can easily be established 
by induction. If we now represent p in the basis 
formed by the orthonormalized eigenstates of the 
operator btb and also make use of (3.18) and the fact 
that A is a positive number, we obtain 

00 

Tr(pbt! b!) = 2 PnA'n(n - 1) ... (n - 1 + 1) 
n=! 

~ ! piAn)' = Tr [p(b tb)!]. (3.21) 
n=O 

Here Pn ~ 0 is the sum of all the diagonal matrix 
elements of p in the states which are eigenstate of 
btb, with eigenvalue nA.. (Note that each of the 
eigenvalues of btb is N-fold degenerate.) Other in­
equalities in (3.16) follow in a similar manner from 
(3.19) and (3.20). 

We now propose the following. 

Conjecture: Let b1 , b2,"', b M be M linearly­
independent linear combinations of the annihilation 
operators aI, a2, ... , aN, i.e., let 

N 
bi = 2 THai' i = 1,2, ... ,M, M ~ N, (3.22) 

}=1 

where TiJ are some arbitrary complex numbers. Then 
inequalities of the form (1.6) and (3.14) also hold for 
the b operators: 

ITr (pbi
1

' •• bLbit ... bi,,)1 ~ IT [Tr {p(b i
t.b i .)m]IJ2m 

k=1 

x IT [Tr {p(bJlb}y}]I/2n, (3.23) 
/=1 

Tr (pb! ... b! b· ... b· ) 
11 tm 111m 

< Tr (pb. .., b. b t ... b!). (3.24) 
- 111m 111m 

In Eq. (3.23), it is again sufficient to consider only the 
case when m = nand i1 = A, i2 = j2' ... , im = jm . 

We prove Eq. (3.23) below in a special case when the 
transformation matrix T is such that TTt is diagonal, 
i.e., when 

(TTt)ii = Ai<'lij; i,j = 1,2, ... ,M (3.25) 

(Ai are nonnegative numbers). Proof of (3.24) in this 
special case is similar. 

Let us introduce a set of operators c1 , c2 , ••• , C M' 

defined by 

Ci = Ailbi (no summation over i). (3.26) 
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From (1.5), (3.22), (3.25), and (3.26) it follows that 
these operators satisfy the commutation relations 

[Ci' C;] = 0, (3.27a) 

[Ci,CJ] = bij. (3.27b) 

These relations are identical to those satisfied by the 
a operators [Eqs. (1.5)]. If we employ an argument 
similar to that used in proving Theorem III, we find 
that 

Tr(pc! ... c! c· ... c )1 
'} tm31 in 

~ IT [Tr {p(cl
k
cik)m}]1/2m IT [Tr {p(C],C;YW/2n. 

k=l !=l 

(3.28) 

On substituting for c/s from (3.26) in (3.28), we obtain 
the required result (3.23). 

4. SOME APPLICATIONS TO CORRELATION 
FUNCTIONS OF THE QUANTIZED ELECTRO­

MAGNETIC FIELD 

The inequalities stated in Sec. 3 find applications in 
the coherence theory of the electromagnetic field. If 
A(x) denotes the operator corresponding to the field 
variable (e.g., a typical Cartesian component of either 
the electric field, the magnetic field, or the vector 
potential operator) at the space-time point x == r, t 
of quantized electromagnetic field, we can write 

A(x) = A<+)(x) + A<-)(x), (4.1) 
where 

A<+)(x) = {A<-)(x)}t = ~ u;.(x)a;., (4.2) 

u;.(x) are the mode expansion functions and a;. are the 
corresponding annihilation operators, with 

[a;., a;.,] = 0, [a;., al,] = b;.;.'. (4.3) 

It is now obvious from (3.16) that for an arbitrary 
nonnegative integer n, the relations 

(:{A<-)(x)A<+)(x)}n:) ~ ({AH(x)A<+l(xW) 

~ ({A<+)(x)A<-l(xW) 

~ ("{AH(x)A<+)(x)}n") (4.4) 

hold. Here: : denotes the normal ordering operation, 
" " denotes the antinormal ordering operation, and 
the sharp brackets denote the quantum expectation 
values, i.e., if the statistical state of the field is de­
scribed by the density operator p, then (l'» == Tr pl'>. 

If the conjecture stated above [inequalities (3.23) 
and (3.24)] is true, we have in addition the following 
inequalities7 valid for arbitrary space-time points 
Xl' ... , Xm ' X~,' .. , x~, and for arbitrary positive 

7 The possible validity of the inequality (3.23) has also been 
suggested in a different paper: C. L. Mehta, J. Math. Phys. 8, 1798 
(1967), inequality (4.29). The inequality (4.30) of this reference stated 
as a conjecture is now obviously true as can be seen from the 
discussion given in the present paper [cf. inequalities (4.4) above]. 

integral values of m and n: 

1 (A<-)(Xl) ... A<-)(xm)A<+)(x~)' .. A<+)(xn» 1 

m 

~ II ([AH(Xk)A<+)(Xk)ri/2m 
k=l 

n 

X II ([AH (x;)A<+)(x;Wl/2n, (4.5) 
!=1 

(AH(Xl) ... AH(xm)A<+)(xl ) ... A<+)(xm» 
~ (A<+)(xl )"' .. A<+) (Xm)AH (Xl) ... AH(xm». 

It is to be noted that 
(4.6) 

(AH(Xl) ... AH(xm)A<+)(x~) ... A<+)(x~» 

is the (m, n)th-order coherence function,S and 
(: {AH(X)A<+) (x)}n :), ({AH(X)A<+) (x)}n), and ("{A<-) 
(x)A <+) (x)}n") are, respectively, proportional to the nth 
normally ordered correlation of the intensity, nth 
moment ofthe intensity, and nth anti normally ordered 
correlation of the intensity at the space~time point x.9 

We conclude this paper by stating two more in­
equalities, which in slightly different forms, have been 
proved elsewhere.lo 

Let bl , b2 ,"', b M be M linearly independent 
linear combinations of aI' a2, ... ,aN as in (3.22), 
and let p be aHermitian nonnegative-definite operator. 
Then the inequality 

ITr(pb. ···b· b~ "'b~)1 
2.} tm 31 3n 

~ II [Tr {pb~bJ:,}]1/2m 
k 

X IT [Tr {pbj~bJ~}]1/2n (4.7) 
holds. 1=1 

Let us express the operator p in a diagonal coherent 
state representationll 

p = f 4>({v}) l{v})({v}1 d2{v}. (4.8) 

If the functional 4>({v}) is nonnegative and well 
behaved everywhere, then the inequality 

ITr(pb! ... b! b· ... b·)1 
111m 31 1n 

~ IT [Tr {pb:kmb~}]1/2m 
k=l 

n 

X II [Tr {pbj~b7'} ]1/2n (4.9) 
also holds. !=1 
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The stability of a system of charged point particles is proved under the assumption that all negatively 
charged particles are fermions. A lower bound on the energy is found to be -AqfNme'h-1 where q 
is t~e number of distinct negative species, N the total number of negative particles, m an upper bound for 
their m.ass, e an upper bound for the absolute value of the charge on both negative and positive particles, 
and A IS a numerIcal constant. 

1. INTRODUCTION 

In a previous paperl we presented an analysis of the 
stability problem of matter, a problem posed by 
Fisher and Ruelle. 2 The mathematical model for 
"matter" is a system of point particles, finite in 
number, obeying the laws of nonrelativistic quantum 
mechanics, and interacting with each other solely by 
electrostatic (Coulomb) forces. We use the word 
"stability" to mean that there exists a lower bound for 
the energy per particle which is independent of the 
state of the system and of its size. In I we proved 
stability under the hypothesis that all particles, both 
positive and negative, are fermions belonging to 
some fixed number of different species, and that all 
masses, as well as all charges, have common bounds. 
Under these conditions we found3 

E> -AqtNRy, (1.1) 
with 

Ry = me'/21i2• (1.2) 

Here E is the energy, N the total number of particles, 
q the number of species, m the upper bound on the 
masses, e the upper bound on the absolute value of the 
charges, and A is a numerical constant. We have also 
stated' but not proved that (1.1) holds under much 
weaker assumptions. In the present paper we give 
the detailed proof of this theorem. 

The hypotheses we adopt are as follows: 
(a) All negatively charged particles are fermions. 

Their total number is N, and they belong to no more 
than q distinct species. Their masses do not exceed m, 
and their charges do not exceed e in absolute value. 

• This research was done at the Institute for Advanced Study, 
Princeton, New Jersey, and was supported by a National Science 
Foundation grant. 

1 F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423 (1967). 
We shall refer to this paper as I. 

• M. E. Fisher and D. RueHe, J. Math. Phys. 7, 260 (1966). 
a Theorem 4. 
'Theorem 5. 

(b) The number and kind of positively charged 
particles is arbitrary. They may be bosons or fer­
mions, or they ~ay all belong to different species. 
Their masses, too, are arbitrary. However, their 
charges are bounded from above bye.6 

Theorem 5 asserts that under hypotheses (a) and 
(b) the inequality (1.1) still holds. 

Our hypotheses are just those which apply to 
physics. The assumption that there be no bosons 
with both signs of charge is essential. That a system 
with an indefinitely large number of positive and 
negative bosons is unstable was recently shown by 
one of us. 6 

Unfortunately, our proof of Theorem 5 is lengthy 
and complicated. It is constructive in the sense that 
not only is the existence of the constant A in (1.1) 
shown, but a definite numerical value for it is obtained. 
Nevertheless, the result is scarcely better than an 
existence theorem because we find A = 1.3 X 1014, 

whereas it is clear from physics that a good value 
must be of the order of unity. This lack of precision is 
inherent in our method, which depends on successive 
use of many inequalities. Each of these is relatively 
good by itself, yet their total effect is to build up large 
constants by repeatedly multiplying small ones. We 
have not been careful to find the best A allowed by 
our machinery, since in any case, the result would 
remain absurdly large. It is likely that any significant 
improvement will come from a stability proof which, 
at least in part, depends on new ideas. 

Another outstanding unsolved problem is the one 
posed by Fisher and Ruelle,2 namely to prove the 
existence of thermodynamic quantities for the Cou­
lomb system in the usual bulk limit of statistical 
mechanics. It is a simple consequence of our Theorem 

5 We depart from conventional notation in that e is not the 
"electronic charge" but the "maximum nuclear charge." 

• F. J. Dyson, J. Math. Phys. 8, 1538 (1967). 
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5 that the free energy F N( V, T) of a system of N point 
charges in a volume Nv at temperature T satisfies an 
inequality 

FN(v, T) > -Nf(v, T), (1.3) 

where f is inde~ende~t. of N. This is. a necessary but 
not sufficient6 (a conditlon for the eXIstence of 

lim [FN(V, T)/NJ as N - 00. 

2. TIlE PLAN OF ATTACK 

In Theorem 9 of Paper I we have a result which 
almost solves the stability problem. Theorem 9 states 
that a system of negative fermions in an arbitrary 
continuous distribution of classical charge, with the 
self-energy of the classical charge included in the total 
energy, is stable. We want to prove that the fermions 
remain stable in an arbitrary distribution of positive 
classical point charges, with the mutual interactions 
of the positive charges included, but with their 
individual self-energies excluded. Our whole task 
consists in sharpening Theorem 9 so as to deal with 
this apparently trivial detail of the positive particle 
self-energies. Unfortunately, we have not found a 
way to sharpen the theorem directly for a many­
fermion system. 

Our plan of attack is based on the fact that we 
succeeded in sharpening Theorem 9 only for one 
negative particle at a time. We are consequently driven 
to an elaborate and unphysical scheme of chopping up 
our space into cells, each containing one negative 
particle (cf. Sec. 4). We then prove a sharpened form 
of Theorem 9 for each cell separately, with its one 
negative and an arbitrary number of positive particles 
(Eq. (5.29)]. Finally, we reassemble the fragments and 
show that stability in the individual cells implies 
st~bi1ity for the whole space (cf. Sec. 5). 

To make this complicated argument clearer, we 
carry it through in this section for the case in which 
there is only one negative particle in the whole space. 
In this case there is no need to chop the space into 
cells, and still the argument is not quite trivial. The 
results of this section will not be used in the main 
argument which follows, but they may have some 
independent interest. 

When there is only one negative particle, Theorem 
9 may be stated as follows (the numbering of theorems 
and lemmas runs consecutively from Paper I). 

" (a) Dr. Robert B. Griffiths (private communication) has shown that 
Eq. (1.3) implies the existence of the thermodynamic limit in the case 
when the positive and negative charges are antiparticles of each 
other. His argument makes essential use of charge·conjugation 
symmetry and does not work for matter composed of nuclei and 
electrons. 

Theorem 10: Let a single nonrelativistic quantum­
mechanical particle with mass m and charge (-e) be 
placed in an arbitrary classical electrostatic potential. 
Then the total energy E, including the self·energy of 
the classical charge distribution, satisfies the inequality 

E ~ -i Ry = -(me4/81i2). (2.1) 

To prove Theorem 10, observe that the proof of 
Theorem 9 in I demonstrated that 

E :c: !E2 , (2.2) 

where E2 is the energy of a system consisting of a pair 
of charges (-e) and (+e) with no external potential. 
Here E2 is just the energy of a positronium atom, 
which is never less than the ground-state energy 
[-1 Ry]. 

Written out in explicit analytic form, the statement 
(2.1) becomes 

(1i2/2m) jIV1{'(r)12 d3r - e f VCr) 11{'(r)12 d3r 

+ [(1/87T) jIVV(r)12 crr 

+ (me4/8Ii ll)J JI'!JI(r)!2 d3r ~ 0, (2.3) 

where 1{'(r) is the wavefunction and VCr) is the po­
tential. Since e and m are arbitrary parameters, Eq. 
(2'.3) is equivalent to the following inequality. 

Theorem 11: Let U(r) be any real differentiable 
function and '!JI(r) any complex differentiable function. 
Then 

I j VCr) J tp(r)\2 d3rl S [(1/47T) f IV V(r)1 2 dar J* 
X [jIV'!JI(r)!2 d3r r[JI'!JI(r), 2 d3rr, (2.4) 

provided that the integrals on the right side converge. 

This inequality, which does not appear in the stand· 
ard textbooks, is the basic tool for our work. The 
constant (1J47T) is not the best possible. In our proof 
of the main stability theorem we shall need a version of 
the same inequality (Lemma 9 of Sec. 6) with the 
integrals confined to a cell instead of extending over 
all space. The reader can see, by comparing the above 
one-paragraph proof of Theorem 11 with the brute­
force proof of Lemma 9 in Sec. 7, how great is the 
price we have paid for chopping up the space. 

We continue with a statement of the main stability 
Theorem 5 for the case of a single negative particle. 

Theorem 12: Let a single quantum-mechanical 
particle of mass m and charge (-e) interact with an 
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arbitrary number of fixed classical charges of magni­
tude (+Ze). The total energy is 

E = (1i2/2m)t - Ze2u + Z 2e2q, (2.5) 
with 

t = IIV'1I'12 d3
r, (2.6) 

u = I u(r) 111'12 d3r, (2.7) 

1 
(2.8) u(r)=I--, 

k Ir - r~1 

1 
(2.9) q=III' 'I' j<k r;-rk 

the r; being the positions of the fixed charges. Then 

E > - (Z + g;? Ry. (2.10) 

We prove Theorem 12 by applying Theorem 11 to 
a truncated form of the potential u(r). Let 2Pk be the 
distance from < to its nearest neighbor among the 
r; (j ¢ k) (we assume that there are at least two 
positive particles, since the theorem I is manifestly 
true for one), and let Sk be the sphere of radius Pk 
with center r~, so that Sl' S2' ... do not intersect. 
Let 

U(r) = Z min {_1_, ,l..}. (2.11) 
k Ir - rkl Pk 

VCr) is the potential produced by unit positive charges 
distributed uniformly over the surfaces of the spheres 
Sk. We write 

{

_1 __ l (r in Sk) 
ul(r) = u(r) - U(r) = Ir - r~1 Pk 

o (otherwise). 

(2.12) 

Since each distance 2Pk occurs at least once but no 
more than twice among the Ir; - r~l, we have 

1 1- s 4q, (2.13) 
k Pk 

and, therefore, 

.1.. J IV'U(r)12 d3r = q + I ~ S 3q. (2.14) 
87T k 2Pk 

Next, we apply Lemma 2 of I to integrals extended 
over the interiors of the spheres Sk , 

r Ul 111'12 dSr 
J8k 

S ~ f 1V'1I'12 dar + (! + _1 ) r 111'12 dar 
4 J8k A. 2Pk J8k 

S ~ r /V'1I'12 dar + r (! + !V) 111'12 dar, (2.15) 
4 J8k J8k A. 

where A is an arbitrary positive parameter. Summing 
Eq. (2.15) over the Sk we find 

A 1 3 J u s 4 t + ;: + 2 U 111'12 d3r, (2.16) 

provided 11' is normalized to 1. By Theorem 11 and 
Eq. (2.14), this implies 

u S t! + }(6q)!tt. (2.17) 

Finally, Eq. (2.5) gives 

E ;::: 2~ t - Ze2t! - } Ze2(6q)!t! + Z 2e2q 

> ~ t - Ze2t! - gle2t! 
-2m 

4 

;::: -(Z + gl? ~; . (2.18) 

This completes the proof of Theorem 12. 

The argument in Sec. 6 is analogous, and differs in 
detail only in that all integrals are there extended over 
a cube instead of over all space. 

Theorem 12 goes beyond Theorem 5 in one respect, 
namely by allowing the negative and positive charges 
to be different. In addition, Theorem 12 is asymptot­
ically exact as Z becomes very large, though for 
Z small it is numerically poor. We conjecture that a 
similarly strengthened version of Theorem 5 holds, 
namely the inequality 

E> -(Z + Aql)2NRy (2.19) 

for the energy E of N negative fermions of charge 
-e in the field of positive point charges Ze, the other 
symbols having the same meanings as in Theorem 5. 
As we now have it, Theorem 5 has a factor Z4 on the 
right hand side,5 a result which is obviously too weak 
for large Z. In trying to prove Eq. (2.19) we en­
countered technical difficulties. This remains a prob­
lem for the future. 

3. PRELIMINARY SIMPLIFICATIONS 

At this point the formal proof of Theorem 5 begins. 

We assume that the state of the system is given by 
a wavefunction 

11'= 1I'(rl,r2,···,rN,r~,r~,···,r~,), (3.1) 

which is smooth in all variables and tends to zero 
sufficiently fast at infinity. The rj and the < are 
position coordinates of the N negative and N' positive 
particles. We write 

Q =J dT'J dT 111'1 2
, 

(3.2) 
N' 

dT' = IT d3r~, 
1<=1 
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and for reasons which will become evident below 
prefer not to set Q = 1 but leave the normalization 
arbitrary. 

The total energy is 

E= (T+ W)/n 
= (T+ + T_ + W++ + W+_ + W __ )/n. (3.3) 

Here 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The charges and masses are subject to the inequalities 

-e:::;; ej :::;; 0 (1 :::;; j :::;; N), 
(3.9) o :::;; e~ :::;; e (1 :::;; k:::;; N'), 

and 

0< mj:::;; m (1 :::;; j :::;; N). (3.10) 

The inequality which we want to prove is 

T + W> -AqiNn Ry. (3.11) 

Our first remark is that it is both necessary and 
sufficient to prove 

L + W> -AqiNn Ry. (3.12) 

Necessary, because T+ can be made arbitrarily small 
by choosing the m~ large enough and the m~ do not 
enter the right-hand side of (3.1 I). Clearly sufficient 
also, since T+ > O. Furthermore, to prove (3.12), 
it is both necessary and sufficient to prove 

L(r') + W(r') > -AqiNn(r') Ry, (3.13) 

where, for instance, 

n(r') = n(r~, f~, ... , fN') = f dT 11J'12 (3.14) 

and L(r'), W(r') are defined similarly. It is necessary 
because in the absence of T+ we may choose a wave­
function whose support in the r~ variables is entirely 
near some arbitrarily chosen points. Sufficient also, 
because Eq. (3.12) follows from Eq. (3.13) by inte­
gration over the N' variable points r~. The quantity 

E(r') = [L(r') + W(r')]/Q(r') (3.15) 

is just the energy of the N negative fermions in the 
field of N' positive point charges fixed at the points 
r~, this energy including the contribution 

W++(r')/n(r') = 11 ,e~e;, (3.16) 
lS,k<ZS,N' Irk - rzl 

which is a fixed "classical" quantity independent of 
the wavefunction. We keep this interpretation in 
mind and revert to the simpler notation of writing 
n, T, W instead of nCr'), L(r'), W(r'). The wave­
function 1J' is thought of as depending on the rj only, 
and all integrals are over these N position variables, 
while the r~ are regarded as arbitrary but fixed 
parameters. 

Since T_ is minimized by choosing the· masses mj 
as large as possible, it is no restriction if we replace 
Eq. (3.10) by 

mj = m (l:::;;j:::;; N). (3.17) 

We now take a fixed 1J' and consider the dependence 
of the energy on the charges ej and e~. The Coulomb 
energy W, when regarded as a function of a single 
charge, is a linear function. Suppose that Wassumes 
its minimum value W in the (N + N')-dimensional 
cube Eq. (3.9) at some point (el , e2 , ••• ,eN'). sup­
pose j is such that -e < ej < O. A linear function 
can possess a minimum in the inside of an interval 
only if, in fact, it is a constant. Thus we still get W = 
W if we replace ej by one of the values 0 or -e. This 
argument shows that the minimum of W in the cube 
(3.9) is assumed at some vertex of this cube. At such a 
vertex a certain number of the charges vanish. If we 
omit the corresponding terms from the kinetic energy 
Tthe energy is further diminished. Thus we may write 

T + W ~ f dTl(Tl + fft), (3.18) 

where dTl = ITj d3rj over those j for which the 
minimization of W yielded ej = 0, and the subscript 
1 signifies the replacement of all remaining ej by -e 
and e~ bye, as well as the omission of the unwanted 
kinetic-energy terms (if any). The integrations defining 
Tl and Wl are only over the Nl (:::;; N) variables rj 
which actually enter the Coulomb energy. Now 

n = f dTlnl , (3.19) 

so that it is sufficient to prove 

Tl + Wl > -AqiN1Ql Ry, (3.20) 

and then Eq. (3.11) follows from Eqs. (3.20) and 
(3.18) by integration over the "remaining" variables. 
But Eq. (3.20) is an inequality of the precise form 
(3.11); only the charges have all been taken with 
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their maximum allowed absolute value. This shows 
that it is no restriction of our original hypotheses if 
we replace the inequalities (3.9) by 

e j = -e (1 ~ j ~ N), 

e~ = e (1 ~ k ~ N') 
(3.21) 

from the beginning. 
Once this is done, it is natural to adopt a system of 

atomic units7 such that e = 1 and /i2j2m = 1. In these 
units Ry = 1. 

4. CONFIGURATIONAL DOMAINS WITH 
UNIFORM NEAREST-NEIGHBOR SEPARATION 

In this section we construct certain domains S in the 
3N-dimensional configuration space (3N-space, for 
short). A point (fl , f2' ... , fN) in 3N-space will be 
abbreviated as (r). The rj are the components of (r). 

For any point (r) in 3N-space we write 

R j = min Iri - rjl (j = 1,2," " N). (4.1) 
l:S,i:S,N 

i*; 

R j is the distance between the component r; and its 
"nearest neighbor" among the other components. 

Let S be an N-fold direct product of 3-dimensional 
cubes. This means that (r) is in S if and only if r; is in 
C; (j = 1, 2, "', N), where the C; are cubes in 
3-space. We use the letter S always to denote such a 
domain, and write L; = L;(S) for the length of the 
edges of C;. Suppose then that we have a collection 
{S} of such domains S. We shall say that the S in the 
collection have uniform nearest-neighbor separation if 
there are two positive constants IX and IX' > IX such 
that, given any S in the collection, and any (r) in S, 
we have 

IXL; ~ Rj < IX'Lj U= 1,2,'" ,N). (4.2) 

This condition means, roughly speaking, that if we 
pick any cube Cj among those defining S, and then 
pick its nearest neighbor C i , the distance between C; 
and Ci is of the order of magnitude L j , the size of 
C; itself. The nearest neighbor of a large cube cannot 
be too close. The nearest neighbor of a small cube 
cannot be too far. 

It is clear that if we have a collection {S} of domains 
with uniform nearest~neighbor separation, then no 
point (r), some of whose components coincide, can be 
in any of the S. For if r i = fj for some i ¥= j, then 
R; = Ri = 0 and so the first inequality of Eq. (4.2) 
cannot hold for ex > O. We shall make later essential 
use of a proposition which in some sense is the 
converse of this. 

1 See, however, Ref. 5. 

Lemma 6: Given any positive constants IX and 

IX' ~ 21X + 4../3 there exists a countable collection 
{S} of domains Sin 3N-space having uniform nearest­
neighbor separation, such that (i) no two S in {S} 
intersect, and (ii) if (r) is any point in 3N-space with 
distinct components then (r) belongs to one of the 
S in the collection. That is to say, the whole 3N-space, 
with the exception of the points having some identical 
components, is partitioned into disjoint domains S. 

The proof consists of the following steps. We take 
an arbitrary point (r) in 3N-space, with distinct 
components, and construct a certain uniquely deter­
mined domain S which is a direct product of cubes 
and contains (r). Second, we show that if two such 
domains contain a single point in common, they are 
necessarily identical. Third, we show that the resulting 
collection of disjoint domains S has uniform nearest­
neighbor separation. Finally, we show that only 
countably many distinct S arise from our construction. 

We use the following notation: If U and U' are two 
sets in 3-space, we write 

d{U, U'} = inf Ir - r'l, (r in U, r'in U'). (4.3) 

By a cube in 3-space we mean in the following always 
a set of those r = (x, y, z) for which 

a ~ x < a + L, 

b ~y < b + L, 

c~z<c+L 

(4.4) 

for some a, b, c, and L.s If C and C' are two cubes of 
edges Land L', respectively, we have 

d{C, C'} ~ Ir - r'l < d{C, C'} + ../3(L + L') 

(r in C, r' in C'). (4.5) 

We call a cube C a binary cube if L = 2v where v is 
an integer, and a, b, c are multiples of L. Binary 
cubes of given size L are disjoint and form a cubic 
lattice in 3-space so that every point r belongs to 
exactly one of them. We denote by Cv(r) the binary 
cube of edge length L = 2V which contains r. Binary 
cubes of different sizes either do not intersect or else 
the larger one wholly contains the smaller one. The 
nested sequence Cv(r) (v = ... , -2, -1,0, 1,2, ... ) 
is uniquely determined by and also uniquely deter­
mines r. 

Let (r) be some point of 3N-space such that 

r i ¥= r; (1 ~ i <j ~ N). (4.6) 

Let IX be a fixed positive number. Let flij = flji be the 

8 Thus we consider only cubes whose orientation is the same. 
The convention about boundary points is made so that even when 
two cubes are adjoining they have no common points. 
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largest integer v for which 

(4.7) 

holds. Evidently such an integer exists. For if (4.7) is 
satisfied for some v it is satisfied for all smaller v. 
Further, it is not satisfied for large enough v, because 
then d = O. On the other hand it is satisfied for small 
enough v, because 

lim d{C.(ri ), C.(rj)} = Iri - rjl > 0 (4.8) 
v-+-oo 

by our assumption (4.6). We now put 

Aj = min flii' 
l5,i5,N 
ii', 

(4.9) 

The integers flij and A, are well-defined functions of the 
point (r). 

Let now S be the direct product of the cubes 
CA (rl ), CA (r2), ••• , CA (rN)' Thus (r') is in S if and ,. N 

only if r~ is in CAI(r,) for j = 1,2, ... , N. Clearly 
(r) itself is in S. Thus every point (r) in 3N-space 
which has distinct components belongs to a well deter­
mined S. 

We now show that no two distinct S have a point 
in common. It is sufficient to prove that if S is assigned 
to the point (r), and (r') is any other point of S, then 
S' which is assigned to (r') is identical to S. Let then 
(r') be in S so that the r~ are in the CAI(r,), respectively. 
Then Cv(r~) = Cv(rj) for all j and all v ~ A, because 
the binary cubes of increasing size containing a given 
binary cube are uniquely determined. Moreover, 
because flij ~ Ai and flij ~ Aj , we have 

{
c (r~) = C (r.) 

v t v t (C II ...... ) , lor a v.::: flij . 
Cv(rj) = Cv(r,) 

(4.10) 

Thus 
(4.11) 

but 

d{Cv(r;), Cv(r,)} < 2Voc (for all v > flij) (4.12) 

by definition of flu. But (4.l1) and (4.l2) show that 
fl;, = flij and therefore also A~ = A,. Finally 

(4.13) 

where in the last step we used the fact that r~ is in 
CAI(r,) and that a binary cube of given size containing 
a point is unique. Thus S', which is a direct product 
of the CA/(r~), is identical to S. 

We next show that all S so constructed have a 
uniform nearest-neighbor separation. Let (r) be a 
point of S and let the flu and A, be given as above. We 
shall verify the inequalities (4.2) with L, = 2AI. Take 
any j and then pick an i so that R; = Ir; - ril [cf. 

Eq. (4.l) above]. Then 

R; = Ir; - rtl ~ d{C;'I(rj), CAlri)} 

~ d{CfJ;/r;), CfJir i )} ~ 2 fJil
OC 

~ 2Aloc = Ljoc. (4.14) 

This proves the first part of (4.2). Next, take again any 
j but now pick i so that flij = Aj [cf. Eq. (4.9) above]. 
Then 

R; ~ Iri - ril :::;; d{CfJ ;;+1(ri ), CfJi;+1(rj )} + 2fJil+\/3 
< 2fJ ;;+1oc + 2 fJ;;+2.J3 

= 2A1 (2oc + 4.J3) :::;; Ljoc' (4.15) 

[The second inequality is (4.5) above.] This proves the 
second part of (4.2). 

Finally, we see easily that in the collection {S} there 
are only countably many distinct S. For each S has a 
positive 3N-dimensional volume, namely 

(4.16) 

Therefore the number of those S which are inside 
some bounded domain of 3N-space, and for which 
Al + A2 + ... + AN exceeds some given lower bound, 
is necessarily finite. 

This concludes the proof of Lemma 6. 

5. REDUCTION TO A ONE-PARTICLE 
PROBLEM 

In accordance with Lemma 6 we choose two positive 

constants oc and oc' ~ 20c + 413 and decompose 
3N-space into a collection of nonintersecting domains 
S with uniform nearest-neighbor separation. Since the 
exceptional points-those that do not belong to any 
S-form a set of measure zero, we can represent any 
integral over 3N-space as an infinite sum of integrals, 
each term giving the contribution of a particular S. 
Thus we write 

O=! O(S), (5.1) 

where 
s 

(5.2) 

and we define T(S), W(S) similarly. Integrals over S 
are of the form 

where the C, are cubes in 3-space, their edges being of 
lengths L;, respectively, and such that for any r1 in 
Cl , r 2 in C2 , ••• , rN in C N the inequalities (4.2) hold.9 

• From h~re on it i.s !rrelevant th.at L; = 2Aj, with }.I an integer. 
Only the unIversal validity 0[(4.2) With the same IX and IX' is essential. 
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We now have the following. 

Theorem 13: For an appropriate choice of IX in 
Lemma 6, there are two constants Al and A2 such that 
for all S, 

T(S) + W(S) ;;::: - (AlN + A2j~1 ~J O(S). (5.4) 

Before proving this theorem, we show that by com­
bining it with the results of our first paper we can 
deduce Theorem 5 from it. 

Indeed, from (4.2) we obtain 

..1 O(S) ~ IX' r dT 111'1
2

, (5.5) 
L; Js R j 

where Rj = Rj(rl' r 2 ,"', rN) is defined by (4.1). 
Substituting into Eq. (5.4) and summing over all S 
we then obtain 

T + W;;::: -(AI + A21X'K)NO, (5.6) 
where 

K = _1 f fdTL!f. (5.7) 
NO j=l R j 

It is at this point, and at this point only, that we use 
the hypothesis that all negatively charged particles 
(i.e., all particles that we still treat quantum mechani­
cally) are fermions. In I we proved the following 
inequality under that assumptionlo : 

(5.8) 

where q is the number of fermion species and A3 is a 
constant (about 22.2). Thus 

(5.9) 

Adding (5.9) to (5.6) and minimizing the right-hand 
side with respect to K, we obtain 

2T + W;;::: - [AI + lClX'A2A3)2qf]NO. (5.10) 

2T may be replaced by T since the particle mass m 
is arbitrary (this produces a factor 2 on the right). 
Finally, noting that q ;;::: 1, we have 

T + W;;::: _AqfNO (5.11) 
with 

A = 2Al + l(1X'A 2A3)2, (5.12) 

This completes the derivation of Theorem 5 from 
Theorem 13. 

The rest of the paper is devoted to the proof of 
Theorem 13. 

Let S be an arbitrary, but from now on fixed, 
domain of the decomposition given in Lemma 6. 

10 Equation (7.14). 

We now consider W(S) a function of the N' param­
eters r~ (1 ~ k ~ N') which are the positions of 
the positive charges. As a function of r~, say, W(S) 
has the form 

W(S) = Wl(S) + O(S) ~ 1 
k=2Ir{ - r~1 

- f f d3r p(r)" (5.13) 
j=l OJ Ir - rll 

where WI (S) is independent of r~, per) is nonnegative, 
and the Cj are the cubes defining S. Suppose that 
r~ is in none of the Cj • Then we regard W(S) as a 
function of r~ defined in the open domain exterior to 
the cubes Cj and excluding the points r~ (2 ~ k ~ N'). 
It is evident from Eq. (5.13) that this function satisfies 
Laplace's equation in the coordinates of r~. Such a 
function assumes no minimum in its domain of 
definition. Thus either a minimum occurs when r~ is 
a point on the boundary of one of the Cj , or else 
there is no minimum at all and W(S) > Wl(S). We 
see from this argument that for any given r~ , r~, ... , 
r~, we can find another set r~, r;, ... ,r~" with 
N" ~ N' such that by replacing the positive charges at 
the r~ with charges at the r~ we do not increase W(S) 
and, moreover, every r~ is inside or on the boundary of 
one of the C j • Thus, in attempting to prove the in­
equality (5.4) for any particular S, it is no restriction 
if we assume the r~ to satisfy this condition from the 
beginning. 

The next step is the application of Theorem 6 
proved in I. Accordingly, 

W(S) > U(S), (5.14) 
where 

U(S) = r dTI1p12{- f _1 -! ~ 
Js j=l 2a j k=12ak 

+ !! Ll(lri - rjl, ai' a j ) 

lS,i<iS,N 

+ !! Ll(lr~ - r;l, a~, a;) 
lS,k<lS,N 

N N' 

- ~l k~ Ll(lrj - r~l, ai' a~)}. (5.15) 

The positive quantities a; and a~ are arbitrary and 
may be functions of the r i and r~. The function 
Ll(r, a, b) is defined for positive values of its arguments 
by 

Ll(r, a, b) = 

! - min (!,1) 
r a b 

(0 < r ~ la - bl) 

(a + b - r)2 (Ia _ bl ~ r ~ a + b) 
4abr 

o (a + b ~ r). 

(5.16) 
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It is positive and monotone decreasing in r, and it 
satisfies the inequality 

We set 

and 

111 - - - < A(r, a, a) < - . (5.17) 
r a r 

oc: 
a1 = -L1 (1 ~j ~ N) (5.18) 

2 

a~ = ~ L1 (for k such that r~ is in C1). (5.19) 
2 

(At this point we use the fact that all r~ belong to one 
of the cubes Cj .) We now verify the following fact: 
In the double sums of (5.15) all terms vanish in which 
the two particle positions involved belong to two different 
cubes. Indeed, 

where the last inequality follows from (4.2), and hence 

Iri - rjl ~ 2 max (au a j ) ~ ai + a j (5.21) 

so that 

Similarly, 

A(lrj - r~l, aj' a~) = 0 (for r~ not in C j ) (5.23) 

and 

A(lr~ - r'd, a~, a'l) = 0 

(for r~ in C;, r; in Ci , i ~ j). (5.24) 

Let P1 be the number of r~ in Cj • We may then rewrite 
(5.15) in the form 

N 

U(S) =! UlS), (5.25) 
1=1 

where 

UlS) 

= [- 1 + pj + ! !A(lr~ - r;1, ~ L j , ~ L1)JO(S) 
oc:Lj (k< OJ 2 2 

- r dT IVlI2! A(lr1 - r~l, ~ L;, ~ L 1). (5.26) Js (k) 2 2 

In view of (5.17), 

Uj(S) > [_ 1 + p~ + !! , 1 , JO(S) 
oc:L1 (k<z);lrk - rzl 

_ r dT IVlI2! 1 . (5.27) 
Js (k);lr1 - r~1 

In the last two formulas we used the notation (k)1 and 
(k < I); to indicate the restriction of the sums to those 
subscripts for which r~ and r; are in C;. In view of the 

inequalities (5.14) and (5.27), if we succeed in showing 

[ __ 1(1+f-t~)+!! 1,JO(S) 
oc:L; (k<I);lr~ - rll 

+ r dT[IV;VlI 2 - IVlI2! 1, J Js (k); Ir; - rkl 

~ - (AI + ~:) O(S) (5.28) 

for appropriate constants Al and A 2 , then (5.4) 
follows by summing over j = 1,2, ... , N. 

Note that although in (5.28) the integrals are still 
over the 3N-dimensional domain S, it is only the 

. dependence of VI on r; which is relevant. Thus, it is 
sufficient to prove (5.28) in a modified form in which 
the integrals S s dT are replaced by So; d3r;, for then 
(5.28) follows by integration with respect to the rest 
of the variables rI , ... , r;_I' r j +1' •.. , rN' But then 
we may ignore the dependence of VI on these other 
variables and, since j was anyone of the N subscripts, 
we may drop it too. We have thus shown that Theorem 
13 is a consequence of the following inequality: 

r d3r{IVVlI2 + IVlI2 [i -1 +!! 1 J} Jo k=Ilr - r~1 I<;k<I<;1' Ir~ - r;1 

~ {-AI + C : f-t2 - A2HJLd3
r IVlI2, (5.29) 

where C is any cube whose edges are of length L, 
r~ (k = 1, 2, ... , f-t) are arbitrary points in or on the 
boundary of C, and VI = VI(r) is an arbitrary smooth 
function defined in C. 

The casell when VI = 0 identically in C may be 
ignored for then (5.29) holds trivially. If we then 
normalize VI 

(5.30) 

the left side of (5.29) can be interpreted as the energy 
of a single negatively charged particle, confined to a 
box C, and attracted to f-t fixed point charges in C. 
The energy includes the static repulsive contribution 
of these fixed charges. We are then looking for a lower 
bound for the ground-state energy of this system, and 
this lower bound must be shown to have the particular 
dependence on the parameters f-t and L shown on the 
right-hand side. The many-body aspect of the original 
problem has been hereby eliminated. 

There is one essential remark. Our problem is not 
the usual "particle in a box," because we have no 

11 This may occur because 1p(r) is the restriction to C of a function 
defined over all space. 
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boundary conditions on "P. The customary require­
ments are either that "P = 0 on the boundary, or that 
"P is periodic, modulo L, when extended in a natural 
manner to all space. In contrast our only requirement 
on "P is that it remain bounded and differentiable at 
the boundary of C, since it is a restriction to C of a 
smooth function defined over all space. This lack of 
boundary conditions on "P leads to some complication 
of detail in Sec. 7. 

6. SOLUTION OF THE ONE-PARTICLE 
PROBLEM 

In considering the proof of (5.29) we have to 
distinguish three cases, p = 0, " = 1, and" ~ 2. 

Let p = O. Then there is only the kinetic energy 
left and the inequality readslZ 

Ie dSr IV"PIZ ~ -AI + (; - Az) t 
For this to be satisfied it is sufficient that 

(6.1) 

Let now " = I. In this case we need to show 

i 3 { Z I"PIZ} (2) 1 d r IV "PI - ,~ -AI + - - Az -. 
e Ir - rll IX L 

(6.2) 

Lemma 7: For any positive A, and any complex 'Y(r) 
with continuous derivatives, and any cube C of size L, 

r d3r \'1"'12 < (~ + 24) r d3r 1'Y12 + 2A r IV'Y12 d3r. 
Ja Irl A L Je Je 

(6.3) 

This proposition is closely related to Lemma 2 which 
we proved in I. There we had a sphere Q of radius b 
centered at the origin; here we have a cube C of edge 
length L in an arbitrary position. The inequality is of 
the same form, and only the numerical coefficients 
are different. In contrast with Lemma 2, here we do not 
have the best possible constants. The proof of Lemma 
7 will be given in Sec. 7. To show (6.2) we take origin 
of coordinates at r~, set 2A = 1, and take "P = 'Y. It is 
seen that (6.2) follows from (6.3) if 

Finally, suppose" ~ 2. We use the notation 

t = !aIV"P12 
d3r, 

w = f r I "P12 d3r 
k=de Ir - r~1 ' 

and 

w' = .2.2 I' 1 'I' 
l~k<!~I' r k - r l 

so that the inequality to be proved reads 

(6.6) 

(6.7) 

(6.8) 

t - w + w' ~ - Al + C : ,,2 - Az) t (6.9) 

Let 

Rk = min Ir; - rkl 
1~!~I' 

!"'k 

(6.10) 

and let (lk denote the sphere whose radius is R~/2 and 
whose center is r~. These spheres do not intersect. 
They all have a nonempty intersection with the cube 
C, but they need not lie entirely inside C. We denote 
by Gk the part of (lk which is inside C. The radii of the 
(lk satisfy the inequality 

R~ ~ ,J3L. 
2 2 

We define a function V(r) as follows: 

I' 1 
VCr) = .2 --, (r in none ofthe (lk)' 

!-llr - r!1 
I' 1 2 

V(r) = .2 -- + - (r in (lk)' 

1=1 Ir - ril R~ 
!"'k 

(6.11) 

(6.12) 

V(r) is bounded, continuous, and has piecewise­
continuous first derivatives. It is the Coulomb potential 
of a surface charge distribution, namely a unit positive 
charge distributed uniformly over the surface of each 
sphere (lk' By elementary electrostatics 

...!... IIVV(r)12 asr = .2.2 1 
87T l~k</~I' Irk - ril 

I' 1 I' 1 + ! - = w' + ! - (6.13) 
k-l Rk k-l Rk ' 

where the integral is over all space. Let 

V(r) = V1(r) + P, (6.14) 
(6.4) where 

and 
2 

As ~- + 24. (6.5) 
IX 

11 From here on we assume", to be normalized to unity in the cube 
C, according to (5.30). 

(6.15) 

so that 

(6.16) 
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We have 

(6.17) 

and 

(6.18) 

where the maximum is taken among all domains U 
whose volume is £3. It is obvious that this domain is a 
sphere centered on r~. Thus, (6.15), (6.17), and (6.18) 
give 

3 (41T)t V < 2 3 #/L< 3#/L. (6.19) 

We now write 

w =f VI1J!12 d3r + i i d3r(_1_ - 2) 11J!12 
o k=l ak Ir - r~1 R~ 

(6.20) 

and estimate the integrals over the domains Ok by 
using a proposition similar to Lemma 7 above. 

Lemma 8: Let D be a domain common to a sphere 
of radius b around the origin and some cube whose 
edges are larger than b, and let D contain the origin. 
For any positive A and any 'Y(r) with piecewise 
continuous derivatives, 

r d3r 1'Y12 :::;; (~ + 12) r d3r 1'Y12 
JD Irl A b JD 

+ 8A t d3r IV''Y12. (6.21) 

The proof is given in Sec. 7. Making use of this, we 
have 

r ~d3r:::;; (~+2~) r 11J!12d3r 
Jak Ir - rkl A Rk JOk 

But, when r is in Ok' 

+ 8A r IV'1J!12 d3r. (6.22) 
Jltk 

this with the help of the following inequality whose 
proof is given in Sec. 7. 

Lemma 9: Letf(r) be a complex-valued and g(r) be 
a real-valued function, defined in a cube C, both 
functions continuous with piecewise continuous deriv­
atives. Let 

f01fl2 d3r = 1 (6.26) 

and 

Lgd
3
r = O. (6.27) 

Then 

1 fo g1fl2 d
3
r 12 :::;;-; (LIV'gI2 d3

r) (5/'fI2 d3rt 

(6.28) 

We take f = 1J! and g = VI and then our conditions 
are fulfilled [cf. (6.16) above]. Thus, 

LYt Itpl2 d3r :::;; (~)\t(LIV'YtI2 d3rt (6.29) 

But 

IaIV'VlI2 d3r = fclV'Vl2 d3r <f IV'VI2 d3r 

= 81T(W I + i ~) :::;; 241TW', (6.30) 
k=I Rk 

by (6.13) above. The last inequality follows from the 
fact that each term in the sum occurs at least once but 
no more than twice in the sum (6.8) defining w', Thus 
we obtain from (6.25), (6.29), and (6.30) 

, 8 ' 96 1(3 ')' 36# I t-w+w >t- t - t w --+w. 
L 

( 6.31) 
We now note that 

2 
V(r) 2 R

" 
(6.23) Ir~ - r;1 :::;; ~3 L, (6.32) 

k 

Hence, by summing (6.22) over k, and noting that the 
disjoint Ok are inside C, we get 

w ,:::;; 1 + 8At + 12 Lv 11J!12 d3r, (6.24) 

or, minimizing with respect to A, and making use of 
(6.14) and (6.19), 

w < 8t' + 36ft + 12 r VI 11J!12 d3r. (6.25) 
L Jc 

It remains to estimate the last term of (6.25). We do 

and, therefore, 

w' > ftCft - 1) ~ > ft~ 
- 2 ~3L - 4~3L' 

(6.33) 

because # ~ 2. It follows that 

w' _ 36# > ! ( #2 __ 36 ) >! (1 + ft2 _ A ) 
2 L - L 8~3 ft - L rJ. 2 , 

(6.34) 
provided that 

(6.35) 
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and 

A2 ~ .! + max {36# - #2(~ - !)} 
~ p 8J3 ~ 

= ! + 324 (6 36) 
~ (1/8J3) - (1/rx) . . 

We choose ~ to satisfy (6.35). Then we choose Az to 
satisfy (6.36). Then (6.34) is satisfied, and (6.9) 
follows from (6.31) if we can choose Al so that 

Al ~ -t + 8tl + 96ti (3w')l - iw'. (6.37) 

On the right-hand side we have a function of the two 
variables t and w' which is bounded above and so the 
choice is possible. Numerically, one finds the condition 

Al ~ max {-t + 8tt + 96ti (3w,)l - tw'} 
t.w'>O 

= (3.482 + 4l (6.38) 

With (6.35), (6.36), and (6.38) we have proved (6.9). 
The conditions (6.1), (6.4), and (6.5) now automati­
cally hold and so (5.29) has been proved for arbittary 
# ~ O. As we have shown in Sec. 4, this implies the 
truth of Theorem 13. And Theorem 13 implies 
Theorem 5. So the proof of Theorem 5 is complete 
except that we still have to prove Lemmas 7, 8, and 9. 

It may be of some interest to present our final result 
in numerical terms. Choosing the reasonable values 
rx = 30, ~' = 70, A2 = 104, A~ = 500, and Al = lOS, 
we get from (5.12) A = 1.3 X 1014, and this is the 
constant which appears in Theorem ~. 

7. PROOF OF LEMMAS 7, 8, AND 9 

We begin with a useful extension of Lemma 2 which 
was proved in 1,1 

Lemma 2a: Let 0 be a domain which contains the 
sphere 0 0 of radius b and center at the origin. For 
any positive). and any complex valued function 7(r) 
with continuous derivatives 

(7.2) 

#(0) = inf .'F(7, 0). (7.3) 
'I' 

By choosing the ). in (7.1) optimally, one sees that 

Lemma 2a is equivalent to the inequality 

#(0) ~ -(3/2b). (7.4) 

To prove this we take the infimum of (7.3) in two 
steps. 

,1(O,~, p, y) = inf .'F(7, 0), (7.5) 
'l'eJ\,(a,p,y) 

where X(~, p, y) denotes the class of'f which satisfy 

r 1'f12 d3r = ~, (7.6) 
Joo 

LI'Y12 d3r = 1, 

f IV'f12 d3r = p, 
Joo 

(7.7) 

(7.8) 

fo1V'Y12 d3r = y, 

with the real numbers rx, p, y subject to 

O~rxSl 

(7.9) 

(7.10) 

(7.11) 
and 

Os p S y. 
Thus, 

#(0) = inf ,1(O,~, p, y), (7.12) 
a,p,y 

the infimum being over all sets (ex, p, y) subject to 
(7.10) and (7.11). If'Y belongs to X(~, p, y) we have 

.'F('f, 0) = yt _ r 1'1"12 dSr _ r 1'1"12 d3r 
Joo Irl Jo-oo Irl 

~ yl _ r 1'1"12 d3r _ 1 - rx , (7.13) 
Joo Irl b 

because, for rEO - 0 0 , Irl ~ b. By Lemma 21 

f 1'1"12 d3r S 3rx + (~p)l, (7.14) 
Joo Irl 2b 

so that for 7 E X(ex, p, y), 

.'F('I", 0) ~ l- (ocpi _ 2 ~ ex. (7.15) 

Therefore 

A 1 t 2+rx ) #(O,~, (3, y) ~ y - (ex{3) - 2b' (7.16 

The minimization of (7.12) then yields the desired 
inequality (7.4). 

Let C be a cube of edge length L, and let C1 be a 
cube with the same center, with faces parallel to those 
of C and whose edge length is 2L. If'Yo(r) is a con­
tinuously differentiable function in C whose normal 
derivative vanishes on the faces of C, we can extend it 
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by reflection in the faces of C to a continuously 
differentiable function'I'\(r) in C1 • Then 

f \'Yl dar = 8 f \'Y12 dar (7.17) 
01 0 

and 

f \V''Y1\2 d3r = 8 f \V''Y1
2 d3r. (7.18) 

01 0 

On the other hand, if Yo is any point in space, 

r 1'Y112 d3r > r 1'Y12 d3r. (7.19) 
J0 1 Ir - Yol - Jo Ir - Yol 

Consider now the quantity 

(7.20) 

If Y is not in C then i is a harmonic function of Y and 
so it is minimized for some Y on the boundary of C. 
Thus we may assume Y to be in or on the boundary of 

C. Let 'Yo(r) and Yo be such that they minimize i. 
Because no boundary condition is imposed on 'Y in 
the minimization, the variational problem automat­
ically gives the "natural boundary condition" of 
vanishing normal derivative for 'Yo on the faces of C. 
Thus we may extend 'Yo as explained above, and from 
(7.17), (7.18), and (7.19) it follows that 

i('Y, C, y) ~ :i('Yo' C, Yo) > :F('Y1' C1), (7.21) 

provided we shift the origin of the coordinate system 
to Yo. But the distance of Yo from the faces of C1 is at 
least tL so that we may apply Lemma 2a with b = tL, 

(7.22) 

The resulting inequality 

" 3 :F('Y, C, y) > - L (7.23) 

we see that 

(7.25) 

and 

(7.26) 

Also 

(7.27) 

Note that Y('Yo, D, 0) < 0, since the left-hand side 
of (7.24) is negative for'Y = constant. This, together 
with the last three inequalities implies 

i('Yo' D,O) > :F('Y1' D1) > -..! (7.28) 
2b 

by Lemma 2,l The resulting inequality 

A 3 
:F('Y DO»--

" 2b 
(7.29) 

is equivalent to (6.21), as seen by choosing A to give 
the strictest inequality. This proves Lemma 8. 

I t remains to prove Lemma 9. It is clear that the size 
of the cube C is irrelevant. Therefore we choose C to 
have edge length 27T. We also take the origin at the 
center of C. 

We first show that it is sufficient to prove the Lemma 
with the constant 8 replaced by 1 if1 and g are required 
to be· periodic with respect to opposite faces of C. 
Indeed, let 

QU, g) = If/ Ifl2 dar 12/ fa'V'gI2 d3r(tlV'fI2 d3rt 

(7.30) 

and let 10 and go be the functions that maximize Q. 
Then 16 and go have vanishing normal derivatives on 
the faces of C, and they may be extended by reflection 
on the faces to functions 11 and gl defined in the larger 
cube C1 , which is concentric with C, has faces parallel 
with those of C, and is twice the linear size. Now we 
put 

{

12(r) = 11(2r) 

g2(r) = gl(2r). 
(7.31) 

is equivalent to 
Lemma 7. 

(6.3). This completes the proof of 12 and g2 are periodic in C, satisfy (6.26), (6.27), 

The proof of Lemma 8 is similar. We have 

i('Y, D, 0) ~ :i('Yo, D, 0), (7.24) 

where 'Yo is the minimizing function and therefore 
has vanishing normal derivative on the boundary of 
D. We now extend 'Yo by reflection on the faces of the 
given cube to a function 'Y 1 defined in the complete 
sphere D1 : Irl ~ b. Because the origin r = 0 is in D 

respectively, and 

Q(f2, g2) = Ij8Q(fo, go). 
Thus 

Q(j, g) ~ Q(fo, go) = 8Q(f2' g2), 

and it is sufficient to show 

(7.32) 

(7.33) 

QU, g) ~ .!, f, g periodic; (7.34) 
7T 

then by (7.33) the desired inequality (6.28) follows. 
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Expand f and g in Fourier series 

fer) = (21T)-f I aneirH 

o 
and 

(7.35) 

g(r) = (217)-f I bneio.r, (7.36) 
n 

~he sums running over vectors n = (n",. n.1I , n.) with 
Integer components. The normalization off is 

(7.37) 

and 
bo = O. (7.38) 

In terms of the Fourier coefficients, 

Q(f,g) 

= 8~31 ~ ~ a:ambn-mliI!nI2Ibn,2(f InlSlanllll. 

(7.39) 
By Schwarz's inequality 

I f ~ a: ambo-mr 

;::; 2 /kI2, bltll!! 'k
lI2 l! a!+kam!2. (7.40) 

k~O k#Oj m 

Therefore (7.34) follows from 

It~O I~I\I \ ~ a!rkamt ~ 81T
2 (~ Inl2lall/zt (7.41) 

By Schwarz's inequality 

I ~ a!+kam\ ;::;.~ laml
2 
= 1 (7.42) 

shows that 
(7.47) 

We derive an upper bound for (10 as follows. The 
function cfo(r) = Irl-2(1rl2 + A2)-1 satisfies V'cp > 0, 
and therefore its value cp(o) at any point with integer 
coordinates is less than its average over a sphere 
centered at this point. We choose for aU n spheres of 
radii t so that they do not overlap. This way we obtain 
the estimate 

(10 < ~ f r$(r) dar 
1T J,r,;::l 

24 = ;: arctan 2A < 121T2{(1 + 1TA). (1.48) 

The last inequality follows from 

co:2 t > (7T/21_ t)2 (0 S t < ~). (7.49) 

Integrating between 0 and i1T2A(I + 1TA)-l one has 

1Tz;, 
tan > 2A, (7.50) 

2(1 + 1TA) 

which yields (7.48). 
We now consider the sum on the left-hand side of 

(7.44), Let Pa = P-n > O. We have then by Schwarz'S 
inequality 

L L am+kalll = L L am+kPm+k 
k"'O m Ikl 2 k~O m IklPm 

a P 2 2 
X m m < I I ainPm (7.51) 

Ikl Pm+k k"'O m Ikl2 P!+k . 

for all k. Therefore, the left-hand side of (7.41) is not Let 
more than 

(

101 2 + ,1.2 (n ¢ 0), 

k~O ':'21 ~a!+kaml ;::;kfo 1:12 ~ lam+kl·!allli. (7.43) 

Pn = (A)! 21T (10 (n = 0). 
(1.52) 

It is therefore sufficient to prove that 
Then the right-hand side of (7.51) may be written 

2 I a,..+k:m ~ 81T2(I IDISa;)! 
k~O III Ikl n 

(7.44) 41T2Aa~ + ! (lmll + ),2)a!(um + (10 ) 
m~O 121Tmlz;, 

for any real positive an normalized by (7.37). 
Let, for any positive A, 

(In = (loOt) = 2 1 
m~O.-n Iml20m + nlll + A2) 

(7.45) 

The elementary inequality 

(l0!2 (!ml* + A2)]-l + [lm(2(lnl l + A2)]-1 

;::; C(D!2 (1012 + A2)J-l + [lm12 C/mF.l + A2)J-t (7.46) 

~ 41T2Aa~ + 61T 1 + 21TA I (ImIS + J.2)a! (7.53) 
A 1 + d. III~O 

by virtue of (7.47) and (7.48). Since 

[61T(1 + 21TA)J/(1 + 1TA) < 41T2, (7.5'4) 

we get an upper bound on the right-hand side of (7.53) 

4'7T2 T ~(!mI2 + l~a:'. (7.55) 
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Finally, we choose A. to minimize this upper bound. 
This yields the inequality (7.44) and the proof of 
Lemma 9 is complete. 

We conclude with some informal remarks which are 
intended to clarify the physical meaning of Lemma 9. 
In our whole proof of stability, Lemma 9 is the inner­
most core. It is unfortunate that both the statement 
and the proof of Lemma 9 are couched in algebraic 
terms which conceal the physical motivations. Basi­
cally, the effect of Lemma 9 is to set a bound to the 
interaction energy between negative and positive 
charges, the bound depending only on the kinetic 
energy of the negatives and on the potential energy 
of the positives. 

An alternative statement of the content of Lemma 9 
is obtained by analyzing the inequality (7.44) which is 
essentially equivalent to Eq. (6.28). We can give Eq. 
(7.44) an intuitive meaning as follows: The function 

R(x) = 1 _1_ exp [27Ti q • x] 
Q?oO 7TLq2 L 

(7.56) 

is the Green's function for a cube of side L with 
periodic boundary conditions. R(x) is the Coulomb 
potential generated by a unit positive charge at each 
vertex of a cubic lattice, with a constant negative 
background density to preserve neutrality. Equation 
(7.44) is equivalent to the statement that a particle of 
mass m in the periodic Coulomb potential [-e2R(r)] 
has a ground-state binding energy less than 16 R y, or 
in symbols 

e2f R(r) /tp(r)/2 d3r < (/j2/2m) f'Y'tp(rW d3r 

+ 16 Ry f/tp(r)/2 d3r, (7.57) 

irrespective of the spacing L of the "lattice. The awk­
wardness ofthe proof of Eq. (7.44) arose from the fact 
that R(r) is not spherically symmetric and so the 
standard argument based on Lemma 2isnotapplicable. 
Note that R(r) is defined to have mean value zero, so 
that.there is no term proportional to e2 in the ground­
state energy. 

We know that in the limit L -- 00, when R(r) tends 
to the Coulomb potential (l/r), the ground-state 
energy is one Rydberg, and so Eq. (7.57) holds 
without the factol:. 16. It is also easy to verify that, 
as L -- 0, Eq. (7.57) holds with a coefficient smaller 
than 1 instead of the 16. It is extremely likely that 
Eq. (7.57) is true for all L with the 16 replaced by 1. 
This would mean that Eq. (7.44) holds with 2 replacing 

8, and likewise Eq. (6.28) would hold with 2 replacing 
8 on the right side. To prove this strengthened form of 
Lemma 9, it would be sufficient to show that the 
ground-state binding energy of the potential [-e2R(r)] 
decreases monotonically with L. The monotonicity 
of the ground-state energy is physically plausible, but 
we have not succeeded in proving it. Our proof of 
Lemma 9 misses a factor of 4 through various crudities 
of detail, particularly in the estimate (7.48) for Go. 

When Lemma 9 is expressed in the form (7.57), its 
relation to the arguments of Sec. 2 becomes clear. In 
Sec. 2, Theorem II was deduced from the fact that the 
ground-state binding energy of a particle in a Coulomb 
potential in infinite space is one Rydberg. Analo­
gously, Lemma 9 is deduced from the fact that the 
ground-state binding energy in the periodic Coulomb 
potential is less than 16 Ry. The simple Coulomb po­
tential is the Green's function for infinite space, while 
the periodic Coulomb potential is the Green's func­
tionfor a finite cube. The logical structure of the proofs 
of the two inequalities, Theorem II and Lemma 9, is 
the same, and the logic of their use in the proofs of 
Theorem 12 and Theorem 5 is also the same. Only the 
details are more complicated for the case of the cube, 
and the numerical coefficients are correspondingly less 
precise. 

It is a remarkable fact that our proof of the stability 
of matter, after such a tremendous detour via dis­
sections of space and other artificial tricks, boils down 
in the end to an estimate of the binding energy of a 
single electron in a periodic Coulomb potential. We 
conjecture that this appearance of the periodic 
Coulomb potential at the kernel of the proof is not 
accidental. After all, the ground states of most forms 
of matter are crystals in which electrons are actually 
moving in periodic Coulomb potentials. The essence 
of a proof of the stability of matter should be a 
demonstration that an aperiodic arrangement of 
particles cannot give greater binding than a periodic 
arrangement. If this dominance of the periodic 
potential could be proved directly, then we would 
have a proof of Theorem 5 vastly simpler and more 
satisfactory than the one presented in this paper. 
Into the bargain we would also undoubtedly find a 
more reasonable numerical coefficient than 1.3 x 1014• 
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The object of this paper is to find and study a class of potentials for which the corresponding scattering 
amplitude! decreases rapidly in energy at fixed (nonforward) angles. Specifically, we ask that !(k, 0) = 
O[exp {-b(O)k}] as k -+ 00 for 0 fixed. It is shown here that this relation is valid for certain potentials 
V(r) which are even functions of r analytic in a strip about the real r axis. With further restrictions on the 
potentials we show that the scattering amplitude converges to its first Born approximation at high 
energies for fixed nonforward angles. 

1. INTRODUCTION 

It is a striking experimental result that elastic 
differential cross sections for processes involving 
nucleons decrease very rapidly with respect to energy 
at fixed nonforward scattering angles,l i.e., that they 
exhibit Orear behavior. This behavior appears to be 
a general feature of strong interaction scattering 
processes. It has been qualitatively described as a 
manifestation of the spatial extension of composite 
particles.2 Since it is so general a feature of strong 
interactions, we have looked into nonrelativistic 
potential scattering to see under what conditions this 
behavior occurs there. We do not propose to invent a 
serious physical model of any sort for this behavior­
we work within the context of potential scattering for 
guidance.3 (We of course recall that Regge behavior, 
analyticity in energy, and the Mandelstam representa­
tion all have conceptual validity in potential scattering, 
so that the conditions for Orear behavior in potential 
scattering may be of some interest.) Potential scattering 
is an internally consistent theory, it does give unam­
biguous results, and finally, it is a relatively simple 
theory in which to work. 

The basic experimental behavior pointed out by 
Orear is that the elastic differential cross section 
decreases roughly exponentially with respect to energy 
at fixed nonforward scattering angles. For the purposes 
of this paper we understand by "Orear behavior" the 
following asymptotic relation upon the scattering 

• This paper is based upon a thesis by the author submitted to 
Princeton University in partial fulfillment of the requirements of the 
degree of Doctor of Philosophy. The author was a National Science 
Foundation Predoctoral Fellow and National Aeronautics and 
Space Administration Trainee while working on his thesis. 

t Present address: Department of Physics, Case Western Reserve 
University, Cleveland, Ohio. 

1 J. Orear, Phys. Rev. Letters 12,112 (1964). 
• T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965). 
3 However, see M. Islam and J. Rosen, Phys. Rev. Letters 19, 

178 (1967). For considerations with singular potentials, see G. 
Tiktopoulos, Phys. Rev. BISSO (1965). 

amplitude4 : 

/(k, 0) ~ Olexp (-2kb sin'iO)), (1.1) 

with b > 0, as the wavenumber k ~ 00 with the 
scattering angle 0 fixed away from the forward 
direction. 5 

The object here is to find a class of (nonsingular) 
central potentials V(r) such that (1.1) is valid for the 
corresponding scattering amplitude. It is obviously 
necessary that the first Born approximation /1 obey 
the order relation (1.1) in order that (1.1) be valid for 
/ for sufficiently weak potentials.6 One can easily see 
that /1 obeys (1.1) for potentials which are even in r 
and analytic in r in a strip about the real axis. For 
definiteness we limit our considerations to potentials 
which are analytic in the region 11m rl < ro and have 
the following representation for positive ro 7: 

V(r) = LX)dM(IX)eXp [-IX{r2 + r~)]. (1.2) 

The following conditions are placed upon the weight 
function a(IX): 

(a) a( IX) is continuous for IX > 0, and it possesses 
a finite derivative almost everywhere, 

(b) lim a(IX) = 0, and 
12--+0+ 

(c) the integral 

Q(E) = LX) dIXIX-i la'(IX)1 exp (-IXE) (1.3) 

converges for every E > 0. We then show in Sec. 2 that 

4 The original Orear formula for elastic p-p scattering, da/dD. ~ 
exp {-p .L lpo }, inevitably takes exchange scattering processes into 
account. One could include an exchange potential here to approxi­
mate the physical behavior more closely, but such is not our purpose. 

S High-energy, large-angle scattering is discussed in T. T. Wu, 
Phys. Rev. 143, 1110 (1966). For consideration of the related concept 
of Schrodinger equation models of form factors, see S. D. Drell, 
A. C. Finn, and M. H. Goldhaber, Phys. Rev. 157, 1402 (1967). 

• The fact that!, satisfies (1.1) is by no means sufficient to guar­
antee that I satisfies (1.1) as well! 

, Conditions (a) to (c) here are sufficient to guarantee analyticity 
in the strip. 
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if the potential has a representation of the form 
(1.2) subject to conditions (a) to (c), the corresponding 
scattering amplitude satisfies relation (1.1) for every 
b < roo An example of such a potential is VCr) = 
(r2 + r~)-n for n > t-

One may obtain more restrictive asymptotic bounds 
upon the scattering amplitude at higher energies if 
further conditions are imposed upon 11. With this in 
mind we place an additional condition upon 11. 

(d) The following integrals converge: 

(i) L"'doc'l1(oc)', 

(ii) L"'doc

'

I1'(oc),. 

It is shown in Sec. 2 that if 11 meets conditions (a) to 
(d), the scattering amplitude obeys relation (1.1) with 
b = ro as well. Furthermore, in Sec. 3 additional 
conditions are placed upon 11. 

(e) l1(oc) ~ 0 for oc ~ O. 
(f) For positive oc there exists some positive number 

A, such that 11'(oc) + A,211(OC) ~ O. 
(g) For some number p ~ 0 the following integrals 

converge for 0 ~ q ~ p: 

(i) L"'dococq 'I1(OC)', 

(ii) 50'" dococq+1IO"(oc)l, 

(iii) L'" dococq+I II1"(oc)l. 

(h) Finally, for p as chosen above there exist 
constants K and OCo such that O'(oc) ~ K/ocp+2 for 
oc> OCo• 

Under conditions (a) to (h) upon 0' we will establish 
the following limit involving the scattering amplitude 
/(k, 0) and its first Born approximation A(k, 6): 

lim I(k, 6)/ll(k, 6) = 1. (1.4) 
k-+ '" o fixed 

It should be noted that the limit of the above 
function at fixed momentum transfer is known to be 
unity. for a wide class of potentials. However, the 
limit here is taken at fixed angles of scattering. 

An example of a potential meeting conditions (a) 
to (h) is VCr) = A exp [-oco(r2 + rg)!], for which the 
corresponding weight function is 

0'( oc) = (Af277i )( oco/oc!) exp (- oc~/4oc). 
In Sec. 4 we speculate that relation (1.1) is valid 

for members of a broader class of potentials than (I.2). 

2. OREAR BEHAVIOR 

We define the scattering amplitude through the 
usual asymptotic limit of positive energy solutions of 

the time-independent Schrodinger equation. From 
the Schrodinger equation one can obtain the familiar 
Born series expansion of the scattering amplitude, 
which is written formally as follows: 

f= V + VGkV + VGkVGkV + ... , (2.1) 

where V is the potential and Gk is the free Green's 
function. We factor the potential formally through the 
relation VCr) = Vl(r) . v2(r). Then the Born series may 
be written formally as 

f= V + VI WV2 + Vl W2V2 + ... , (2.2) 

where W = v2GkVI • 

Let us define the Fourier transform of the potential 
through the relation 

V(q) = (277)-3J dxV(x) exp(-iq. x). (2.3) 

The Fourier conjugates to VI and V2 are similarly 
defined. Then the formal relation (2.2) can be written 
as 

f(k, k') = 2772
[ - V(k' - k) 

+ J dpi dp2V2(PI - k)W(PI, pJvl(k' - P2) 

-J dpi dP2 dPavlPI - k)W(PI' P2) 

X W(P2' Pa)vl(k' - Pa) + .. J (2.2') 

Then the expression for W is 

-lJ dXl dX2 W(PI, P2) = (477) --3 V2(Xl)VI(X2) (277) 

X exp {-i(P2' Xl - Pl' X2)} 

X exp {ik IXI - x21}/lXl - x21. (2.4) 

We now require that the potential factors VI and V2 
have representations analogous to (1.2) with the same 
number ro as in the representation (1.2), i.e., there must 
exist PI and P2 such that 

vl(r) = ("'docPI(oc) exp [-oc(r2 + rm. (2.5) 
2 Jo 2 

The object here is to obtain a relatively simple bound 
upon W. Let us use the representation (2.5) of the 
potential factors to write 

'" 
W(Pl, P2) = 32

1
774 II doc df3ptCoc)p2(f3) 

o 
x exp [-oc(r2 + r~)]J(oc, f3, PI, P2)' 

The following bound upon J can be obtained: 

IJ(oc, f3,PI,P2)1 ~ 4~k-l(OC + (3)-l(ocf3)-! 

X exp (-(P2 - Pt)2j4(oc + (J». 
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As a result we derive a bound upon I wi of the form 

I W(PI, P2)1 ~ K(P2;: PI) 

00 

= (81Tk)-Iff doc d{3 I PI(OC) I I P2({3) I 
oc + {3 [oc{3]! 

o 

X exp [-(oc + {3)r~ - (P2 - PI)2/4(oc + {3)]. 

(2.6) 
The bound (2.6) of W may be used to bound each 
term ofthe Born series (2.2) in a relatively simple way. 

Let us define functions VI and v2 by the relations 

VIer) = roo doc I PI(OC) I exp [_oc(r2 + r~)] 
2 Jo 2 

and let 'lJ(r) = VIer) • vlr). We define the Fourier 
transforms of VI and v2 as in the relation (2.3) for V. 
Then the scattering amplitude may be bounded by the 
following series: 

II(k' - k)J 

~ 21T2[W(k' - k)1 

+ k-If dPI dp2V2(PI - k)K(P2 - pJvI(k' - pJ 

+ k-2J dPI dP2 dPaV2(PI - k)K(P2 - PI) 

X K(Pa - P2)VI(k' - Pa) + .. J 
The following theorem on convolution integrals may 
be applied: 

I dPI ... dPnaI(q - PI)a2(PI - P2) 

X aa(P2 - Pa) ... an(Pn-I - Pn)an+I(Pn - t) 

= (21T)-aI dxaI(x)a2(x)aS(x)" . an(x)an+I(X) 

X exp [-i(q - t)· x], 

where alp) and ai(x) are Fourier conjugates as in 
(2.3). Thus the modulus of the scattering amplitude 
may be bounded as follows: 

II(k, a)1 
~ 21T21 V(~)I 

+ 1411T I dXVI(X)vlx) [ KkX) + (KkX)r + ... J 
X exp { - i~ . x} 1 

~ 21T2 I V(~)I 

+ _1_1 JdX'lJ(X) K(x) exp {-i~' x}. 
41Tk 1 - [K(x)/k] 

(2.7) 

We can easily obtain the following expressions for 
'lJ(x) and K(x) from their definitions: 

00 

'lJ(x) = II doc d{3IPI(oc)llp2({3)1 
o 

X exp {-(oc + {3)(r2 + r~)}, (2.8) 
00 

K(x) = 1TtII doc d{3IPI(OC)llp2({3)1 [(oc + {3)/(oc{3)]! 

o 
X exp {-(oc + {3)(r2 + r~)}. (2.9) 

The formal manipulations of this section can be justi­
fied if the following conditions are met: 

(a) VCr) is finite for real r and is square integrable 
as a function of r. 

(b) There exists a suitable factorization VI • V2 = V 
such that vI(r) , v2(r), VIer), v2(r), and 'lJ(r) are similarly 
well-defined and square-integrable functions of r. 

(c) K(p) given in Eq. (2.6) is absolutely integrable 
as well as square integrable over p. 

(d) The conjugate function K(x) given in Eq (2.9) 
is bounded uniformly by some number C for all real 
x. 

With these four conditions one can prove that the 
steps leading to equality (2.7) are rigorous and that 
the right side of (2.7) is finite for k > C. 

One can prove that conditions (a) to (d) of this 
section are met if there exists a factorization vI(x) . 
V:i(x) = Vex) such that the corresponding weight 
functions PI and P2 satisfy the following conditions: 

LI(E) = roo dococ-! I Pl(OC) I exp (-OCE) (2.10) 
2 Jo 2 

must be finite for every E > O. We will prove (d) 
explicitly, to illustrate the method used in proving the 
others, 

K(x) ~ K(O) 
00 

= 1Tt II doc d{3[(oc + {3)/(oc{3)]tI PI(oc)llp2({3)1 
o 

X exp [-(oc + {3)r~]. 
We let r~ = EI + E2, where EI and E2 are both positive. 
Thus 

K(O) = 1Tt 50
00 

dococ-! IPI(OC)I exp [-OCEI] 

X Loo d{3{3-! I P2({3) I exp [-{3EI]A(oc, {3, E2)' 

One can show that A(oc, {3, E2) ~ (eE2)-I, so that 
K(O) ~ (1T! /eE2)L1 (E1)L2( E1), which is finite. 

We will now show that if conditions (a) to (c) of Sec. 
1 are met, a suitable factorization subject to (2.10) 
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exists. We choose to factor VCr) into 

v1(r) = (r2 + rg)V(r), 

v2(r) = (r2 + rg)-1. 
(2.11) 

One can see explicitly that P2(OC) = 1 and P1 and a are 
related by the integral equation a(a) = g d(3P1«(3). 
Under the assumption of conditions (a) and (b) of 
Sec. 1 the solution to this equation is 

P1(OC) = a'(oc). 

Condition (c) of Sec. 1 implies the finiteness of 
L1(e), whereas one may explicitly calculate L2 to obtain 
L2(e) = r(!)e-1. Thus this factorization meets con­
ditions (2.10), so that the inequality is valid under 
conditions (a) to (c) of Sec. 1. 

We wish to obtain a bound of the form (1.1) upon 
the scattering amplitude. For that purpose we rewrite 
the inequality (7) as 

If(k,~)1 

~ (417)-11 I dx'lT(x) [ 1 - KkX)]-1exp (-i11. x) I. 
(2.7') 

Since 'IT and K depend only upon Ixl and are even in 
lxi, we can rewrite the inequality as 

If(k,~)1 

= (2i~)-11 L: dx'lT(x) [ 1 - K~)]-1exp (i~x) I. 
(2.12) 

We picka number b < ro, and we distort the contour 
of x integration in (2.12) from the real axis to the line 
1m x = b. (We will see that such a distortion is justi­
fied.) We let e = rg - b2• Then for real s we can use 
(2.9) to show that 

IK(s + ib)1 ~ K(ib) 
<Xl 

= 17! II doc d(3lp1(OC)llp2«(3)1 [(oc + (3)/(oc(3)]! 
o 

x exp {-(oc + (3)e}. 

One can use Eq. (2.10) above to show that K(ib) is 
finite, just as it was used to prove condition (d) above. 
Now we require that k > 2K(ib), so that 

1[1 - k-1K(s + ib)]-11 < 2. 

Then one can use (12) to bound If I as follows: 

If(k, MI ~ exp (-~b)f<Xl ds(lsl + b) 1'lT(s + ib)l. 
~ -<Xl 

We can use relation (2.8) for 'IT along with condition 
(2.10) to show that the above integral is finite. Since 
it is independent of ~ and k it is just a number. The 

following bound is thus valid for sufficiently large ~ 
and k: 

I/(k, ~)I ~ C exp {-~b}, 

from this one can easily deduce the order relation (1.1). 
We now wish to show that conditions (a) to (d) of 

Sec. 1 allow us to prove an order relation such as 
(1.1) with b = ro; the previous considerations allow 
us to conclude this only for b < ro. The approach is 
to distort the contour of integration in (2.7') to that 
given by 1m r = b. One can hope to do this only if 
'IT and K have "finite singularities" at r = ir 0, such as 
the branch point in the function exp {-ocoCr2 + rg)!}. 
We can show that 'IT(iro) and K(iro) are finite if the 
following integrals of P1 and P2 are finite: 

11 = (<Xl doc Ip1(OC)I, (2.13) 
2 Jo 2 

(2.14) 

It is necessary to require that k > 2K(~'ro), so that 
IK(u + e'ro) I < tk and 

[1 - k-1K(u + e'ro)]-1 < 2. 

We now distort the contour in Eq. (2.12) to obtain 

If(k,~)1 ~ ~-1exp {-~b} 

X L: du(lul + ro) 1'lT(u + t·ro)l· 

We use Eq. (2.9) to obtain the bound 

1'lT(u + ~'ro)1 
<Xl 

~ II doc d(3lp1(OC)llp2«(3)1 exp {-(a + (3)u2}. 
o 

This leads to the following bound upon/: 
<Xl 

If(k, ~)I ~ ~-1 exp {-~ro} II doc d(3lp1(OC)llpl(3)1 

o 
X {(a + (3)-1 + [l7/a + (3]!ro}. 

Under the assumption of conditions (2.13) and (2.14) 
one can show that 

I/(k, ~)I ~ Cexp {-~ro} (2.15) 

for sufficiently large k and ~. Thus (1.1) is valid for 
b = roo 

In view of the previous requirement (2.10), the 
integrals (2.13) and (2.14) can fail to converge only as 
oc ---+- 00. One can show that if (2.10) and (2.13) are 
finite integrals, then (2.14) must of necessity be finite. 
It is thus necessary to show that conditions (a) to 
(d) of Sec. 1 are sufficient to guarantee a factorization 
for which the integrals are finite. We will establish this 
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by exhibiting such a factorization of V, namely 

v1(r) = (r2 + r~ + A,2)V(r), 

v2(r) = (r2 + r~ + A,2)-I, 

where A > O. Under the constraint 0'(0) = 0, the 
corresponding weight functions are 

PI (oc) = 0"( oc) + A,20'( oc), 

P2(OC) = exp {_A,2oc}. 

Then II ~ S;' doc 100'(oc)1 + A,2 S;' doc I O'(oc) I , which is 
finite by condition (d). One can calculate 12 explicitly 
to obtain the finite result 12 = A,-2. 

We have thus shown that conditions (a) to (d) are 
sufficient to guarantee that the scattering amplitude 
obeys the following relation as k ~ 00 at fixed angles: 

f(k,O) = O[exp (-2kro sin to)]. 

3. CONVERGENCE TO THE FIRST 
BORN APPROXIMATION 

One can show that 

Lllodococ-t exp {-(ocr~ + ~2/41X)} 
= O(exp {-~2/41Xo} = o(~-3 exp { -~ro}) 

as ~ ~ 00 

and the first integral may be calculated explicitly: 

Loo dlXoc-t exp {-(lXr~ + ~2/41X)} 
• 8'/Ti r2 

= 2[2ro/~]·K!(~ro) ~ ~3 0 exp {-~ro}. 

(We have used some well-known properties of modi­
fied Bessel functions in the last step.) Thus the in­
equality (3.1) is proved. 

For the proof of inequality (3.2) the followino- lemma 
is useful. 0 

Lemma: If p(lX) is defined for IX ~ 0 such that the 
integrals 

In this section we will show that the scattering J"ooo dlX Ip(IX)1 and fooo dlXlX Ip'(IX)1 
amplitude asymptotically approaches the first Born Jc 
approximation at high energies for a fixed angle of converge, then IXp(lX) is bounded for 0 ~ IX ~ 00 and 
scattering for potentials which satisfy conditions (a) IXp(lX) ~ 0 as IX ~ 00. Further, if we define 
to (h) in Sec. 1. That is, for this class of potentials we f oo ! 
will show that U(q) = Jo dlXlX- p(lX) exp {-(lXr~ + q2/41X)}, 

lim I(k, (}) = 1. (1.4) then U(q) = O(q-2 exp {-qro}} as q ~ 00. 

k-+oo A(k, (}) 
6 fixed 

The proof of this will be carried out in two steps. 
First we will show that there is a number K' such that 
for sufficiently large ~, 

IN~)I ~ K'~-(1J+3) exp (-~ro), (3.1) 

where p is given in condition (g). Then we will show 
that 

I/(k, M -/l(~)1 = o(k-(1J+3
) exp {-~ro}) (3.2) 

as k and ~ become large. One can then conclude (1.4) 
from (3.1) and (3.2). We will give the explicit proof 
here only with p = 0; however, the proof can easily 
be extended to p > O. 

We begin by proving (3.1). By our conventions 

'/Til 00 -/l(~) = - dlXlX~O'(IX) exp {-(lXr~ + ~2/41X)}. 
4 0 

Now since O'(IX) ~ 0 and O'(IX) ~ KIX-2 for IX> 1X0, 

'/TiKi 00 i -/l(~) ~ - dlXlX- exp {-(lXr~ + ~2/41X)} 
4 II 

'/T
t Ki oo 

i ~ - dlXlX- exp {-(lXro + a2/41X)} 
4 0 

We will now outline the proof of Eq. (3.2). 
We consider potentials defined by Eq. (1.2) with 

O'(IX) being restricted such that the following integrals 
converge: 

(i) Loo dlX IO'(IX)I, 

(ii) Loo dlX 10"( IX) I , 

(iii) Loo dlXlX IO"(IX)I, 

(iv) Loo dlXlX 1a"(IX)I. 

It is convenient to choose the factorization VI • V2 = 
V such that VI and V2 are given as follows: 

Pl(lX) = O"(IX) + A,20'(1X), 

P2(1X) = exp {-A21X}. 

One can then use properties (i) to (iv) to show that 
the following integrals involving PI and P2 converge: 

(v) 100dlXlX'p;(.oc)', 

(vi) 100 

dlX I P,(IX) I , 

(vii) LoodlXlX-iIP,(IX)I. 
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We rewrite Eq. (2.8) in the form 

'U{x) = Loo docB(oc) exp {-oc(x2 + r~)}, (3.3) 

where 

B(oc) = L"dfJ IPl(fJ)llp2(OC - fJ)l. 

Now (v) and (vi) are used to prove that the following 
integrals involving B are convergent: 

(viii) Loo docB(oc) , 

(ix) Loo dococ IB'(oc)l. 

Let us rewrite Eq. (2.9) in the form 

the following integrals involving T converge: 

(xii) LoodY'T(Y)', 

(xiii) Loo dyy IT'(y)l. 

It is convenient to write the inequality (2.7) as 
follows: 

I ICk,~) - A(~)I 

< (47Tk)-lf dx'U'(X) K(x) exp{-i.d.x}. 
- 1 - (K(x)jk) 

(2.7) 

We insert the representations (3.3) and (3.5) into this 
equation and explicitly perform the integration over 
x to obtain 

K(x) = It) doc).(oc) exp {-oc(x2 + r~)}, (3.4) lI(k,~) - A(~)I 
where 

),(oc) = fdfJ[7TOCjfJ(OC - fJ)]! Ipl(OC - fJ)llp2(fJ)l· 

We use (v) and (vii) to prove that the following inte­
grals converge: 

(x) Loo doc 1}.(oc)l, 

(xi) Loo dococ I).'(OC)I. 

Let us define a weight function T(y, k) through 

K(X)[ 1 - K~X)rl = 100 

dyr(y, k) exp {-oc(r2 + r~)}. 
(3.5) 

It is easily shown that T is related to ). by the integral 
equation 

r(y, k) = ).(y) +.! (1 dfJ).(y - fJ)r(fJ, k). 
k Jo 

A number ko is then defined as the maximum of these 
three finite numbers: 

(a) The l.u.b. of oc).(oc) for 0::::;; oc ::::;; 00,8 

(b) LXldococl).I(OC)I, 

(c) 100 
dOCA(OC). 

Then if we define a function r(y) == T(Y, 2ko), we can 
show that 

0::::;; r(y, k) ::::;; T(Y) for k > 2ko• (3.6) 

It can be shown through the use of (x) and (xi) that 

8 This is guaranteed to be finite by the lemma of this section. 

::::;; 7T! (00 dfJB(fJ) I'X) dyr(y, k)(fJ + y)-t 
4k Jo Jo 

X exp {-(fJ + y)r~ - Nj4(fJ + y)}. (3.7) 

Let us restrict k to k > 2ko and use the inequality 
(3.6) to rewrite (3.7) in the form 

I/(k,~) - A(~)I 

s :: fo
oo 

dococ-!fl(a) exp {-(ocr~ + Nj4oc)}, (3.8) 

where 

fl(oc) = fdfJB(fJ)T(a - fJ)· 

Now (viii), (ix), (xii), and (xiii) are used to prove 
the convergence of the following integrals involving 
fl: 

(xiv) Loo dOCfl(oc), 

(xv) LX) daa Ifl'( oc) I. 

We can use the convergence of integrals (xiv) and (xv) 
along with the inequality (3.8) in the lemma to prove 
that 

lICk, ~) - A(~)I = O«k~2)-1 exp {-~ro}) 

as ~ -+ 00, so that at fixed angle the relation (3.2) is 
valid. Thus the limit (1.4) is proved. One can also 
extend the proof to the case p > 0 with relative ease. 

One can no doubt extend the validity of relation 
(1.4) to a wider class of potentials. We will show, 
however, that relation (1.4) cannot be so general as its 
fixed-~ counterpart by giving an example of a potential 
whose second Born term is asymptotically larger than 
its first Born term. (The higher terms cannot cancel 
out this behavior for arbitrarily weak potentials.) 
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The example here is the Gaussian potential, VCr) = 
A exp { -ar2}, for which 

II(!:!.) = -(7T!Af4ai ) exp {-(k2/a) sin2 to} 
and 

1/2(k, 0)1 ~ Im/2(k, 0) 

= (A27iJja2) exp {-k2ja} sinh {(k2ja) cos to}jk cos to 
so that 

lim II(k, 0) = o. 
k-+oo /:2(k,0) 

0<8:5 .. 

There is another type of potential for which the first 
Born approximation oscillates, such as 

VCr) = LOO dr:J. sin (m2r:J.) exp {-r:J.(r2 + r~)} 
= m2[m4 + (r2 + r~)2rI. 

The corresponding first Born approximation is 

II(!:!.) = -(7T/2!:!.)exp {-A!:!.} sin (I-'!:!.), 

where [r~ - e'm2]! = A + il-' with the convention 
A > O. For such a potential the limit considered in 
Eq. (2.4) cannot be defined unambiguously. 

4. SPECULATIONS 

In the previous sections we have considered 
potentials of the form 

VCr) = Loo dr:J.(1(r:J.) exp {-r:J.(r2 + r~)}. (1.2) 

We have placed conditions upon (1 sufficient to 
guarantee that VCr) is analytic in r = x + e) in the 
region y2 - x2 < r~, and we have !;hown that 
I/(k, 0)1 ~ exp {-2kro sin to} as k -+ 00 at fixed 
angles. 

There are cases in which this bound is economical, 
as is seen in Sec. 3. On the other hand, in the case 
considered at the end of Sec. 3, 

VCr) = m2 [m4 + (r2 + r~)2]-I, 
we saw that/I(!:!.) = O(exp {-A!:!.}) as!:!. -+ 00, where 

A = [Hr~ + Cr~ + m4)!]!. This potential is analytic in 
the strip 11m rl < A. We are thus led to speculate 
about potentials which are analytic in a strip. 

Let us consider the representation of potentials 
which are even in r and analytic in the strip 11m rl < b, 
namely 

VCr) = L'Xl dr:J.'T(r:J.) [(r2 + (b + ir:J.)2)(r2 + (b - ir:J.)2)]-I. 

(4.1) 

The formal expression for the first Born approximation 
is 

'IT Joo sin!:!.r:J. 
IIC!:!.) = - 4b exp {-!:!'b} 0 dr:J.'T(r:J.) ~. (4.2) 

We see that II(!:!.) = O(exp {-fl.h}) as !:!. -+ 00 if 
either of the following integrals of'T converges: 

Loo dr:J.I'T(r:J.)I, (4.3) 

(4.4) 

One can show that if conditions (4.3) and (4.4) 
are satisfied the second Born approximation satisfies 
the relation 

12(k, 0) = O(exp {-!:!'b}) 

as k -+ 00 for a fixed angle 0.9 

One is thus led.to conjecture that the scattering 
amplitude itself exhibits Orear behavior for potentials 
of the form (4.1) with reasonable conditions such as 
(4.3) and (4.4) placed upon the weight function 'T. 
We have not yet been able to prove this conjecture. 
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An integral equation, originally derived for a perturbation expansion of the n-point scattering function 
(Pugh's equation), whose (finite) solution is the renormalized perturbation result, is derived here as an 
exact "strong" equation for the nth operator derivative of the scattering operator, whose vacuum 
expectation value is the n-point function. 

1. INTRODUCTION 

An integral equation, Eq. (3) below, for a perturba­
tion expansion of the n-point scattering function was 
derived by Pugh from the postulates of asymptotic 
quantum field theory, and the assumption that off the 
mass shell the scattering function should be represen­
ted by the cp products, rather than by the time-ordered 
products of interpolating field operators. l This 
assumption was later shown to be a consequence of a 
generalization of Bogoliubov's causality condition.2 

Pugh's equation is remarkable, because with an 
appropriate choice of boundary conditions, its 
solution is identical with the result of renormalized 
perturbation theory, and no divergent expressions are 
encountered in obtaining it.3 

After the development of the differential calculus of 
quantized free-field operators (operator derivatives),4 
it was shown5 that the exact two-point operator, 
the operator whose vacuum expectation value is the 
exact two-point function, satisfies Eq. (3), with n = 2. 
The case n > 2 was not derived, perhaps because 
Eq. (3) with n = 2 does not imply Eq. (3) with n > 2, 
and so a derivation must start further back in the 
theory, perhaps because the notation was not concise 
enough to write compact equations with arbitrary n, 
or because it did not appear to be necessary, as the 
n = 2 operator equation was enough to yield the 
renormalized results. 

. Now that there is interest in nonperturbative solu­
tions of Pugh's equation,6 it is desirable to have an 

• This work was begun while the author was at Syracuse Univer­
sity, and part of it was done while he was attending the Summer 
Theoretical Physics Institute at the University of Colorado, whose 
hospitality is gratefully acknowledged. 

1 R. E. Pugh, Ann. Phys. (N.Y.) 23, 335 (1963). 
• T. W. Chen, F. Rohrlich, and M. Wilner, J. Math. Phys. 7, 

1365 (1966). 
3 See Ref. I, and also J. G. Wray, Syracuse University Res. Rept. 

SU-67-01 and SU-67-02, where the boundary conditions are dis­
cussed in greater detail, and an error in Ref. 1 is corrected. 

• F. Rohrlich, J. Math. Phys. 5, 324 (1964); F. Rohrlich and M. 
Wilner, J. Math. Phys. 7, 482 (1966). 

• R. E. Pugh, J. Math. Phys. 6, 740 (1965). 
• An exact formal solution of an operator differential equation 

for the current operator, equivalent to Eq. (15) with m = 2, giving 
the current operator as an "operator integral" of the solution of 
the homogeneous equation, has been obtained, and will shortly 
be submitted for publication. 
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exact derivation. Furthermore, in his discussion of 
boundary conditions for Pugh's equation, Wray3 was 
obliged to inquire rather deeply into the diagram 
structure of the n-point operator. He did this by 
means of an equation similar to the operator equation 
to be derived here, but valid only as an operator 
distribution over a left space of test functions. The 
equation we derive here is not so restricted. We show 
that Pugh's equation is satisfied, for any n, by the 
exact n-point operator, as a "strong" operator 
equation (in the sense to be explained) and therefore 
by the exact n-point scattering function. 

In Sec. 2 we quote some of the results of asymptotic 
quantum field theory (AQFT) which are necessary 
for our derivation. In Sec. 3 we derive Pugh's equa­
tion, and in Sec. 4 we verify a necessary condition for 
the existence of solutions. We confine our discussion 
to neutral self-interacting scalar particles, although 
there are no obstacles to extending it to charged 
particles and up to spin one. 

2. RESULTS OF AQFT 

In terms of the (assumed) complete set of normal­
ordered products of asymptotic incoming free-field 
operators a(x) of physical mass m, satisfying 

K.,a(x) == (0 - m2)a(x) = 0, (1) 

the scattering operator has the representation 

If W(Xl ... xn) has a perturbation expansion 

00 

w(xl ' .. xn) = ! grW(r)(xl ... x n), 
r=O 

then w(r) satisfies Pugh's equationl 

W(r)(Xl ' .. xn) - f B(Xl ... xn; Yl ... Yn) 

x W(r)(Yl' .. Yn)(d4yt = A(r)(Xl ... x n), (3) 
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abbreviated as 

(3') 

where 

and 

B;'(XI' .. xn; Yl ... Yn) 

= (-1)nKxl ... Kxn[U' O(x~ - X~)A(Xi - Yi)] 

X AR(X;, - Y;) 

=(-1)nKn(ll'Oi;.)Al"'A~"'An, (4) 

in more concise notation. The symbols used mean 

Kn == K X1 '" Kxn , 0i;' == O(x~ - x1), 

/1i == A(Xi - Yi), A~ == /1R(X" - YA), 

and the prime on the product sign means that j =F A 
in the product. The function A(r) satisfies the equation 

BA(r)(Xl' •• xn) = 0, (5) 

which is independent of Eq. (3). A(r) is determined by 
the functions w(s) with s < r, and is therefore known 
when it appears in Eq. (3). Since B is idempotent, 
i.e., 

f Bixl ... xn; Y1 ... Yn)B/,(Yl ... Yn; Zl ..• zn)(d4y)n 

= 15;."Bixl ... xn; Zl .•. zn), (6) 

so that B2 = B, a necessary condition that a solution 
of Eq. (3) exist is that Eq. (5) be true, and independent 
of Eq. (3). 

If the exact w(xl ••• xn) is determined uniquely off 
as well as on the mass shell (by dynamical assump­
tions), and is a symmetric function of its arguments, 
then the mth operator derivative of S is given by4 

'm I5mS en (- on 
1 =~--

l5a(xl) ... Cla(xm) n=O n! 

X f W(Xl ... XmYl ... Yn): a(Yl)' .. a(Yn): (d4Yt, 

(7) 

and this is the operator whose vacuum expectation 
value is W(Xl'" xm). We also have, from the 
definition of the operator derivative, 

[a(x), S] = -if A(x - y)ClSjCla(y)d4y. 

If one defines a current operator 

j(x) = is*elSjela(x), 

(8) 

(9) 

then it is possible to construct an interpolating field 
operator 

A(x) == a(x) + ~(x), 
where 

~(X) = - f AR(x - y)j(y)d4y, 

such that A(x) satisfies the field equation 

KxA(x) = j(X) , 

and has the correct LSZ asymptotic limits? 

(10) 

(11) 

(12) 

fA(X - y) 'go A(y)d3y _ {a(x), l- - 00 (13) 
oy S*a(x)S, l- + 00. 

So far we have been describing an operator func­
tional called the operator derivative. If we wish to 
define an operation, called "differentiating with 
respect to the operator a(x)," and denoted variously by 

Cl 
-- == ClXi == eli' 
Cla(Xi) 

(14) 

such that this operation commutes with ordinary 
differentiation and integration, then we must distin­
guish between operator equations which are "strong" 
and those which are "weak" with respect to this 
operation.5 Strong equations are those which yield 
valid operator equations after operator differentiation 
any number of times. Weak equations are those 
which do not. It is most convenient to take the field 
equations (1) and (12) as weak,B.9 all other operator 
equations in this paper are strong, and therefore no 
special symbol will be used to indicate this fact. 
The strong equation we will derive is 

where A is an operator which satisfies the strong 
equation 

BA(x1 • •• xm) = O. (16) 

Eq. (16) is to be proved without using Eq. (15). 

3. DERIVATION OF EQ. (15) 

We start with a representation of the scattering 
operator which follows from the postulates of AQFT 
and the strong Bogoliubov causality condition 

elll(S*Cl.,S) = 0, (17) 

• H. Lehmann, K. Symanzick, and W. Zimmermann, Nuovo 
Cimento 1, 205 (1955); 6, 860 (1956). 

8 T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967). 
• J. G. Wray, Ph.D. thesis, Syracuse University, 1966 (unpub­

lished). Chen, who first recognized the desirability of having a weak 
free-field equation, chose to take Eq. (10) rather than Eq. (12) as 
weak. We adopt Wray's choice. however. 
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outside the forward light cone of (x - y). It islO 

imS*6 l ' • ·6mS 
m 

= Kl ' .. Km! (-1)IT+(A m- I)L(a l
). (18) 

1=0 

The compact notation on the right-hand side of 
Eq. (18) is meant to indicate that each term in the 
sum over I is itself a sum over all partitions of the 
variables Xl ••• Xm , I of them assigned to operators a, 
the remaining m - I to operators A. T+(L) is the 
positively (negatively) time-ordered product. Thus 

T±(AO) = 1, T±(Al) = A, T±(Am) = T±(AI ... Am), 
m 

T+(Am-l)L(a) = ! T+(AI ... Ak ... Am)ak 
k=l 

m 

= ! T+(Al '" Aklka ... Am)L(aklaks)' 
kl>kl2::1 

(19) 

etc. The symbol Ak1k2... indicates that the factors 
Ak1 , Ak2 , ... are missing from the product Al .•. Am. 
Ai = A(xi). We may set A = a + Ot in Eq. (18), and 
rearrange the terms, obtaining 

m-I 
T+(Am-/) = ! T+(Otl'am- H ). (20) 

1'=0 

As in Eq. (18), each term in the sum over fl is itself a 
sum over all partitions of the m - I variables Xi' 

fl of them assigned to operators Ot, the remaining 
m - /- fl to operators a. For example, with fl = 1, 
one of the terms in the sum over partitions is 

If we change the summation index in Eq. (20) from 
fl to fl' = m - fl, substitute in Eq. (18), and exchange 
the order of summation over I and fl', we have 

i mS*61 ••• t5mS 
m I' 

= K m! ! (-l)'T+(Otm-I'al'-I)T_(a l
). (21) 

1'=0/=0 

We ~re now able to apply a remarkable ordering 
theorem, relating the time-ordered product to the 
multiple-retarded commutator,ll which in the present 
case and in the present notation is 

1'-1 

T+(Otm-l'al'-/) = I [a, T+(Otm-I')J~T+(al'-l-k). (22) 
k=O 

Each term in the sum over k is as usual a sum over all 
partitions of the (f.l - /) operators a(xi), k of them 
appearing in the k-fold retarded commutator, defined 

10 See Ref. 9. This expression is weakly equal to the cp product of 
Ref. 1. 

11 F. Rohrlich and J. G. Wray, J. Math. Phys. 7,1697 (\966). 

by 

[a, T+l~ = [a, [a, T+lt-llR' 

[a, T+lk = [a, T+JR' [a, T+l'k = T+, 
(23) 

and the remainder in the T+ product. There is no sum 
over permutations of the operators a(x) in the multi­
ple retarded commutator, since it is already sym­
metric in them by virtue of the Jacobi identity. 
Substitution of Eq. (22) in Eq. (21) and exchanging 
the order of summation over k and I yields 

m I' 

imS*bl ' .. bmS = KmI I [a, T+(Otm-l')l~ 
I'=Ok=O 

I'-k 
X ! (-l) IT+(al'-k-I)L(a l ) 

1=0 
m-l 

= K m I [a, T+(Otm-I')l~, (24) 
1'=0 

since, as will be shown in the Appendix, the sum over 
I in the second-last equation vanishes, except when 
fl - k = 0, in which case it is the unit operator. 
Note that there is no term f.l = m, since for such a 
term 

Extracting B 

The integral kernel B is contained in the term f.l = 
m - 1 of Eq. (24). We exhibit the dependence of this 
term on the variables X,l, Xl' ... Xm one at a time, 
making use of Eq. (8). Thus 

m 

[a, OtJR- l = I [a, Ot(x))JR- l 

).=1 

m 

= I [a, [a(x1), Ot(X.\)]RJR-2 

.\=1 

= ~/Iu f a(XI - Yl)[a, -it5i110t(x,l»)R-2d4
Yl' 

(25) 

We repeat this procedure for X 2 , etc., and in the 
end use Eq. (11), and obtain 

Km[a, Ot)R-1 

= (_1)mK m(om-lJl il' 8;.\f at· .. ai· .. am 
x t511t • •• All). ••• t5l1,.i(y).)(d4y)m 

m 
= jm-1 Z B.\6l •• ·A.\··· bmi.\. 

,\=1 
(26) 

The operator derivatives commute with each other, 
and therefore may be written in any order, so we may 
abbreviate 

b1 ••• 15m = 15 m , 151 ", A;. ... 15
m 

= 15 m- I • 

It will be clear from the context which variable is to 
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be omitted in 15m- I • From the definition of j(x), 
Eq. (9), we have 

_Mtn-l:h = t5tn-l{S*!5;.S) 
m-l 

= S*t5mS + I (!5kS*){!5m- l- k!5;.S). (27) 
k=l 

Each term in the summation over· k is itself a sum of 
all partitions of the operator derivatives 151 , ••• , AA' 
••• , Om' k of them differentiating S*. the remaining 
m - 1 - k differentiating 15 ;.S. This completes the 
extraction of B, as we now have 

vanishes, and the surface terms are 

fAIKIIIT+(oc::')tJ4Yl = (lim - lim) 
lIt°-'-r:/) 1JI°-.+-r:I'J 

X f Al o~~ T+(oc;:')d
3
YI 

= lim fAI ':laO T+(oc:-I)OC{YI)d3Yl 
III "'-00 tlYl 

- lim fA I ao oc(yJTilX.:--I)d3Yl' (33) 
111"'+00 OYl 

Km(a, oclitl = BimS*!5ms Since oc = A - a, the asymptotic condition, Eq. (13), 
m m-l together with (8), (9), and (11) give 

+ jmIB). I Wes*)(om-I-ko;.S), (28) 
A=1 k=l 

so that we can rewrite Eq. (24) in the promised form 

(29) 
where 

m-2 
Au = Km I (a, T+(ocm-jl)]~, (30) 

jI=O 

and 
m m-l 

AI) = imIB;. I (oks*){om-l-ko;.S). (31) 
;'=1 k=l 

4. PROOF THAT B(Aa + A,) = 0 

Since B is idempotent (Eq. (6», BAb = A/}. 
Therefore, in order to show that B(Aa + A b) = 0, 
we show that BAa = -Ab' We will have to integrate 
expressions of the form 

f AI ... A~' .. AmKm[a, T+(ocm-")1~{d4y)m. 

Although the sum over A and p. of all such expressions 
is symmetric in the variables not integrated, Xl ••• Xm , 

and therefore independent of the order in which the 
integrations are performed, anyone such expression 
will depend on the order of integration. However, if 
we perform the integration in the fixed order Yl ... Y m , 

for each such expression, we will not run the risk of 
losing or duplicating terms when we sum. 

We start with p. = 0. Then 

f AI ... A~' .. AmK::T+{oc::,)(ify)m 

= f AI ... A~' .. AmjI ... A;. ... j..J;.(d4y)m, (32) 

where 

K::T+(oc';') == Kill' .. KII",T+[oc(Yt) ... oc{Ym)], 
and 

ji ==j(y.). 

Proof: Integrate YI by parts. The volume term 

f A{x - y) o!o oc(y)d
3
y 

{

O' 

-+ - f A{x - z)j{z)d'z, 
(34) 

and so 

f A1KIIIT+{oc::')d'Yl 

= f A1j(Yl)Tioc{Y2) .•. oc{Ym»d4Yt. (35) 

We continue, integrating in order Y2' •• Y;'-I, and 
obtain for the left-hand side of Eq. (32) the expression 

f AI ... A~'" AmjI'" j),_IKII),··· Kllm 

X T+{oc(y),)· .. oc(Ym»(d4y)m. (36) 

The integration by parts over YA gives only a volume 
term, 

f A~Ky),T+(oc(y),)· .. oc(Ym»d4YA 

= -T+(oc(x;.)OC(Yl+l)·· • oc(Ym», (37) 

because both surface terms vanish, at >1- - co 
because of Eq. (34), and at >1- + co because of A~. 
Once past y;., we may integrate the remaining y 
variables, as in Eq. (35). At the end we substitute 
Eq. (II), and obtain (32). 

For the general case, we show that 

f AI ... A~ - .. AmK::[av, T+(IX:-jl)1~(d4y)m 

= fA I •.. ~~ •• _Am 
m 

X L' jl' .. i6k •••• " •• i~kl ... j"j).(d4y)m. 
kjl> ... >kt2:1 

(38) 
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The operator product on the right-hand side of (38) 
is the same product of currents as in Eq. (32), but 
Ai == j(Yki) is replaced by the operator derivative 
i(\i ==i%a(Yki), which acts on everything to its 
right, i = 1,2, .. " fl, k i :F A, and the expression is 
summed over all such possible substitutions. The 
proof is by induction. We suppose that Eq. (38) 
holds for any n ~ m, and any v < fl, such that 
v < n. (If v ~ n there would be no such expression.) 
fl = 0 is a special case of Eq. (38). First we extract 
Yl from the left-hand side of (38). The method is 
similar to that of Eq. (33). We have 

[a, T+«(Xm-/l)]~ = [aCYl), [a, T+«(Xm-/l)]~-I]R 

+ [a, T+«(X(YI)(Xm-I-/l)]~. (39) 

When we integrate YI by parts the volume term van­
ishes, and the surface integral of the term with a(YI) 
vanishes when Yf ---+ - 00, because of the retarded 
commutator in which it appears. When Y~ ---+ + 00, 

the retarded commutator with a(YI) becomes an 
ordinary commutator, so 

f d(x - y)KII[a(y), Q]Rd4y .... 

= - lim fd(X - y) --; raCy), Q]d3y 
111° .... +00 oy 

= f d(x - z)i(jzQd4z, (40) 

according to Eq. (8). The surface integral of the 
term with (X(YI) vanishes when Y~ ---+ - 00, because 

T+( (X(YI)(Xm-I-/l) ---+ T+( (Xm-l-/l)(X(YI) , 

so that 
[a, (X(Yl)]R ---+ [a, (X(YI)] , . 

[a, T+«(X(Yl)(Xm-I-/l)]~ ---+ F(a)(X(YI) + G(a)[a, (X(YI)], 

where F and G are operator functionals of a, and Eq. 
(34) applies. When Y~ ---+ + 00, 

[a, T+«(X(Yl)(Xm-I-II)]~ ---+ [a, (X(Yl)T+«(Xm-l-/l)J~ 

---+ (X(YI)H(a) + [a, (X(YI)]RK(a), 

and the retarded commutator with (X(Yl) vanishes, so 
that 

f d l KIIJa, T+«(X(Yl)(Xm-I-/l)]~d4Yt 

= - lim fd 1 8
0 

(X(YI)[a, T+(ocm-l-/l)]~d3Yl 
III .... +00 0YI 

=f d](Yl)[a, T+«(Xm-I-/l)]~d4YI' (41) 

Putting together (39), (40), and (41), we have 

J d1 KIIJa, T+«(Xm-/l)]~d4YI = J d1(i!5I1.[a, T+(ocm- II)]ii"l 

+ i(Yl)[a, T+(OCm-l-/l)]~d4Yl' (42) 

Since YI has been extracted from the multiple 
commutator, it is not included in the sum over 
partitions of the remaining variables indicated by the 
notation. Therefore, either fl < m, or Eq. (42) 
reduces to 0 = 0.12 In the former case we may set 
fl - 1 = v, and m - 1 = n. Then v < n, which 
satisfies the induction hypothesis following Eq. (38), 
so that 

f d 2 ••• d~" . d ffl Kill' .. KIIJa, T+«(Xm-/l»)~-1(d4y)m-l 

=fd2"'d~'''dm 

x ~, J" •• jO •.•••• io ... J' j (d'y)m-l 
£., 2 k),' k/l mJ), • 

k/l> ... >k2~2 
(43) 

In the term [a, T+«(Xm-l-/l)]il, we extract Ys in the 
same manner that we extracted YI from Eq. (39). 
We obtain an equation like Eq. (42), but with Xl, 

YI, and m replaced by X S , Y2 , and m - 1, respectively. 
Since Yl and Ys have now been extracted from the 
retarded commutator of this term, either p < m - 1 
for this term, or there is no such term (i.e., m = 1), 
and the induction was completed at the step before 
this one. In the former case we set v = p - I, and 
n = m - 2; then v < n, and [a, T+(ocm-l-p)]il-1 satis­
fies the induction hypothesis. This gives us an equa­
tion like (43), except that it starts with d 3 and j3 
instead of d 2 and h, and the sum over the indices k i 

starts with kp > ... > ks ~ 3. These considerations 
reduce the left-hand side of Eq. (38) to 

fdl"'d~' "dm 

x {iO ~, J' . .. iO ...... io .• 'J' i I£., 2 k., kll mJ)' 
kll>'" >k2~2 

m 

+ jl j02 L' j3 ... jOk • •• " ••• iO
kli 

••• j ""h 
k/l>'" >kl~3 

+ jJ2K3 ... Km[a, T+«(Xm-2-II)]~}(d4y)m. (44) 

In the same manner we may extract the variables 
Y3' .. Y),-l, satisfying the induction hypothesis at 
each step, and further reduce the left-hand side of 
Eq. (38) to 

Jdl'''d~'' 'dm 

{ 

),-1 m 

X L L' il' .. iOk1 .. " ... i(jk/l ••. i~), 
kl=lk/l> ... >k.>kl 

+ il ... i),_lK), ... Km[a, T+«(Xm-HI-/l)]~}(d'y)m. 

(45) 

11 The case p. = m is excluded anyway by Eq. (24). 
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Integration over y;, produces only a volume term, 

f llkKII;.£a, T+(ot(Y),)otm-),-")]~d4YA 

= -[a, T+(ot(x),)otm-),-,,)]~. (46) 

The surface terms vanish, at y~ -- + 00 because of 
II ~, and at yO -- - 00 because y;, appears only in 
terms [a(y),), Q]R and ot(y),). Once past y;" we extract 
in turn the remaining y variables, and at the end 
apply Eq. (11), thus finally reducing the left-hand 
side of Eq. (38) to 

III .. ·llk .. ·llm l' l' jl ... j(jkl ... , f 
rn-,,+1 m 

kl=1 k,,> ... >k2>kl 

... j(jk" ••• j,J;,(d4y)m, (47) 

which is equal to the right-hand side of Eq. (38), 
because 

The last step in the extraction, namely 

fll m-,,+1 ... II m K ... K [a ot]" (d4y)" m-,,+1 m' R 

=fll m-,,+l .. ·ll mj(j j(j ... j(j ot(X )(d4y) m-,,+1 m-" m), , 

(48) 

offers no difficulty, since there are no volume terms, 
and assigning any variable to ot except x), makes the 
surface terms vanish as well. 

Having verified Eq. (38), we supply the missing 
factors in front that make up B)" sum it over A and 1', 
and so obtain 

m m-2 m 

BA - ~ B ~ ~, j" •• j(j ... 
a - "'" ), "'" "'" 1 kl ' ),=1 ,,=0 k,,> .. , >kl::O:l 

••• it5k ... jrni).. (49) 

" 
We can use an interesting property of the m-point 
operator,2 

imS*lJms = (j1 + i(51)(j2 + i(52)' •• A). ... (jrn + j(jm)j). 

m 

= i1 ... A). ... irni). + l'it ... j(jk' .. imiA 
k=1 

m 

+ ~'j" •• j(j ..• j(j ••. j'm1' 
"'" 1 kl kl ). 

k.>k1 ::O:l 

+ ... + im- 1(jrn-1j). 
m-l m 

= ~ ~ J' • •• j(j ... • •. j(j ••. J' J' 
"'" "'" 1 kl' k" m )., ,,=0 k,,> ... >k1::O:1 

(50) 
to obtain 

BAa = i B;.(imS*(jms - jm-1lJm-lj).). (5l) 
),=1 

But from Eq. (31), 
m 

Ab = im 1 B;.( (jm-l(S*(j ),S) - S*(jms) 
).=1 

m 

= IB;.(im-l(jm-lj), _ jmS*(jms) 
).=1 

= -BAa· 
This completes the proof that BA = O. This was 
shown to be a necessary condition for the existence 
of a solution to Eq. (I 5). That it is also a sufficient 
condition can be seen1 by observing that 

imS*(jms = A 
is a solution of Eq. (15). 
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APPENDIX 
Proof that 

m 

1 (-l)IT+(am-/)T_(a l) = (jm.o. (Al) 
1=0 

For m = 0, we have 
T+(aO)L(aO) == 1. (A2) 

For m = 1, we have 

T+(a)L(aO) - T+(aO)T_(a) == a - a == 0 (A3) 
Now proceed by induction. Suppose that (AI) holds 
when m is replaced by m - 1. Exhibit a1 : 

T+(am-/)T-Ca 1
) = T+(alam-l-/)T_(al) 

+ T+(am- /)T_(alal-l). 
The ordering theoremsll 

T+(a1a
n
) = T+(an)a1 + [ai, T+(an)]R' 

L(alan) = a1L(an) - [a l , T_(an)]R 

enable us to write 
m 
1 (-lYT+(am-/)T_(a l) 
1=0 

m-l 

(A4) 

(AS) 

= 1 ( -lY(T+(am-l-I)al + [a l , T+(am-l-I)]R)T_(a l) 
1=0 

m 

+ ! (-1)IT+(am-/)(a1L(al-1) - [a l , T_(al-l)]R) 
1=1 

m-l 

= 1 (-lY{(T+(a m- 1- I)al 
1=0 

+ [a1, T+(am-l-I)]R)L(a l) - T+(am-l-I) 

x (a1T_(a l) - [a1, L(al)]R)} 
m-1 

= ! (-1)I[a1, T+(a m- 1- 1)T_(a1)]R 
1=0 

= [a1,,%:(-lYT+(am-l-l)T-cal)]R = 0, 

by hypothesis. 

(A6) 
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The notions of strong convergence of state vectors, introduced by Haag in his formalism ofaxioma~ic 
quantum field theory, are exten~ed to the ca~e. o~ vecto.rs ~ith. an infini~e number ~f parti~les but finite 
densities. Some general properties of noneqUlhbnum dlstrIb~tlOn fun~tlOns are derIved ~Ith?ut the. use 
of power series expansions or any other simplifying assumptIOn. ~n mte&ral representation IS obtam~d 
for the distribution functions which makes it possible to discuss their behavIOr for small and large energies 
and to obtain some information about the singularities of these functions when continued analytically. 

I. INTRODUCTION 

Many of the basic problems in the theory of non­
equilibrium statistical mechanics, e.g., approach to 
thermodynamic equilibrium, discovery of H-type 
theorems, irreversibility, etc., are reflected in the 
lack of understanding of the nature of a nonequilibrium 
system. Many of the attempts! have been devoted to 
the quantum-mechanical derivation of the Master 
equation for the occupation probability function 
which leads, in the limit of infinite time, to statistical 
equilibrium. Also, the early work of Bogoliubov2 has 
been partially successful in obtaining a Boltzmann-like 
equation for the distribution function. 

Beginning with any available theory, the distribution 
functions should, in principle, be calculated from the 
fundamental equations of the theory. However, the 
analysis of the kinetic equations of Bogoliubov, for 
example, is limited to power-series approximations. 
On the other hand, derivation of the Master equation 
is based on assumptions which are not entirely well 
understood. It appears therefore suitable to obtain 
statements about these distribution functions without 
undue use of additional assumptions. 

In this work, a new formalism in axiomatic quan­
tum statistical mechanics is presented which unifies 
two, so far directly unrelated, disciplines: axiomatic 
field theory and statistical mechanics. This unification 
is accomplished by the strong convergence of states in 
axiomatic field theory, as introduced by Haag3 in his 
collision theory, when properly applied to statistical 
mechanics. 

The main results are, therefore, the derivation of an 
integral representation for nonequilibrium distribution 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 L. van Hove, Physica 23, 441 (1957). 
• N. N. Bogoliubov, J. Phys. (U.S.S.R.) 10, 256, 265, 1946; 

English transl. by E. Gora in Studies in Statistical Mechanics, J. de 
Boer and G. Uhlenbeck, Eds. (North-Holland Publ. Co., Amster­
dam, 1962), Vol. 1. 

3 R. Haag, Phys. Rev. 112, 669 (1958); Suppl. Nuovo Cimento 
14, 131 (1959). 

functions as the superposition of equilibrium distri­
bution functions with different temperatures and 
conclusions resulting from it. 

II. ASYMPTOTIC CONDITIONS IN FIELD 
THEORY 

Before considering the asymptotic condition rel­
evant to quantum statistical mechanics, it seems 
proper to summarize rather briefly the existing asymp­
totic conditions in field theory. Presently, the main 
emphasis in axiomatic quantum field theory is the 
construction of scattering theories. As will become 
evident in what follows, the fundamental assumptions 
of field theory are extensible to quantum statistical 
mechanics and this extension, together with its 
implications, forms the basis for the present formal­
ism. 

The Lehmann, Symanzik, and Zimmermann" 
(LSZ) formulation of quantized fields introduced an 
asymptotic condition for the field operator A(x) as a 
basic requirement of the theory. Let {f«(x)} denote a 
complete and orthonormal system of positive fre­
quency solutions of the Klein-Gordon equation 

with 
(0 - m2)fix) = 0, (1) 

where 

f«(x) o;,a f;(x) = fix) 0;,0 f;(x) - f;(x) 0;,0 fix). (3) 
uXo uXo uXo 

The field operator A(x) is given by 

A(x) = I {fix)A«(t) + f«*cx)A«*(t)} , (4) 
It 

with the coefficients 

AIt(t) = il d3xA(x) a f«*(x). (5) 
",o=t oXo 

LSZ postulate the following asymptotic condition for 

• H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 
Cimento 11, 342 (1954); 1, 205 (1955). 
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normalizable states: 

lim (4), A«(t)'¥) = (4), Afn.out'Y), (6) 
t .... =Foo 

where the right sides are independent of time. The 
fields Aln.out(x), constructed by means of (4) with the 
aid of Am.out, satisfy the interaction-free Klein­
Gordon equation (1). The operator Am*, when acting 
on the physical vacuum, creates an incoming particle 
with wavefunction f«(x) and the set of all such states 
may be used to construct a complete orthonormal 
system. 

The smeared-out field A<t(t) satisfies a weak con­
vergence asymptotic conditionS and establishes the 
particle interpretation of the quantum field theory of 
LSZ. It should be clear that this formulation of field 
theory is tailored to scattering theory and in fact the 
main results of the LSZ formulation are analyticity 
properties of the S-matrix elements and the many­
particle structure of Green's functions. 

The method of Haag3 consists in deriving a time­
like asymptotic condition for scattering states from the 
assumed asymptotic behavior of the vacuum expecta­
tion values at spacelike directions. Suppose A(x) is 
an "almost-local operator field" which creates a state 
of a single particle from the vacuum. Then the main 
result of Haag is that the vector 

'Vt == At (t)··· At (t) 10), 
GIl lin 

(7) 

formed by acting on the physical vacuum with the 
operators (5), asymptotically, Itl- 00, approaches 
a constant vector. This limit is independent of the 
choice of A (x) and is given, for the case t - - 00, by 
IIXI' •• IXn)(-), i.e., the Heisenberg state with an 
initial configuration of n particles which move before 
they collide according to the wavefunctions/lX, ... lIZ .. ' 
The approach to the limit is in the sense of strong 
convergence.5 

The existing asymptotic conditions in field theory 
are, therefore, mathematical requirements which in­
sure every system of interacting particles to tend away 
from each other with increasing time so that, after 
a sufficiently long time, the particles are essentially 
free from each other's influence and, consequently, 
behave as interaction-free particles. It is clear that 
such behavior holds only for a system of a finite 
number of interacting particles (zero density). There­
fore, the asymptotic conditions discussed so far are 
restricted to situations peculiar to scattering theory. 

The basis of the formalism presented in this work 

• Let I and g be any two elements in the Hilbert space H. Denote 
by (f, g) the scalar product of I and g, and the norm of I by 11 111· 
The ;equence {fn} converges strongly to I if Ilf .. - 111 ~ O. It 
converges weakly to lif (I ..... ) ~ (f, g) for any g in H. 

is to extend the notions of asymptotic conditions6 

to the case of vectors with an irifinite number of 
particles but finite density. These vectors are outside 
of the realm of interest of scattering theory but are of 
fundamental value in statistical mechanics. 

Let the quantum-mechanical system, described by 
the ket vector Itpt), be specified as completely and 
accurately as is possible in accordance with the general 
laws of the theory. One makes the following basic 
assumptions: 

(1) States of statistical equilibrium, represented by 
the ket vector I~t), exist for the dynamical system. 

(2) Every state Itpt) approaches, in the limit 
t -+ + 00, a unique equilibrium state I~t). 

The limit in (2) is in the sense of strong convergence, 

IIltpt) - l~t)11 - 0 (t - 00), (8) 

i.e., the norm of the difference of the vectors in Hilbert 
space tends toward' zero as t - + 00. Note that 
contrary to the usual conception of equilibrium in 
statistical mechanics, I ~t) represents a single state of 
the system and not an ensemble of states. Interestingly 
enough, these types of equilibrium states have also 
been considered by Friedrichs and are described by 
myriotic fields referred to as equidistribution states.7 

An interesting feature of myriotic fields is that they 
do not possess vacuum states.7 The vacuum state plays 
a central role in field theory as applied to scattering 
theory. However, the absence of vacuum states for 
myriotic fields is rewarded by the existence of equi­
distribution states7 which, as remarked above, are 
analogous to the equilibrium states introduced in the 
present formalism. 

The use of states with an infinite number of particles 
avoids the so-called "Poincare cycles." However, the 
Hilbert space of such vectors is not the same as the 
Hilbert space usually assumed in axiomatic quantum 
statistical mechanics. The space assumed in these 
theories is an infinite-dimensional separable Hilbert 
space.8 The more general spaces considered in the 
present formalism are referred to by the mathe­
matician as nonseparable Hilbert spaces.9 

6 The more suitable asymptotic condition for this purpose is that 
of Haag (strong convergence approach). The LSZ asymptotic 
condition can be partially justified by Haag's formalism. See K. 
Hepp, Commun. Math. Phys. 1,95 (1965). 

7 K. O. Friedrichs. Mathematical Aspects of the Quantum Theory 
01 Fields (Interscience Publishers, Inc., New York, 1953), Part IV. 

6 See, for example, G. G. Emch, J. Math. Phys. 7, 1413 (1966). 
In this reference, for Hamiltonians having a purely continuous 
spectrum one can no longer describe physical states by means of 
density operators (in a separable Hilbert space). This is contrary to 
the present formalism where density operators are used but are 
bounded self-adjoint operators in a nonseparable (see Ref. 9) Hilbert 
space, 

• A Hilbert space is separable if it contains a denumerable com­
. plete orthonormal set; it is nonseparable if complete orthonormal 
sets are not denumerable. F. Riesz and B. Sz.-Nagy, Functional 
Analysis (Frederick Ungar Pub!. Co., New York. 1955), Chap. II. 
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m. INTEGRAL REPRESENTATION 

The formulation of quantum statistical mechanics 
introduced in the preceding section, though rather 
axiomatic, can be readily used to derive a useful 
integral representation for nonequilibrium distribution 
functions. 

The state l"Pt), as well as its asymptotic state I;t), 
contains a maximal amount of information which, 
in principle, can be deduced from experiments. How­
ever, in practice no such measurements are ever 
attempted. From the asymptotic nature of the equilib­
rium state I~t) one has that the set of states {I~t)} 
forms a complete set with which to describe the 
dynamical system.1O Therefore, for any operator A, 

A = 11;/)(;;1 (;tl A Ie;). (9) 
~,~' 

Suppose one considers operators which limit 
themselves to gross measurements of the equilibrium 
system. These operators are functions, for example, 
of the density, energy, and momenta. Then there 
exists a group of states I;t), denoted by~, which give 
rise to the same values for these measurements. One 
usually refers to the states I~t> as microscopic states 
and to the operators for gross measurements as 
macroscopic operators.n Let G be one such macro­
scopic operator, then 

(; E~) 
(;tl G I;;> = G(~) 

(;' E~) (10) 

= 0 otherwise. 

This requirement truly defines the subspace ~ as a 
macroscopic state since it implies that the expectation 
value of any macroscopic operator is the same for any 
vector in ~. The subspace ~ can properly be called a 
macroscopic equilibrium state. 

A constant is certainly a macroscopic operator. 
One obtains the following macroscopic orthogonality 
condition for the equilibrium states: 

1 (; E~) 
(;t Ie;> = N b, (;' E~) (11) 

= 0 otherwise, 

where Nil represents the number of microstates con­
tained in ~. It is clear that one must assume Nil to be 
finite. 

For any macroscopic operator, (9) becomes 

(12) 

10 Strictly speaking, the completeness of the equilibrium states is 
an assumption on the same fundamental level as the axiom of 
completeness of the asymptotic states is in axiomatic quantum field 
theory. See D. Ruelle, Helv. Phys. Acta 35, 147 (1962). 

11 See, for example, G. Emch, Helv. Phys. Acta 37, 532 (1964). 

where 

Sb, = ~ l~t)<~;I· 
feb, 
~b, 

(13) 

G(~)(Tr SIl) gives the expected value of the operator 
G for states contained in ~ and Sll/Tr SIl represents 
the projection operator onto the macroscopic space 
~. In fact, one has from (11) and (13) the usual 
equations for a projection operator, 

Sb,Sb,' = Sb"SA = 0 (~oF ~'), (14) 

(Sb,/Tr Sb,)2 = Sb,/Tr Sb,' (15) 

For macroscopic states, the microscopic completeness 
relation reduces to, after using (11) and (13), 

~~=1, 
b, Tr Sb, 

(16) 

which expresses macroscopic completeness. 
The above considerations, although usually asso­

ciated with notions in statistical mechanics; have 
purely field-theoretic foundations. These arise when 
considering the infinite number of degrees of freedom 
ascribed to a field.12 In general, for states with an 
infinite number of particles, one must consider 
systems with an infinite number of degrees of freedom, 
thus making the infinite degrees of freedom problem 
in field theory of interest and relevance to statistical 
mechanics. 

In studying the representations of the commutation 
(or anticommutation) relations for an infinite set of 
oscillators, one encounters peculiar behavior when 
considering the unitary transformations between 
different representations.12 The Hilbert space, which 
is formed by a nondenumerable infinity of repre­
sentations of the commutation relations, is divided 
into mutually exclusive equivalence classes. Any 
vector in a given class differs from another in the same 
class by at most a finite number of occupation num­
bers (so that the vectors in one equivalence class all 
have the same density). Whereas, vectors from different 
classes differ by a denumerable infinite number of 
occupation numbers and, consequently, have different 
densities and satisfy the orthogonality condition (11). 
Also, the vectors from two different equivalence 
classes are connected by an improper unitary operator, 
i.e., operators whose matrix elements, between 
vectors in the same class, vanish. The macroscopic 
operators introduced above are proper operators; 
therefore, the matrix elements of these operators 
satisfy Eq. (10). 

12 R. Haag, Kg!. Danske Videnskab. Selskab, Mat.-Pys. Medd. 
29, No. 12 (1955); see also G. Barton, Introduction to Advanced 
Field Theory (Interscience Publishers, Inc., New York, 1963), Chap. 
13. 
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Since the dynamical system has constant energy 

(17) 

where fl is the macroscopic Hamiltonian operator of 
the system and is obtained from the microscopic H by 

- '" SI>. H = £., -2 Tr (HSI>.), 
I>. N I>. 

(18) 

the equilibrium state I~t) is a stationary state. IS 

Hence, G(~) and SA are actually time independent. In 
what follows the subscript t will be dropped in de­
noting the equilibrium state. Also, the stationary 
nature of the equilibrium states implies the com­
pleteness of the set of states {I~)}, thus corroborating 
this same conclusion from the basic assumptions (1) 
and (2). It is worth remarking that the energy eigen­
value for an equilibrium state depends on the state 
through fl, 

(19) 

where 

Il> =LI~> (~E~). (20) 
SEI>. 

One can relax the maximal description of the system 
by introducing the density operatorS 

Dt=L~Pt(M, 
I>. Tr SI>. 

where Dt is normalized by the condition 

Tr D t = L Pt(~) = 1. 
I>. 

(21) 

(22) 

Pt(il) represents the probability of finding the system in 
the macros tate ~ at time t. The density operator D t 

describes the state of the system macroscopically and 
Eq. (21) is consistent with expression (12) for an 
arbitrary macroscopic operator. 

It is interesting to note that the density operator 
D t cannot satisfy the equation of motion satisfied by 
the usual (microscopic) density operator.14 [Unless in 
the trivial case when there is no time dependence.] 
This can be seen directly from (13) and (19). 

Consider the expected value of a microscopic 
operator G for the system described by the density 
operator D t , 

(G)t == Tr GDt = L G(~)Pt(~) Tr SI>., (23) 
I>. 

13 P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford 
University Press, London, 1959), Chap. V,. . 

14 For the derivation and study of the equatIOn of motIOn, see 
Ref. 11, Sec. 3. 

where the last equality follows from (10) and (11) 
and G is the macroscopic operator obtained from G by 
(18). Equation (23) expresses the desired result. It 
represents the expected value of any microscopic 
operator for any macroscopic state of the system as a 
superposition over the expected value of the same 
operator in different macroscopic equilibrium states.to 

A specific microscopic operator is the ordinary 
operator for the number of particles of field theory. 
For the case when the momentum of the particles can 
take on any continuous value, 

n(p) = a+(p)a(p) (24) 

plays the role of the density of the number of particles 
in three-dimensional momentum space. The operator 
a+(p)[a(p)] creates [annihilates] a particle with mo­
mentum p and given mass m.t6 

As an illustration, consider a gas of infinite mass. t7 

The steady-state velocity distribution function for such 
a gas is given by 

f(v) = Ae-(m/2kT)(f-fO)2, (25) 

where all possible steady states are obtained by giving 
different values to the five independent constants A, 
T, and Vo. The general representation (23) becomes, 
for this simple case, 

f(v, t) = IIf Ae-(m/2kT)(f-fo)2 O'(vo, T, A; t) dvo dT dA, 

(26) 

which expresses the nonequilibrium distribution 
function for the gas as an integral over the equilibrium 
distribution functions. The function a( vO , T, A; t), to 
be referred to as the spectral function, is positive 
definite and by (22) is normalized to unity: 

fff a(vo, T, A; t) dvo dT dA = 1. (27) 

Since the probability of finding the nonequilibrium 
system in the equilibrium macrostate specified by A, 
T, and Vo must be finite, it follows that the worst 
singularity which can occur in the spectral function 
a( vO, T, A; t) is a Dirac !5 function and represents 
the attainment of equilibrium. 

The explicit dependence of fCv, t) on the other 
variables, e.g., spatial dependence, has been omitted 
in (26). All such dependence appears only in the spec­
tral function. 

1& This result is reminiscent of the Lehmann spectral representa­
tion in field theory; see H. Lehmann, Nuovo Cimento 11, 342 (1954). 

18 For simplicity, the states of a particle are characterized here by 
only a four-momenta. Of course, in general, there are other quanti­
ties to be specified, e.g., charge, spin, etc. 

17 J. H. Jeans, The Dynamical Theory of Gases (Dover Pub!.. Inc., 
New York, 1954). Chap. II. 
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It is clear that (26) is not the most general repre­
sentation possible for this type of particle. In general, 
one will have to consider the equilibrium distribution 
function which includes mass rotation. This intro­
duces an additional integration over three variables. 
Similarly, the case of a gas in the presence of an 
external field can be so treated provided one uses the 
appropriate equilibrium distribution function, and so 
on. 

Recently, the work of SuchylB was brought to the 
author's attention and, with it, that of Weitzsch,I9 
where the integral representation (26) is introduced 
as an ansatz and used for the study of strong shock 
waves. In the original work of Weitzsch the spectral 
function need not be positive definite; its sign, for 
different ranges of the variables, is determined by the 
actual solution of the equations of motion. The above 
derivation insures the positive definiteness of the 
spectral function. 

Suchy was able to relate, via the integral repre­
sentation (26), existing approaches for the treatment 
of processes with weak deviation from equilibrium 
with methods for the study of strong deviations. In 
the former class, a series expansion of (26) yields 
Grad's expansion20 of the distribution function in 
tensorial Hermite polynomials. In the latter, one has 
the "two-stream" Gaussian distribution used by Liu 
and Lees21 for Couette flow and the anisotropic 
Gaussian distribution used by Chew, Goldberger, and 
Low22 for a plasma in a strong magnetic field. 

The derivation of the integral representation (23) 
gives an understanding of the ansatz of Weitzsch. First, 
the ansatz is shown to be a consequence of a formalism 
based on fundamental physical assumptions. Second, 
the derivation brings forth the physical meaning 
of the spectral function and obtains its positive defi­
niteness. Third, it generalizes the ansatz to other 
statistics. 

IV. INFINITE HOMOGENEOUS MEDIA 

In the previous section, an integral representation 
for nonequilibrium distribution functions was derived. 
The representation (23) gives a physical insight into 
the constitution of a nonequilibrium system and may 
be of considerable aid in understanding nonequilib­
rium phenomena. 

18 K. Suchy, 3rd International Rarefied Gas Dynamics Symposium, 
Vol. I,JAcademic Press Inc., J-,[ew York, 1963), p. 181. 

19 F. Weitzsch, Ann. Physik t7J 7, 403 (1961). 
20 H. Grad, Commun. Pure Appl. Math. 2, 325 (1949); 2, 331 

(1949). 
21 c.-Y. Liu and L. Lees, Rarefied Gas Dynamics, L. Talbot, Ed. 

(Academic Press Inc., New York, 1961), p. 391. 
22 G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. 

(London) A236, 112 (1956). 

For an infinite homogeneous medium, the repre­
sentation can be linked to the theory of Laplace 
transform from which questions of mathematical 
origin, but with important physical consequences, 
can be studied. These include, the class of functions 
which can be so represented, the question of the 
uniqueness of the spectral function, etc. 

A. Maxwell-Boltzmann Statistics 

The equilibrium distribution function for a system 
of particles satisfying Maxwell-Boltzmann statistics 
is given by 

n~-B(E, T) = 2N/TTt(1/kT)~Ete-E/kT, (28) 

where N is the total number of particles and is inde­
pendent of the temperature T. The representation (23) 
becomes, when using (28) and after a trivial change 
of variable of integration, 

TTt k nM-B~E, t) = (OOe-ET pM-B(T, t) dT, (29) 
2N E Jo 

where 
M-B[(k )-1 t] M-B( ) aT, 

p T, t = ~ 
T 

(30) 

Equation (29) establishes the equivalence between the 
representation and expressing the distribution function 
as. a Laplace integral. 

From the general theory of the Laplace transform, 
one obtains the following23 : 

(1) roo pM-B(T, t) dT = 00. 
Jo 

(31) 

(2) nM-B(E, t)/E~ is an analytic function of E for 
Re (E) > 0 and it is completely monotonic for E > 0, 

(-1/ ~ [nM-B(E, t)] > O. (32) 
aEIr E~ -

(3) The (spectral) function pM-B(T, t) is uniquely 
determined by the distribution function nM-B(E, t) 
and is given by 

k( )~ 1 J<+iOO M-B(E t) 
p:lI-R(T,t)=_TT___ eETn , dE, (33) 

2N 2TTi <-i oo Et 

where the path of integration is the line E = E and E 

is infinitesimally small. 
One can determine the small energy behavior of the 

distribution function from (31). Suppose nM-B(E, t) 

23 D. V. Widder, The Lap/ace Transform (Princeton University 
Press, Princeton, N.J., 1946), Chaps. II and VII. 
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is finite at E = 0, then, for (0 ~ t < (0), 

n M-B(E, t) "" EPf(E) (E -- 0) 
(0 ~ p ~ 1), 

where 

and 

11f(E) = 0(E-6) (E -- 0) 
(~> 0) 

feE) = o(E-") (E -- 0) 
(1}>O), 

with ~ and 1} infinitesimally small. 

(34) 

(35) 

If one knows the distribution function as an analytic 
function of the energy, from (33) one determines the 
spectral function and, through the representation (23), 
the expected value of every macroscopic operator 
which refers to these particles. 

Finally, suppose pM-B(T, t) possesses the following 
asymptotic expansion for high temperature and 
fixed24 t (0 ~ t < (0): 

00 
pM-B(T, t) R:i 2 CnT}.n (1 < Au < AI' •• ); (36) 

n=O 

then for E __ 00,25 

(17)1k nM-B(E, t) ~ :i C
n 

r(n + 1) . (37) 
2N E1 n=O EAn+! 

Therefore, a nonequilibrium distribution function can 
vanish more slowly than an equilibrium distribution 
function as the energy approaches infinity .. The integral 
(33) can be evaluated by enclosing the singularities to 
the left of E = E by a suitable contour and making 
use of Cauchy's residue theorem. The value of the 
integral over the contour (at infinity) vanishes by (37) 
and one is left with only the contributions due to 
poles and cuts to the left of E = E. 

B. Bose-Einstein Statistics 

For concreteness, a system of photons will be 
considered in studying the implications of the repre­
sentation (23) for a system of particles satisfying 
B-E statistics. The analysis, of course, will not differ 
if other cases are considered. 

The equilibrium distribution function for a system 
of photons is given by Planck's radiation law: 

B-E( 817 E2 1 
nea E, T) = 3 h3 EI"T 1 c e -

(38) 

The representation (23) becomes, after a change of 

U The value of 1 for the lower bound follows from the normaliza­
tion condition S::' aK-B(T, t) tiT = 1 [see (27»). If, in addition, one 
requires the total energy to be finite then (;'0 > f). 

U O. Doetsch, Theorie und Anwendung der Lap/ace Transformation 
(Dover Publications, Inc., New York, 1943), Chap. 12. 

integration variable, 

c
3
h

3 !. nB-E(E, t) = [00 pB-E(T, t) dT, 
817 E2 Jo eET - 1 

(39) 

where 

(40) 

It is clear from (39) that for fixed t (0 ~ t < (0), 

pB-E(T, t) -~ Tel (oc > 0). (41) 
T~O 

One has, then, that the singularity of the right hand 
of (39) at E = 0 is a simple pole, just as for the 
equilibrium distribution. Thus, the low frequency 
photons are in equilibrium with the temperature 

La) TaB-E(T, t) dT. 

For the general Bose gas, the preservation of this 
singularity is of interest in studying Bose condensation. 

The integral (39) represents, to the author's knowl­
edge, a new mathematical transform which resembles 
the Laplace transform and is studied in some detail 
in the Appendix. It follows from the theorems in the 
Appendix that 

(1) [nB-E(E, t)]fE2 is an analytic function of the 
complex variable E for Re (E) > 0 and it is completely 
monotonic for E> O. [Recall that (e'" - 1)-1 is 
completely monotonic, see (32).] 

(2) The spectral function aB-E(T, t) is uniquely 
determined by the distribution nB-E(E, t). 

In proving the uniqueness of the spectral function 
by Theorem 4 in the Appendix, one must assume 
oc ~ 1 [see (41)]. This justifies taking a limit on the 
energy variable inside the integral sign. For instance, 

c
3
h

3 
k loo -"2 nB-E(E, t) "" e-Er pB-E(T, t) dT (E -- (0). 

8'17 E 0 (42) 

Therefore, the representation reduces to that for 
M-B statistics, thus insuring the passage, in the limit 
of high energy, of a quantum-mechanical nonequilib­
rium system to a classical nonequilibrium system. 

Analogous results as in (37) will follow from (42) 
if the function pB-E(T, t) has the behavior expressed 
in (36) (with ;'0 > 1). If one requires the total energy 
to be finite, then 1.0 > 3. 

The spectral function aB-E(T, t) is determined only 
by a knowledge of the high-energy behavior of the 
distribution and, together with (39), gives the be­
havior for all energies. This may seem somewhat 
surprising, but one must remember that quantum­
mechanical features are already contained in the 
equilibrium distribution and hence in (39). 
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C. Fermi-Dirac Statistics 

The proofs of analyticity of the distribution function 
and uniqueness of the spectral function follow closely 
those for B-E statistics. 

Consider the equilibrium distribution function where 
the number of particles is conserved, 

F-D D(E) (43) 
neq (E, T) = E/kT ' 

e/le + 1 

where D(E) is a known phase-space factor and # is a 
function of T determined by normalization. Equations 
(23) and (43) give 

nF-D(E, t) -f.oo pF-D(r, t) dr 
k D(E) - 0 e/l(T)eTE + l' (44) 

where 

(45) 

As before, 
(1) nF-D(E, t)fD(E) is an analytic function of E 

for Re (E) > 0 with the possible exception of the 
line Re (E) = y, where it may be discontinuous. 

(2) The spectral function (TF-D(T, t) is uniquely 
determined from the distribution nF-D(E, t). 

To obtain (2) and, consequently, the approach to 
the classical limit at high energy, one must assume 

(46) 

If one considers the nonrelativistic26 form for the 
energy E in (43), 

e-/l(r) -+ ri. (47) 
T .... O 

The normalization to unity of (TF-D(T, t) requires 

Therefore, for this case (46) is satisfied. 
The existence of a line of discontinuity in (I) is 

associated with the large r behavior of e/l(r) [see 
Appendix]. One can resort to the previous nonrela­
tivistic case for a determination of the exact value of 
y. Since this case holds rigorously for all fermions in 
the limit of zero temperature26 

(49) 

where 

h
2 [3 NJi 

Y = 2mk 47T V . (50) 

26 E. Schrtidinger, Statistical Thermodynamics (Cambridge Uni­
versity Press, New York, 1964), Chap. VIII. 

Therefore, if the spectral function (TF-D(T, t) does 
not vanish identically in a small neighborhood of the 
absolute zero, then nF-D(E, t)fD(E) will be discon­
tinuous at E = y. 

V. CONCLUSION 

The basic attitude in the present work is to shift 
one's attention from the problem of "the approach to 
equilibrium" to that of obtaining general information 
derived from such behavior. A field-theoretic formu­
lation of quantum statistical mechanics is presented 
and is used to obtain an integral representation which 
allows for the study of low- and high-energy behavior 
for nonequilibrium distribution functions, as well as 
analyticity and singularity structure in the complex 
energy variable. For instance, the pole at E = 0, 
which appears in the Bose-Einstein equilibrium 
distribution, persists for the nonequilibrium case. 

The theory of quantum statistical mechanics 
presented is based on purely axiomatic field-theoretic 
notions. Since axiomatic field theory is developed as a 
relativistic quantum theory, the formalism and results 
obtained are easily extended to relativistic quantum 
statistical mechanics. 

The question of the equations of motion satisfied by 
the probability distribution is not studied here, but is 
shown to correspond to quantities considered by other 
authors. The representation for the distribution 
function prescribes the form for the initial distribution. 
Description not in accord with such representation 
cannot lead to equilibrium. For example, for M-B 
statistics an initial description of the particles by 
means of a Gaussian distribution in energy is not 
allowable. 
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APPENDIX 

The integral transforms (39) and (44) are special 
cases of the general transform 

G(p) = roo J(t) dt , 
Jo e'Pt + A(t) 

(AI) 

where A(t) is a known (real) analytic function of t. 
The function J(t) is real and together with its first 
derivative is sectionally continuous. For A(t) == 0, 
(AI) reduces to the ordinary Laplace transform. 

In the domain (0 ~ t < 00) the range of A(t) is 
contained in (-1 ~ A(t) < 00). Further, the function 
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A(t) is of exponential order at infinity, 

A(t) = o(ert) (t -+ (0) (A2) 
(y > 0). 

Let P be a complex variable with real and imaginary 
parts a and T, respectively. One now proves Theorem 1. 

Theorem 1: If 

u. . 00 b 
\ i" f(t) dt I = M < 

O::O"::O<Xl 0 ePot + A(t) 
(ao> y), (A3) 

then (AI) converges for every P for which a > ao, and 

where 

(J(t) == t feu) du (0:::';; t :::.;; (0), (A5) 
Jo ePO" + A(u) 

the integral on the right-hand side of (A4) converging 
absolutely. 

Definition (A5) for (J(t) gives 

(R f(t) dt = ePoR + A(R) (J(R) 
Jo ePt + A(t) ePR + A(R) 

(p _ po)e(po+p)t + A(pePt - poePot) 
(R _ (dA/dt)(ePt _ ePot) 

+ Jo (ePt + .1.)2 (J(t) dt. 

(A6) 

By (A2) and (A3) , the first term in (A6) goes to 
zero as R -+ 00 for a > ao. Hypothesis (A3) implies 

< M (<Xl dt \ !£(e
pot 

- ePt)1 < 00. - Jo dt ePt + A(t) 

The last inequality follows from (A2). Hence, the 
theorem is proved. 

Corollary 1: If 

u. . 00 b I i" f(t) dt 1= N < 
O::O"::O<Xl 0 e1Jot + A(t) 

(ao < y), (A7) 

then (A7) converges for every P for which ao < a < y, 

and 
(<Xl f(t) dt 

Jo ePt + A(t) 

(<Xl f(t) dt 

Jo ePat + .1.( t) 
(p - po)e(PoHlt + A(pePt - poePot) 

1 <Xl - (dA/dt)(ePt - ePot) 
+ ( pt + 1)2 {J(t) dt, 

o e A ~~ 

where (J(t) is defined in (A5), the integral on the right­
hand side of (AS) converging absolutely. 

The proof of this is exactly the same as that of 
Theorem 1. 

Theorem 2: If the integral 

G(p) = (<Xl f(t) dt 
Jo ePt + A(t) 

(A9) 

converges at P = ao + iTO' and if Hand K are any 
constants for which H > 0, K> 1, then the integral 
(A9) converges uniformly in the region ~ defined by 
the inequality 

Ip - Pol:::';; K/ {<Xl dt [e(ao+a)t + 1.1.1 a + ao eat 
JH a - ao 

+ 21 dA 1 ~J/(eat _1.1.1)2 
dt a - ao 

(a ~ ao). (AlO) 

Let G(p) converge at P = Po. Define (J(t) as in (A5). 
One has that 

(<Xl f(t) dt 

JR ePt + A(t) 
(p - po)e(PoH)t + A(pePt - poePot) 

=(R<Xl ____________ ~--~--(~d~A/-d~t)~(e-Pt----ep~ot) 
Jl (e Pt + .1.)2 

X [(J(t) - (J(R)] dt (a> ao> y). (All) 

Let Ro > H be such that 

1{J(t) - (J(t') I :::.;; €/K (t > Ro) (AI2) 
(t' > Ro). 

This follows from the convergence at Po [see (A3)]. If 
R> Ro, (All) gives 

1 

(<Xl f(t) dt \ 
JR ePt + A(t) 

< !.... (oo dt I[(p _ po)e(po+p)t + A(pePt - poePot ) 
- K JR 

_ (dA/dt)(ePt - ePot)]/(ePt + .1.)21 

:::.;; !....Ip _ Pol roo dt[e(ao+a)t + 1.1.1 a + ao eat 
K JR a - ao 

+ 2\ dA \ ~J/(eat -1.1.1)2 (a> ao). 
dt a - ao (A13) 
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For P = Po, 

I ('Xl J(t) dt 1= I,B( (0) - ,B(R) I ~ ~ < E. (A14) 
JR e1't + A(t) K 

So that for all P in ~, 

I 
roo J(t) dt I 

JR e1't + A(t) < E, 

which proves the theorem. 
An analogous theorem can be proved for (10 < 

(1 < y. 

Theorem 3: If the integral 

G( ) _ roo J(t) dt 
p - Jo e1't + A(t) 

(AIS) 

converges for (1 > ae < 00, then G(p) is analytic for 
a>ae • 

If Po is an arbitrary point in the half-plane (1 > (1c, 

one can surround it by a circle K which also lies in that 
half-plane. By Theorem 2, the integral (AIS), and 
hence the series 

00 in+! J(t) dt 
G(p) = ~o n e1't + A(t) , (AI6) 

converges uniformly in K. Since each term of the 
series is entire, one has that G(p) is analytic for 
(1 > (1e. 

Finally, one establishes a sufficient condition for 
proving the uniqueness of the spectral function J(t). 

Theorem 4: If the integral 

G(p) = roo J(t) dt 
Jo e1't + A(t) 

(AI7) 

converges for p = (10 + iTo, and if J(t)j[e flt + ).(t)] is 
a continuous function of both variables when t ~ 0 
and (1 ~ ao, then J(t) is unique. 

By Theorem 1, (AI7) converges for a > (10 and 
uniformly in ~ [see Theorem 2]. From the uniform 
convergence of G(p) and the assumed continuity of 
the integrand, one has that27 G(p) is a continuous 
function of p for (1 ~ (10' so that 

G(p) ----+ g(p) == roo e-fl'l(t) dt. 
11'1-+'" Jo 

(AI8) 

Since g(p) is the Laplace transform of J(t) , therefore 
J(t) is unique. 

As an example to this theorem, let ).(t) be inde­
pendent of t. Now g(p) = p-l[f(t) = OCt)] gives 
G(p) = [In (1 + A)]jAP which does not satisfy (AIS) 
for (A r6 0). However, g(p) = e-PGjp with a > 0 
[J(t) = O(t - a)] yields G(p) = (Ap)-lln [1 + e-PG;'] 
which !ioes satisfy (AI8). In the first example the 
continuity hypothesis on the integrand is not satisfied 
since 

One can reconcile this by requiringJ(O) = O. Note that 
this requirement is not satisfied by the unit step 
function OCt) of the above example which violated 
the theorem. 

27 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, New York, 1962), Chap. IV. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 5 MAY 1968 

Integral Representation for Systems of Interacting Particles * 
MOORAD ALEXANIAN 

University of California, Lawrence Radiation Laboratory, Livermore, California 

(Received 7 July 1967) 

This is a s~quel .to a previous paper, designated as I, which dealt primarily with nonequiJibrium 
srstems. The Ideas m I are extended and include the study of systems of interacting particles in equilib­
f1um. A~ !ntegral .~ep!ese~tation is. obtained fo~ the di.stribution function of interacting particles as a 
~uperpo.sltIon of dlstnbutlon functIons for nonmteractmg particles. In particular, it is shown that an 
mteractmg Bose gas need not show Bose condensation and that the behavior near the point E = 0 
cannot be more singular than that of a simple pole. 

I. INTRODUCTION 

In a previous paper,! to be designated as I, an 
integral representation for a nonequilibrium distribu­
tion function was derived. The derivation is based on 
some basic postulates, which are somewhat related to 
the notions of strong convergence in axiomatic 
quantum field theory 2 and invoke no specific dynam­
ical assumptions. 

The basic ideas contained in I are sufficiently general 
as to entail, in some cases, a similar representation for 
the equilibrium distribution function for a system of 
interacting particles. 

The study of this extension, together with some of 
its implications, is the subject of the present work. 
The notation follows I; equations labeled I refer to 
that article. The reader is referred to I for most 
bibliographic references. 

II. INTEGRAL REPRESENTATION 

One of the postulates in I concerns the existence of 
states of statistical equilibrium. It is clear that these 
states describe interacting particles and, for the pur­
pose of this paper, will be denoted by a subscript I. 

In using the integral representation (123), one needs 
to know the expected value of macroscopic operators 
for these interacting states. This is indeed a difficult 
problem and deserves attention on its own right. 
However, one can still obtain an integral representa­
tion in terms of noninteracting states for many cases 
of considerable interest and with obvious advantages. 

Let I ~I) and I~) denote the interacting and non­
interacting equilibrium states, respectively. Consider 
the limit which lets all the coupling constants of the 
interaction between the particles approach zero. 
Denote this limit by lim. Then, 

g--->-O 

(1) 
g-+O 

The general conservation laws are independent of the 

• This work was performed under the auspices of the U.S. Atomic 
Energy Commission. 

1 M. Alexanian, J. Math. Phys., 9, 725 (1968). 
• R. Haag, Phys. Rev. 112,669 (1958); Suppl. Nuovo Cimento 14, 

131 (1959). 

interaction strength; therefore, quantities like the 
chemical potential, for example, will appear auto­
matically in the noninteracting states. 

Consider now the case where bound states are 
excluded from the theory or cases where bound states 
can occur but that the interaction strengths are 
sufficiently small that there exist no bound particles 
among the interacting particles. Then the set of 
noninteracting equilibrium states {I $)} forms also a 
complete set. Equation (112) for every macroscopic 
operator G becomes, with the present notation, 

G = ! S4 G(.6.I )· 
4 I 

r 

(2) 

From the completeness of the states {I $)} one has the 
similar equation 

G = ! S4G(.6.). (3) 
4 

Equating (2) and (3) and after multiplying both sides 
by SAr/Tr SAl and using (114) and (115), 

S S S 
_41_G(.6.

I
) = ! 41 4 G(.6.). 

Tr S4 4 (Tr S4 )2 
I I 

Finally, by taking the trace of (4), 

G(.6.
I
) = ! Tr (S41S4) 0(.6.). 

4 (Tr S4 )2 
1 

(4) 

(5) 

The representation (5) expresses the expected value 
of every macroscopic operator for any interacting 
state of the system as a superposition over the 
expected value of the same operator in different non­
interacting states of the system. This result is quite 
analogous to the representation obtained in 1 for 
nonequili brium systems. Actually, (5) is nothing else 
than the change of basis from one macroscopic 
covering of the Hilbert space to another. Its interest 
lies, of course, in the meaning of the two different 
coverings. 

The coefficients in (5) are positive definite. Using 
(113) and (Ill), 

with 
Tr(S4 S4) = IM/2, 

1 

M = ! (~I ~I) 
<rEAr 

SEA 

(6) 

(7) 

734 
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and 
Tr S,1 = N,1 , 

I I 
(8) 

where NflI denotes the number of microstates con­
tained in AI' 

The representation (123) for nonequilibrium sys­
tems with the present notation for interacting states is 

(G)t = L G(A1)Pt(AI ) Tr S,1 . (9) 
,11 I 

With the aid of (5) one obtains 

(G)t = L G(~)Pt(~) Tr S,1, (10) 
,1 

where the probability of finding the nonequilibrium 
system in the noninteracting macroscopic equilibrium 
state A is given in terms of the similar quantity for the 
interacting state by 

P (A) = '" P (~) Tr (S,1rS ,1) 
t i; t I (Tr S,1 )(Tr S,1) 

I 

(11) 

From (113) and (116) one has that 

Tr (S,1IS,1) 

t (Tr S,1 )(Tr S,1) = 1. 
I 

(12) 

Therefore, (11) and (12) give 

L Pt(A) = L Pt(A I ) = 1, (13) 
,1 ,11 

thus establishing the representation (123) obtained in 
I in terms of noninteracting equilibrium states for 
cases where bound states are excluded from the theory. 

Ill. INTERACTING BOSE GAS 

The representation (5) for interacting states is quite 
analogous to that of I for nonequilibrium states. In 
fact, the results of Sec. IV of I for nonequilibrium 
distribution functions hold true also for the equilib­
rium distribution function of interacting particles, 
provided no bound states exist in the theory. 

One case which was not considered in I is the general 
Bose gas where the number of particles is conserved. 
This differs more from the Bose gas with particle 
nonconservation than one would think at first. This, 
of course, is due to the possibility of Bose condensa­
tion in an interacting Bose gas. 

The equilibrium distribution function for a system 
of particles satisfying Bose-Einstein statistics where 
the number of particles is conserved is given by 

neq(E, T) = R(E)/[eI'(N,TleE/kT - 1], (14) 

where R(E) is a known function of the energy E of 
the particle and peN, T) is a function of the tempera­
ture T and the number of particles N, the functional 
relationship being determined by normalization.3 

The function peN, T) is nowhere negative and 

8 Here, as in I, one deals always with an infinite system (V --+- 00, 
N --+- 00 such that NIV is finite). However, for the purpose of this 
section it is convenient to consider N rather than the density p. 

vanishes at the temperature at which Bose condensa­
tion occurs, 

peN, To) = O. 

For lower temperatures, 

peN, T) == 0 

(15) 

(16) 

The particle distribution function for the inter­
acting system is obtained from (5), 

(E T) = (<Xl R(E)a(T, T') dT' (17) 
n, Jo e/(N,T'leE/kT' - 1 . 

Note that in (17) one has no integration over the 
number of particles since the system contains a well­
defined, fixed number of particles. Hence, (17) 
expresses neE, T) as a superposition of systems of 
noninteracting bosons with different temperatures T' 
but the same number of particles N. This leads to the 
following relation between noninteracting quantities: 

N = no(T')O(To - T') + n(T'), (18) 

where no(T') denotes the number of particles in the 
condensate4 and N is independent of T'. 

The spectral function aCT, T') is normalized to 
unity by (12), 

fo<Xl aCT, T') dT' = 1. (19) 

In order to study the singularity structure of neE, T) 
one writes (17), with the aid of (15) and (16), as 
follows: 

n(E, T) _ (TO aCT, T') dT' (<Xl aCT, T') dT' 
R(E) - Jo eE /kT' - 1 + JTo e/(N,T'leE /kT ' - 1 . 

(20) 
The first term in (20) has a simple pole at E = 0 (see 
Appendix) with residue 

oc(T) = kfoTOT'a(T, T')dT'. (21) 

As in I, the order of the pole is established by the 
normalization condition (19). 

It is instructive to express the number of particles 
in the condensate for the interacting system No(T) 
in terms of the spectral function. One obtains from 
(18) and the normalization condition (19) 

(TO (<Xl 
N = Jo no(T')a(T, T') dT' + Jo n(T')a(T, T') dT', 

(22) 
so that 

(TO 
No(T) = Jo no(T')a(T, T') dT'. (23) 

The A-transition temperature T;. is usually defined bys 

No(T;.) = O. (24) 

• The explicit form no(T') = N[I - (T'ITo)!] is obtained for non­
relativistic particles. 

• This definition is only meaningful if No(T - €) ,p. 0 for E 

infinitesimally small and positive. 
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The known general properties of the spectral function 
(positive definiteness and normalizability) are not 
sufficient to establish the uniqueness of T). nor rule 
out the possibility that (24) may hold identically for 
all T).. The physical implication of the latter supposi­
tion is that an interacting Bose gas need not exhibit 
Bose condensation. 

Suppose the integral in (23) is continuous at T = 
T).. From the positiveness of no(T') and (J(T, T'), (24) 
is equivalent t06 

(J(T)., T') = 0 (0::;; T' < To). (25) 

Similarly, IX(T1) = 0 implies 

(J(Tl' T') = 0 (0 < T' ::;; To). (26) 

Hence, the vanishing of No(T) need not imply the 
vanishing of IX(T), and conversely. 

An upper bound can be derived from (17) for the 
particle distribution function. Define the "tempera­
ture" T* by 

T* == lXl T' (J(T, T') dT' < 00, (27) 

where the bound on T* is a consequence of the as­
sumed finiteness of the total energy. From the physical 
meaning of the spectral function as a probability 
function, it is tempting to identify T* with the tem­
perature T of the system. However, the integral (27) 
will, in general, depend on other parameters of the 
theory, e.g., the strength of the interaction, which are 
quantities independent of the temperature T. 

One gains an insight into the meaning of T* by 
considering the implications of its vanishing. One has 
from (17) and (27) that the vanishing of T* requires 
all the particles to occupy the level with E = o. With 
this result in mind, T* is the analog, in the interacting 
case, of the temperature in the ideal Bose gas. [In fact 
in the limit T* - 0 they become one and the same.] 
From (17), (21), and (27), 

n(E, T)/R(E) ::;; kT*/E (28) 
and 0::;; IX(T) ::;; kT*. (29) 

The bound in (28) is reminiscent of that for the ideal 
case and emphasizes the analogy given above. 

Finally, the representation (17) is contained in the 
class of integral transforms studied in the Appendix 
of I. Consequently, (1) n(E, T)/R(E) is an analytic 
function of the complex variable E for Re (E) > 0 
and it is completely monotonic for E > 0 [see (I32)]. 
(2) The spectral function (J(T, T') is uniquely deter­
mined by the distribution n(E, T). 

• Integrals containing the spectral function are understood in the 
Lebesgue sense and (25) is said to hold almost everywhere in the 
open set (0 ~ T' < To). 

IV. DILUTE BOSE GAS 

Some of the features established above for systems 
of interacting particles can be illustrated by an 
exactly soluble modeP The model represents a weakly 
interacting Bose gas, but strongly degenerate. Sum­
marizing the results of the model for temperatures 
below the condensation temperature To, the energy 
spectrum of the elementary excitation is given by 

e(p) = [£2 + 2EIX]!, (30) 

with E = (2m)-lp 2 and 

IX = [(41TaIi2)/m](N/V), (31) 

where a is the S-wave scattering amplitude. The 
momentum distribution of the excitations is given by 
the non interacting Bose distribution 

fll1 = {e[E(l1)/kT] - 1} -1 (32) 

And, finally, the momentum distribution of the 
actual Bose particles is given by 

. Nl1 = [fll1 + A!(fll1 + 1)]/(1 - A!), (33) 
where 

Al1 = 1X-1[e(p) - E - IX]. (34) 

Ideally, one would like to express (33) by the 
representation (17) with a positive-definite spectral 
function which satisfies (19). However, in the absence 
of such a result, some of the implications of the 
representation (17) will be verified by the distribution 
(33). 

From a knowledge of the distribution function one 
certainly cannot verify the strong convergenceS 
required in (1). Nevertheless, strong convergence 
implies weak convergence. This is satisfied by (33) 
since 

lim Nl1 = (eE /kT - 1)-1. (35) 
a"'O 

The distribution (33) is analytic for Re (E) > O. The 
behavior near the point E = 0 is given by 

Nl1 = tkT _ kT! + peE) (T> 0), (36) 
E (2IXE) 

where p(E) is regular at E = O. Note the simple pole 
at E = O. The existence and order of this singularity 
agrees with the analytical properties of the integral 
representation (17) (see Appendix). Also, the next 
leading singularity is of the same form as the singu­
larity of the second term in (20) (see Appendix). 
Finally, for large energies, 

Nl1 ~ 1X2/4E2 (E large), (37) 

which agrees with a possible behavior already dis­
cussed in I. 

7 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, 
Methods of Quantum Field Theory in Statistical Physics (Prentice­
Hall, Inc., Englewood Cliffs, N.J., 1963), Chap. 1. 

8 The notions of weak and strong convergence are those en­
countered in functional analysis (see Ref. 5 in I). 
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The introduction of quasi-particles (elementary 
excitations) is a feature of the method used in 
obtaining (33). However, the integral representation 
(17) cannot discern the different effects of the inter­
action. 

V. CONCLUSION 

The fundamental postulate in the present work and 
in I is that of strong convergence of interacting states. 
In I this assumption was made in relation to the 
asymptotic approach to equilibrium, whereas here 
it relates to the approach to noninteracting states. 
Strong convergence is sufficient for an approach to 
equilibrium in the weak sense, i.e., the approach of 
quantum-mechanical averages of (macroscopic) opera­
tors to the proper equilibrium values. This latter be­
havior is what may commonly be understood by the 
phrase "approach to equilibrium." 

In axiomatic quantum field theory, 2 one has the 
strong convergence of states which, in the limit 
t -+ + 00, define asymptotic states of a finite number 
of freely moving particles. These states are constructed 
from the vacuum by the application of afinite number 
of time-dependent operators on the vacuum state. 
Further, it is clear from the nature of the operators 
that the states are interacting states. Consider the 
state constructed from the vacuum by acting on it 
with an infinite number of time-dependent operators. 
The work of Ref. 2 shows that asymptotically, for 
t -+ + 00, these states approach constant vectors. It 
is clear, if not obvious, that such states cannot lead 
(in the limit t -+ + (0) to an asymptotic state of an 
infinite number of freely moving particles. Herein lies 
the connection of axiomatic quantum field theory to 
the basic postulate in I and, hence, to quantum 
statistical mechanics. The content of the postulate in 
I lies in giving an answer to this question by stating 
that any interacting state of an infinite number of 
particles must approach an equilibrium state as 
t -+ + 00. This view is consistent with theorems of 
the nature of Poincare's in that a system with a finite 
number of particles cannot approach equilibrium. 

Note added in proo!, The possibility of (at most) a 
simple pole at £ = 0 in the distribution function 
supplements Bogoliubov's Ijk2 theorem. [H. Wagner, 
Z. Physik 195, 273 (1966); P. C. Hohenberg, Phys. 
Rev. 158,383 (1967).] Bogoliubov's result is 

n(p) ~ N~T); ~2 (p -+ 0) 

for temperature fJ-1• The momentum distribution of 
particles n(p) might have a singularity of the order 
£-1 at least as E -+ 0 (but less than £-~). It is clear 
that Bogoliubov's theorem can be of use only for 
0< T< TA • 

Suppose No(T) ~ O. From this one cannot conclude 
that CI.(T) ~ O. However, if one invokes the theorem 
then, for 0 < T < T A , one must have CI.(T) ~ O. 
Consequently, the result of the present formulation 
requires the singularity to be precisely £-1 as £ -+ 0 
for 0 < T < TA • One must then view the Ijk2 theorem 
of Bogoliubov as a condition on the residue of the 
pole and not on the degree of the singularity. 

APPENDIX 

This Appendix is concerned with the singularity 
structure of expression (20) in the neighborhood of 
£= O. 

From the positiveness of the spectral function 

(TO a(T, T') dT' < CI.(T) (AI) 
Jo e E /kT' - 1 - E ' 

where CI.(T) is defined by (21) and is bounded for finite 
temperatures [see (29)]. In (AI) the equality holds as 
£ approaches zero. Therefore, the first term in (20) 
has a simple pole at £ = O. 

Similarly, for the second term in (20), 

foo a(T, T') dT' (00 a(T, T') dT' 

To ep.(N,T'le E /kT' - 1 ~ JTo#(N, T') + EjkT' . 

(A2) 
As £ -+ 0 the region of integration which is important 
for the value of the integral is that near the condensa­
tion temperature To [recall (I 5)]. The bound in (A2) 
will be determined for the case of nonrelativistic 
energy-momentum relationship. For such cases, the 
behavior of the chemical potential #(N, T) near To is 
given by 

#(N, T) = (fJjT3)[1 - (TjTo)~]2 (T -+ To), 
(A3) 

where 
= 2Tr21i6(~)2. 

f3 m3k3 V (A4) 

On substituting (A3) into (A2) one obtains 

(00 aCT, T') dT' < Tra(T, To)T02 
JTo ep.(N,T'le E /kT ' _ 1 - 3(kfJE)! . (A5) 

As before, the case of the equality holds in the limit 
£ -+ O. Therefore, one obtains a weaker approach to 
infinity from the second term in (20) as £ -+ O. It is 
believed that such behavior is preserved in the more 
general case of relativistic kinematics. 

The sign of the next leading singularity need not be 
determined by (A5). Since from (AI), 

iTo a(T, T') dT' CI.(T) 
E/kT' - -- ~ o. 

o e - 1 E 
(A6) 

Therefore, the square-root singularity of (A5) may 
appear with a negative sign (in the distribution 
function) if a simple pole exists at £ = o. 
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Some Properties of Ladder Operators * 
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Physics Department, Syracuse University, Syracuse, New York 
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The commutation relations [H, P ± iQ] = ±(P ± iQ) for the symmetric operators H, P, Q are 
considered without assuming (a priori) any other relationship between H, P, Q, in particular without 
making any assumption concerning the commutator [P, Q). It is shown that under certain mild restric­
tions the spectrum of H is integer spaced, and that in the two particular cases [P, Q] = i~H, ~ = 0, ± 1 
and H = Hpt + QI) + ia[P, Q), corresponding to Lie groups and parastatistics, respectively, it is 
simple. For these two cases the explicit representations of P, Q, and H are found in a simple manner. 
The question of the existence of a common analytic domain for P, Q, and H is investigated, and some 
sufficient conditions for this are found. 

1. INTRODUCTION 

We consider in this paper a set of closed symmetric 
operators P, Q, and H in a Hilbert space Je, satisfying 
the commutation relations 

[H, P ± iQ] = ±(P ± iQ), (1.1) 

on a common invariant dense domain Dc Je. P, 
Q, and H are defined to be the closures of PI D, QI D, 
and HID respectively. Equations (1.1) are the well­
known relations first introduced by Cartanl in the 
study of compact simple Lie groups (for which one 
has in addition the relation [P, Q] = iH) and later 
introduced by Heisenbergll in his description of the 
quantum-mechanical harmonic oscillator (for which 
H = !CP2 + Q2) and [P, Q] = i). We shall call the 
operators P ± iQ ladder operators, because if IA) is an 
eigenvector of H on which they are defined, and such 
that PIA) and Q IA) are in the domain ~(H) of H, 

(P ± iQ) IA) = const IA ± 1). (1.2) 

What we wish to study here is the more general case in 
which the Eqs. (1.1) are not supplemented (at least 
a priori) by any other relationship between H, P, and 
Q. Further, we wish to study this case in a fairly 
rigorous way and obtain in a unified way some results 
which have been obtained previously for some special 
cases, in particular the case of Lie groups (with 
supplementary condition [P, Q] = iEH, E = 0, ± 1) 
and parastatistics3 (with supplementary condition 

• Work supported in part by the u.s. Atomic Energy Commission. 
t On leave of absence from Dublin Institute for Advanced 

Studies, Dublin, Ireland. 
1 E. Cartan, these, Paris, 1894; Oeuvres Completes (Gauthier­

Villars, Paris, 1952), Vol. I. 
I W. Heisenberg, Z. Physik 33, 879 (1925). 
a For a comprehensive bibliography on parastatistics, see O. W. 

Greenberg and A. Messiah, Phys. Rev. 138, B1155 (1965). The free 
parafields are of the form ",(x) = S [d"k/(2w)lj[akelb + aZe-'IorJ, 
Ok, 0: = (Pk ± iQ.), where the p. and Q. are variables satisfying 
relations of the form (1.1) for each value of k, and the relations 
[P., p.'] = [P., Q.,] = [Q., Qk'l = 0 for k "" k'. 

H = !CP2 + Q2) + ia[P, Q]). The latter case includes, 
in particular, the generalization of the quantum­
mechanical commutation relations [P, Q] = i sug­
gested by Wigner' in connection with the Heisenberg 
harmonic oscillator equations. 

We first show that if Je is irreducible in the sense 
that any bounded operator which commutes with P, 
Q, and H is a multiple of the identity, and if D is 
analytic for H, then the spectrum of H is integer 
spaced. 

We then consider the two special cases, 

[P, Q] = iEH, E = 0, ±I 
and 

H = i(p2 + Q2) + ia[P, Q], 

and show for both cases that in addition to being 
integer-spaced, the spectrum of H is simple. 

Using this result, we find the explicit representations 
of H, P, and Q for these two cases. In particular, for 
the case [P, Q] = -iH, which is the case of the Lie 
group SU(I, 1), we impose the condition that 
p2 + Q2 + H2 be essentially self-adjoint and rederive 
the five classes of unitary representations of this 
group rigorously obtained by Bargman,5 while for the 
parastatistic case H = i(p2 + Q2) + ia[P, Q] we re­
derive the representations of H, P, and Q whi~h were 
obtained earlier in a less rigorous manner.·'? 

Finally, we return to the general case [Eq. (I) with 
no subsidiary conditions] and discuss the question of 
the analyticity of the domain D for H, P, and Q. We 
show that a sufficient condition for D to be analytic 
for H, P, and Q is that it be analytic for H and that 
H dominate P and Q on D (i.e., that IIZdl1 < IIHdl1 + 
c Ildll, where Z = P or Q, dED and c is a positive 

• E. P. Wigner, Phys. Rev. 77, 711 (1950). 
• V. Bargmann, Ann. Math. 48, 568 (1947). 
• T. Jordan, N. Mukunda, and S. Pepper, J. Math. Phys. 4, 1089 

(1963). 
• L. O'Raifeartaigh and C. Ryan, Proc. Roy. Irish Acad. 61A, 93 

(1963). 
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number independent of d) and discuss some conse­
quences of this result. 

2. INTEGER-SPACED SPECTRUM 

We consider the operators H, P, and Q satisfying the 
commutation relations (1) and, in this section, make 
in addition the following two assumptions: 

(i) D is an analytic domain for H. 
(ii) Je is irreducible, in the sense that any bounded 

operator that commutes with H, P, and Q is a multiple 
of the unit operator. 

It is not assumed that D is an analytic domain for P 
and Q or even that P and Q are self-adjoint. The 
question of the analyticity of D with respect to P and 
Q will be discussed in Sec. 6. Using the assumptions 
(i) and (ii) we establish8 the following result. 

Lemma 1: The spectrum of H is integer-spaced. 
Further, if £(,1,) denote the projection operators on the 
eigenspaces Je A of :re, then 

(P ± iQ)E(A)D = E(A ± l)(P ± iQ)D. 

Finally, the closures of the restrictions of P and Q 
to D(A) = U E(A)D are equal to P and Q, respec-
tively. A 

Proof: From Eq. (Ll) we have 

It I < to say. Since P and Q are closed operators, we 
obtain on taking the limit 

PeitH = teit<H-l)(p + iQ) 

+ teit<H+1)(P - iQ) on D, (2.6) 
and 

iQeitH = teit(H-l)(p + iQ) 

- teit(H+ll(p - iQ) on D, (2.7) 
whence, 

(P ± iQ)eitH = eit<HH)(p ± iQ) on D, (2.8) 

for It I < to. 
Repetition of the argument shows that (2.8) holds 

for all It I < nto, n integer, and hence for all real t. 
In particular, 

(P ± iQ)e21riH = e21riH(p ± iQ) on D. (2.9) 

Thus eZuiH commutes with P and Q on D. Now letf 
be any vector in the domain of P. Since P is the closure 
of PI D there exists a sequence dn€D such that dn - f, 
Pdn -PJ. 

Hence, since e21riH is bounded we have 

and 

[H, P ± iQ] = ±(P ± iQ) on D, (2.1) Thus e21riH fis in the domain of P and 

whence 

(P ± iQ)H = (H 1= l)(P ± iQ) on D, (2.2) 
and 

(P ± iQ)Hn = (H 1= l)n(p ± iQ) on D. (2.3) 

Hence 

(p ± iQ) f (ion Hri 
1 n! 

= f Ot)n (H 1= It(P ± iQ) on D. (2.4) 
1 n! 

Thus, 

P f (it)" H n = 1 f (it)" (H - l)"(P + iQ) 
1 n! 2 1 n! 

+ ! f (it)" (H + l)"(P - iQ) 
2 1 n! 

on D. 

(2.5) 

Similar relations hold for Q. Since D is invariant with 
respect to P and Q and analytic for H (and hence for 
H ± 1), it follows that the limits N - 00 on the 
right-hand side of (2.5) exist for sufficiently small t, 

8 The basic idea of this section, namely showing that exp (27TiH) 
is a multiple of the identity, is due to T. Jordan et al. (Ref. 6). 

(2.11) 

i.e., e2rriH commutes with P. Similarly it commutes 
with Q. Thus, since it obviously commutes with H, it 
commutes with P, Q, and H. From the irreducibility 
of H as defined in (ii) above, it follows that e21liH is a 
multiple of the identity, i.e., 

(2.12) 

Thus the spectrum of H is integer-spaced. 
Now let A be any eigenvalue of H, E(A) the projec­

tion operator on the corresponding eigenspace, let 
o < <5 < 1, and consider the Riemann sums 

From (2.6) and (2.7) we have 

PRA(A) = tRA(A - l)(P + iQ) 

+ tRAO· + l)(P - iQ) on D, (2.14) 

iQRA(A) = tRA(A - l)(P + iQ) 

- iRA(A + l)(P - iQ) on D. (2.15) 
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Since P and Q are closed we obtain, on taking the 
limit 11 ~ 0, 

PE()') = !E()' - I)(P + iQ) 

+ tEe). + I)(P - iQ) on D, (2.16) 

iQE().) = tE()' - I)(P + iQ) 

- tEe). + I)(P - iQ) on D, (2.17) 
whence, 

(P ± iQ)E()') = E()' =f I)(P ± iQ) on D. (2.18) 

Finally, letfbe any vector in 11 (P). Then there exists 
a sequence dn E D such that dn ~ J, Pdn ~ Pf 

Choose any fixed E()') and construct the sequence of 
projection operators 

Ko = E()'), Kl = E().) + E()' + 1) + E(). - 1), 

K2 = E().) + E(). + 1) + E()' - 1) + E()' + 2) 

+ E(). - 2),· ... 

Clearly Km ~ 1 as m ~ 00. Hence if we construct the 
sequence Kmdn we have 

(2.19) 
and 

PKmdn = Km+1Pdn ~Pdn -+Pf (2.20) 

A similar relation holds for Q. Since each Kmdn E 

I1[P/ D()')] this establishes that P is the closure of 
PID()'). Similarly, Q is the closure of Q/D().). This 
completes the proof of Lemma 1. 

3. SIMPLE SPECTRUM 

In this section, we establish conditions under which 
the spectrum of H is simple, i.e., to each eigenvalue 
there corresponds only one eigenvector. First we 
establish the following general lemma. 

Lemma 2: The spectrum of H is simple if and only if 
there exists a 1J!().o) E D()') such that for all 1J!n = 
(P ± iQ)n"P().o), n = 0, 1,2, ... , 

(P - iQ)(P + iQ)"Pn = Cn1J!n, (3.1) 

(P + iQ)(P - iQ)1J!n = dn1J!n, (3.2) 

where Cn and d .. are numerical coefficients. 

Proof: The necessity of the condition is obvious. To 
prove the sufficiency we let Jeo denote the closed 
linear span of the "Pn and let A denote the projection 
operator on JeD. Then for any dE D, AEnd is a 
multiple of the vector "Pn' [En == E[)'o + n)]. Hence 
AEnd E I1(P + iQ) and 

(P ± iQ)AEnd = (P ± iQ)k"Pn = k"Pn+l' (3.3) 

On the other hand, 

A(P ± iQ)End = AEn:F1 (P ± iQ)d = k'''Pn+l' (3.4) 

Further, 

k = ("Pn+l' (P ± iQ)AEnd) 

= «P =f iQ)"Pn+l' AEnd) 

= «P =f iQ)"Pn+l' End) 

= ("Pn+l' (P ± iQ)End) 

= ("Pn+l' A(P ± iQ)End) = k'. (3.5) 

Therefore for all End we have 

AEnd E I1(P ± iQ) 
and 

(P ± iQ)AEnd = A(P ± iQ)End. (3.6) 

Thus A commutes with PID(),) and Q/D()'). 
Now let I be any vector in 11 (P). Since P is the 

closure of PI D(),), there exists a sequence h E D(),) 
such that h ~ I and Pin ~ Pf Hence Afn ~ AI and 
PAin = APj~ ~ APf Since P is closed it follows that 
AI E I1(P) and PAl = APf Thus A commutes with P. 
Similarly A commutes with Q. Since A obviously 
commutes with H it follows that A commutes with 
P, Q, and H and hence is a multiple of the identity. 
Since A2 = A (projection operator) it follows that 
A = 1 (A = 0 is excluded since "P().o):F 0). Thus 
JeD = :fe, and the spectrum of H is simple. 

We now apply this lemma to two cases of physical 
interest. 

Lemma 3: The conditions of Lemma 2 for the 
simplicity of the spectrum of Hare met in the following 
cases: 

(a) [P, Q] = ieH, e = 0, ±I, p2 + Q2 + H2 es­
sentially self-adjoint on D, 

Cb) H = t(p2 + Q2) + iO'[P, QJ ~ ° on D. 

Proof' Case (a). According to a theorem of Nelson,9 
under conditions (a) the operators P, Q, and H 
generate a unitary irreducible representation of a 
Lie group [SU(2) , E2 , and SU(1, I) for e = 0, ±I, 
respectively]. The operator C = p2 + Q2 + eH2 is a 
Casimir operator of this group. Since H is irreducible 
it follows that C is a real C number, C say. We then 
have 

(P ± iQ)(P =f iQ)"Pn 

= {P2 + Q2 =f i[P, Q]}"Pn . 

= {(P2 + Q2 + eH2) - (eH2 =f eH)}1J!n 

= {C- eA(A=f I)}"Pn' (3.7) 

Thus the conditions of Lemma 2 are satisfied and the 
spectrum of H is simple. In addition we obtain for 

• E. Nelson, Ann. Math. 70, 572 (1959). 
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the coefficients Cn , dn the relation 

Cn = dn+1 = C - EA(A + 1), A = Ao + n. (3.8) 

Case (b). We can write H in the following form: 

H = HI - 2a)(P + iQ)(P - iQ) 

+ HI + 2a)(P - iQ)(P + iQ). (3.9) 

Hence (except for the special caselO 2a + 1 = 0, to 
be discussed below) we have 

(P - iQ)(P + iQ) = [(2a - 1)/(2a + 1)] 

x (P + iQ)(P - iQ) 

+ [4H/(2a + 1)]. (3.10) 

Since H ~ 0, then there exists a least eigenvalue ho of 
H. The corresponding eigenvector 1J!0 is such that 

(P - iQ)1J!o = 0, 

from which it follows that 

(P + iQ)(P - iQ)1J!o = 0 

and 

(3.11) 

(3.12) 

(P - iQ)(P + iQ)1J!o = [(4ho)/(2a + 1)]1J!0. (3.13) 

In deriving Eq. (3.13), Eqs. (3.10) and (3.12) are used. 
Suppose that Eqs. (3.1) and (3.2) are satisfied for 

n = 0, 1, 2 ... s - 1, then 

(P + iQ)(P - iQ)1J!s 

= (P + iQ)(P - iQ)(P + iQ)1J!s-l 

= (P + iQ)cs-l1J!s-l = cs- l1J!s (3.14) 
and 

(P - iQ)(P + iQ)1J!s = [(2a - 1)/(2a + 1)]cs-l1J!s 

+ [4(ho + s)/(2a + 1)]1J!s. (3.15) 

Thus Eqs. (3.1) and (3.2) are satisfied also for n = s. 
Thus, once again, the conditions of Lemma 2 are 
met and the spectrum of H is simple. 

Further, we obtain the recurrence relations 

Finally we consider the special case 2a + 1 = o. 
In this case we have 

H = HP + iQ)(P - iQ). (3.17) 

We introduce the operator 

S = [2(H - 1)]-l(P - iQ)(P + iQ), (3.18) 

which is a well-defined operator on D and D(A). On 
E(A)D we have 

S2 = [2(A + 1)]-1(P - iQ)(P + iQ)[2(A + 1)]-1 

x (P - iQ)(P + iQ) 

= [2(A + 1)-l(P - iQ)[2H/2(A + I)](P + iQ) 

= [2(A + l)]-l(P - iQ)(P + iQ) 

= S. (3.19) 

Since D(A) is dense in H, it follows that the closure S 
of S is a projection operator. There are then two 
cases to consider. 

Case 1: S = I (where I is the unit operator). Then 
from (3.20) we have 

(P - iQ)(P + iQ) = 2(H + 1) on D. (3.20) 

Combining (3.19) and (3.22) we obtain 

[Q, P] = i and H = HP2 + Q2 + I) on D. 

(3.21) 

But H is essentially self-adjoint on D. Hence this is 
exactly the case of the harmonic oscillator in ordinary 
quantum mechanics. 

Case 2: There exists at least one vector h E Je such 
that Sh = O. Then since 

[S, H] = 0 on D(A), 

there exists at least one eigenspace E(Ao)Je such that 
S ¥: 1 on E(Ao)Je. From this it follows that there 
exists at least one vector 1J!(Ao) E E(Ao)D such that 

S1J!(Ao) = O. 

But then from the definition of S we have 

Cn = dn+1 = [(2a - 1)/(2a + l)]Cn- 1 (P + iQ)1J!(Ao) = O. (3.22) 

+ [4(ho + n)/(2a + 1)] (3.16) Let us now construct the sequence 

for the coefficients Cn and dn . 

10 The special case 2a + I = 0 is actually the most important 
case since, as will be seen later, it includes the case of the quantum­
mechanical harmonic oscillator and of parastatistics. Also the case 
2a + 1 ¥- 0 can be reduced to the case 2a + 1 = 0 in a certain 
sense, namely that since the spectrum of H is integer-spaced and 
simple, it is possible to introduce new variables P and Q such that 
[H, P' + iQ'] = ±(P' ± iQ') and H = t(p'· + Q") - tIP', Q']. 
The question as to whether the original (P, Q) or the new (P', Q') 
are the "physical" (P, Q) is left open. For details see D. Boulware 
and S. Deser, Nuovo Cimento 30, 230 (1963), where the (non­
canonical) transformation from (P, Q) to (P', Q') is given explicitly, 
and B. Gruber and L. O'Raifeartaigh, Proc. Roy. Irish Acad. 63A, 
69 (1964). 

1J!-m = (P - iQ)m1J!(Ao), m = 0, I, 2, . . .. (3.23) 

Since 

(P + iQ)(P - iQ)1J!-rn = 2H1J!_m = 2(Ao - m)1J!_m 

and 
(3.24) 

(P - iQ)(P + iQ)1J!-m 

= (P - iQ)(P + iQ)(P - iQ)1J!-m+1 

= (P - iQ)2(Ao - m + 1)1J!-m+1 

= 2(20 .....: m + I)1J!-m , (3.25) 
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it is clear that this sequence satisfies the conditions of 
Lemma 2. Thus the spectrum of H is simple. 

In addition, since H ~ 0, the sequence (3.25) must 
terminate. Further, it is clear from (3.25) and (3.14) 
that H = 0 on the lowest state. Thus we obtain a 
finite representation for the operators P, Q, and H 
and the spectrum of H is 0, 1, 2, ... ,n. This is the 
case of parafermi statistics. 

4. EXPLICIT REPRESENTATIONS FOR THE 
CASE [P, Q] = hH 

Since in the special cases (a) and (b) considered 
in the last section the spectrum of H is simple, the 
representation of P, Q, and H is completely determined 
by the eigenvalues of H and the coefficients cn and 
dn of Eqs. (3.8) and (3.18). In fact the only non­
vanishing matrix elements are 

(1J',p H1J'n) = Ao + n, 

(1J'n+!' P + iQ1J'n) = an' \an\2 = cn. (4.1) 

(1J'n-l, P - iQ1J'n) = bn, \bn\2 = dn· 

Hence in order to obtain the explicit representations 
in these cases it is sufficient to determine the range of 
n and the coefficients Cn and dn • But since H, P, and 
Q are symmetric the necessary and sufficient condition 
for the existence of a representation is 

(4.2) 

The second relation sharpens the relation Cn = dn+! 
of (3.8) and (3.18). The phases of the an and bn are 
otherwise undetermined, but may be absorbed into the 
phases of the vectors 1J'n' 

In the present section we determine the explicit 
representation in the case (a), i.e., when [P, Q] = iEH 
and p2 + Q2 + H2 is essentially self-adjoint on D. In 
this case, as mentioned earlier, the P, Q, and H 
generate a unitary representation of a Lie group on H. 

From (3.8) we have in this case 

Cn = C - EA(A + I), A = Ao + n. (4.3) 

We discuss the special cases E = 0, ± 1 separately. 

(0 " = O. Group £2 

In this case we obtain the representation (4.1) with 
dn = Cn = C ~ 0. For C = 0 the representation is 
trivial with P = Q = 0 and H = any real constant Ao. 
For C> 0 the spectrum of H is unbounded above 
and below. If we demand that H generate a single­
valued representation of 0(2) c £2 we obtain the 
additional restriction, "0 = integer. 

(ii) " = 1. Group SU(2) 

In this case we obtain (4.1) with Cn = dn+! = 
C - A(A + I). The special feature of this case is that 
the positive operator p2 + Q2 + H2 is a constant 
(=C). From this it follows that P, Q, and Hare 
bounded operators. Thus the spectrum of H is bounded 
and there must exist two values j and k, say of A, 
such that 

A(A + I) = C for A = j, k, } ~ k 

} - k = integer. (4.4) 

From (4.4) we obtain immediately the well-known 
result that for SU(2) the spectrum of H is of the form 
-}, -} + I, ... } - I, }, 2} integer, and that the 
nonzero elements of P and Q are given by (4.1) with 

Cn =}(j+ 1) - A(J. + 1), 

dn = j(j+ 1) - A(J. - 1). 
(4.5) 

Note that in this case we automatically obtain the 
restriction 2j = integer. This is because SU(2) is its 
own covering group. 

(iii) " = -1. Group SU(1, 1) 

The matrix elements of P, Q, and H are given by 
(4.1) with Cn = dn+! = C + J.(A + 1). The covering 
group of SU(1, 1) is infinitely connected. Hence to 
obtain single- or double-valued representations we 
must impose from outside the condition 2J. = integer. 
The possible representation can then be divided into 
four classes: 

(a) J. = integer, C> 0, 
(b) A = i-odd-integer, C> 1. 
In these two classes C + J.(J. + 1) ~ 0 for all J.. 

Hence representations are possible for all c, and the 
spectrum of H is unbounded above and below. 

(c) J. = integer, C ~ 0, 
(d) A = half-odd-integer, C ~ 1. 
In these two cases C + A(A + I) becomes negative 

unless for some nonnegative integer and half-odd 
integer, respectively, C =}(j + I). Representations 
are possible for these and only these values of c, and 
the spectrum of H terminates either below at} or 
above at -(j + 1). 

One can easily check that these four classes of 
representations of S U(1, 1) correspond to the five 
classes of representations found by Bargman.4 

S. EXPLICIT REPRESENTATION IN THE CASE 
H = !(P2 + Q2) + ia[P, Q] 

We now consider the parastatistics case. The matrix 
elements of P, Q, and H are given by Eq. (4.1), with 
Ao + n ~ O. The possibilities are restricted only by 
the condition Ao real, cn ~ 0 of Eq. (4.3). 
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For the general case 2(1 + I =;6 0 the en are deter­
mined by the recurrence relations (3.18). Solving 
these equations we obtain 

ien = idnH = (ho - (1 - i) 
x {I - [(2(1 - 1)/(2(1 + lW+1} + n + 1. (5.1) 

For (J ~ 0 and (1 < -! the condition en> 0 is 
automatically satisfied. Representations exist and 
the spectrum of H is unbounded above. For -t < 
(1 < 0 the situation is more complicated. It has been 
analyzed in detail in Ref. 7. The main results are that 
no representations exist for general value of ho, but 
for particular values of ho, both finite- and infinite­
dimensional representations exist. 

Finally, we consider the special case 2(J + 1 = O. 
When this case leads to the case of the ordinary 
quantum-mechanical harmonic oscillator, we ob­
viously obtain the usual matrix elements for that case, 
namely ho = t, cn = dn+! = 2(n + 1). For the 
other possibility, the parafermi case, it is easy to see 
from the discussion of Sec. 3, that we obtain the 
finite matrices 

o 

2 
H= 

n 

0 (I)! 

(i)! 0 (2)! 

(2)! 0 (3)! 
p= 

(3)! (n - I)! 

analyticity with respect to P and Q. A sufficient 
condition that it be analytic with respect to P and Q 
also is given by the following lemma. 

Lemma 4: The domain D is analytic for P and Q if 
for alld ED IIZdll ~ IIHdll + e IIdll, whereZmeansP 
or Q and e is a constant independent of d. 

Proof' We first introduce a set of numerical coeffi­
cients e~ by the relation 

n n 

I c~xr = II (x + e + r - 1). (6.1) 
r=O r=O 

It is easy to see that the e~ satisfy the recurrence 
relation 

e~+1 = C~-l + (n + c)C~, (6.2) 

where it is understood that 

. C;;l = C~+l = 0, (6.3) 

and have the following upper bound: 

C~ ~ G)(n + c)n-r. (6.4) 

We then define zr to be ZIZ2' .. Z,. where Z. = P 
or Q for all s = 1, 2, ... r, and establish the relation 

n 

IIZndll ~~e~ IIHrdli. (6.5) 
r=O 

The proof is by induction. Suppose (6.5) is true for 
n = 0,1,'" N. Then, 

IIZN+1dll ~ II(H + e)ZNdll 

~ IIZN(H + e)dll + II[H, ZN]dll 
N 

~ 2 CN IIW(H + c)dll + n IIZNdll, 
r=O 

where in obtaining the first term we have used (6.5) 
and in obtaining the second we have used Eq. (1.1). 
Using (6.5) again, we obtain 

N 

(n - I)! 
II ZN+1d II ~ I {CN Ilw+1dll + (n + c)CN IIHrdll} o .--0 

N+1 

o (I)! = I {C!il + (n + c)CN} II Hrdll 
.. =0 
N+1 

= I CN+I IIHrdli. (6.6) 
,.=0 

-(I)! 0 

-(2)! 

(2)! 

o (3)! 
Q = i 

-(3)! (
n _ I)! • Thus (6.5) is true for n = N + 1, and so for all n. 

We then have 

-en - l)! 0 

6. ANALYTICITY OF THE DOMAIN D 

So far we have assumed only that D is analytic with 
respect to H. We now consider the question of its 

f Itl,n IIZndll ~ f Itl,n i C~ IIHrdll 
In. In.,.=O 

~ f f Itln C: II H'"d II 
r=O n=r n! 

~ f ~ 1!L en + e)n-r IIHrdli. 
r=On=r r! (n - r)! 

(6.7) 
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The last expression is obtained by using (6.4). Hence, 

~ 1!.L IIZndl1 :::;; i ~r Itlm+r (r + m + c)m IIHr dll 
1 n! r=Om=O r! m! 

:::;; I ~r l!L Itlmmm(l + r + c)mllHrd ll 
r=Om=O r! m! m 

:::;; I ~r 1!r Itlmmm er+c IIHrdli 
r=Om=O r! m! 

::; ec:i er 
It!' IIWdl1 ~r Itlmmm 

r=O r! m=O m! 

But D is an analytic domain for H. Hence d is an 
analytic vector, with radius of convergence to, say. 
Hence the two series on the right-hand side of (6.8) 
converge for et < tl = min [to, 1]. Thus d is an 
analytic vector for Z with radius of convergence 
~tl/e. This establishes the lemma.H We obtain also 
the following simple corollary. 

Corollary: Let H = HP2 + Q2) on D, and D be 
an analytic domain for H. Then if H, P, and Q 
satisfy (Ll) on D, D is an analytic domain for H, P, 
and Q. 

Note that in the case H = i(p2 + Q2) the com­
plicated expressions (5.1) for the matrix elements of 
P and Q reduce to Cn = dn+1 = 2(ho + n) + 1. For 
ho = i they reduce further to the ordinary quantum­
mechanical values Cn = dn- 1 = 2(n + 1). The state­
ment of the above corollary can actually be weakened 
by the following. 

Lemma 5: Let H = HP2 + Q2) be essentially self­
adjoint, and (Ll) be satisfied, on D. Then there 
exists in Je a common dense analytic domain A for 
P, Q) and H. 

11 It should perhaps be mentioned that the proof just given is not 
a special case of the general proof of analyticity for elements of a 
Lie algebra given by Nelson (Ref. 9, pp. 577, 588). In both cases 
IIzll ~ IIHII, but whereas in Nelson's case one uses information 
about (ad zt H, here one uses information about (ad H)ftZ. 

Proof' We construct the analytic domain A for H 
(which certainly exists, since H is self-adjoint) and 
show that it is an analytic domain for P and Q. This 
will follow from the proof of Lemma 4 if we can show 
that for all a E A, 

r+l 
IIZr+1all :::;; ~C;+l IIHQall, (6.9) 

q=O 

where the C; are the coefficients defined in Lemma 4. 
To prove this we show that it is true jointly with 

[H, zr]a = Zra, (6.10) 

where Zr is the rth-degree monomial in P and Q 
obtained by computing the same commutator on D. 

To prove (6.9) and (6.10) we assume that they are 
satisfied for r = 1 ... s - 1. By definition, 

([H, ZS]d - Z. d, a) = 0 

whence, using (6.9) for r = s - 1 we have 

(Hd, Z 8a) = (d, Z8Ha - Z8a). 

Thus Z 8a is in the domain of (HI D)* = Hand 

HZsa = Z8Ha - Z.a. 

This is Eq. (6.10) for r = s. Further, since 

Z 8a E !l(H), Z8a E !l(Z), 
and 

IIZ8Haii ::; IIHZsall + c IIZ8all. 

(6.l1) 

(6.12) 

(6.l3) 

Using this equation and Eqs. (6.9) and (6.10) for 
r = 1 ... s - 1, we obtain exactly as in Eq. (6.6), 

8+1 
IIZ8Haii :::;; ~ C~+1 IIHrdll. 

r=O 

This is just Eq. (6.9) for r = s. Thus Eqs. (6.9) and 
(6.10) are valid for r = s, and so for all r, as required. 

This lemma generalizes a result due to Dixmier,12 
which states that if t(p2 + Q2) is essentially self­
adjoint on D and [Q, P] = i on D, then P and Q 
are essentially self-adjoint on D. 

12 J. Dixmier, Compo Math. 13,263 (1958). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 5 MAY 1968 

Quantum Corrections to the Pair Distribution Function of a 
Classical Plasma 

MARK DIESENDORF AND BARRY W. NINHAM 

Department of Applied Mathematics, University of New South Wales, Kensington, N.S.W., Australia 

(Received 8 June 1967) 

Quantum-mechanical corrections to the pair distribution function of a plasma at high temperature 
and low density are calculated to order e2 in the interaction, using standard diagram perturbation 
techniques. Both the effects due to quantum statistics (exchange) and the finite size of a wave packet 
(dynamic screening), are considered. 

1. INTRODUCTION 

In this paper calculations are made of quantum­
mechanical corrections to the pair distribution func­
tion (PDF) of a plasma at high temperature and low 
density. Standard quantum diagram perturbation 
techniquesl - 3 are used to derive the corrections to 
first order in the interaction e2• 

The pair distribution function g(r) gives the 
probability of finding a particle within the distance 
(r, r + dr) of a given particle. It is of interest because 
it is directly related to experimental quantities; in 
particular, to the cross section for the elastic scattering 
of an "external" particle or photon from the system, 
within the Born approximation.4 As an asymptotic 
expansion in terms of the plasma parameter A, the 
PDF for a classical electron gas (in a uniform positive 
background) has the form 

t5g(r) == g(r) - 1 = exp [ - ~ e-Kr
] 

- 1 + O(N) + O(A2In A), (Ll) 

where {3 = IjkT, p is the density of electrons, and 
K-1 = AD = (47Tp{3e2)-!, the classical Debye length, 
is a measure of the static screening distance in the 
plasma. The plasma parameter A is given by 

A = _1_ = 27T!e3{3!pi. (1.2) 
47TpAt 

For large distances r, Eq. (Ll) gives as leading term 
the well-known linearized Debye-Hiickel5 result 

t5g(r) = -A(Krrle-KT
• (1.3) 

Terms beyond the first in Eq. (1.1), of order A2 and 
A2 ln A, correspond to the Abe6 correction to the 
equation of state. They have been calculated by 

1 E. W. Montroll and J. C. Ward, Phys. Fluids I, 55 (1958). 
2 E. W. Montroll in The Theory of Neutral ana Ionised Gases, C. de 

Witt and J. F. de Toeuf, Eds. (John Wiley & Sons, Inc., New York, 
1960). 

3 J. M. Luuinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 
4 L. Van Hove, Phys. Rev. 95, 249 (1954), and references. 
• P. Debye and E. Hiickel, Physik. Z. 24, 185 (1923). 
6 R. Abe, Progr. Theoret. Phys.12, 213 (1959). 
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Bowers and Salpeter, Hirt, DeWitt, and others, 
using diagram methods7

; also by O'Neil and Rostoker, 8 

and Lie and Ichikawa9 using a kinetic equation 
approach. 10 

Apart from these classical terms, there are also 
quantum corrections; i.e., those involving Ii. Quantum 
effects of two kinds persist at high temperatures: 
Corrections of the first kind, exchange corrections, 
are a consequence of quantum statistics, which give 
distance correlations even in the absence of interac­
tions. The zero-order exchange correction to the 
PDF of a Fermi or Bose gas was found by Uhlenbeck 
and Gropperll to be, at high temperatures, 

t5go(r) = =Fe-!(T/~)2, (1.4) 

where the upper and lower signs refer to systems of 
fermions or hosons, respectively, A is the thermal 
de Broglie wavelength 

A = 1i({3j2m)i (1.5) 
and m is the particle mass. In the fermion case an 
extra factor t must multiply Eq. (1.4) to take account 
of the exclusion principle. The relation (1.4) is a 
special case of the more general result of London12 

and Placzek13 valid for a non interacting quantum gas 
at all temperatures, 

i5g (r) = =F{ 1 Id3peiP.r/1i ze-(Jp2/
2m }2 (1.6) 

o (27T1i)3 P 1 ± ze-(Jp2/2m ' 

where the fugacity z is related to the density p hy 

1 I ze-(Jp2/2m 

P = (27T1i)3 d
3
p 1 ± ze-(Jp2/2m • (1.7) 

7 D. L: Bowers and.E. E. Salpeter, Phys. Rev. 119, 1180 (1960); 
c. W. Hlrt, Phys. FlUIds 8, 693 (1965); H. E. DeWitt, Phys. Rev. 
140, A466 (1965). 

8 T. O'Neil and N. Rostoker, Phys. Fluids 8, 1109 (1965). 
• T. J. Lie and Y. H. Ichikawa, Rev. Mod. Phys. 38, 680 (1966). 

10 There is currently some debate in the literature about one of the 
terms in the expansion (1.1). For large distances r, the diagram 
theories find that this term tends to infinity as A2e- KT, Le., more 
slowly than the leading Debye term. (See, e.g., Ref. 9 for a discus­
sion.) 

11 G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932). 
12 F. London, J. Chern. Phys. 11,203 (1943). 
13 G. Placzek, Proc. Second Berkeley Symp. Math. Stat. Prob., 

581 (1950). 
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This formula [Eq. (1.6)] expresses the zero-order PDF 
in terms of the Fourier transform of the Fermi or 
Bose distribution. The next contribution to the PDF 
due to exchange is of first order in e2, and is evaluated 
explicitly in Sec. 2. The result is 

t5g~r) f"ooI pe
2 

e-lcr/.t)1 
2r 

x [log (riA) + t log 2y + l(A/r)2 + O(Afr)'] (1.8) 

for r » A, and 

t5gliAr) f"ooI t( 7T/2)1 pes e-lcr/.t)1 
A 

X [1 + (27T)-i(i) -IGJ + ... J (1.9) 

for r« A. The corresponding correction to the 
equation of state, which is of second order in e2, is 
also evaluated in Sec. 2. 

The second kind of quantum correction to be 
considered is a consequence of the quantum-mechan­
ical treatment of classical statistics. By this we mean 
that the point charges which make up the classical 
system should strictly be treated as wave packets of 
spatial extent A. These wave packets obey Maxwell­
Boltzmann statistics.' The net effect of making this 
correction is the appearance of a dynamically screened 
interaction14 in place of the statically screened one. 
In Sec. 3 we obtain the effects of dynamical screening 
on the PDF up to the chain or pair approximation, 
which corresponds to the result of DeWitt15 and 
Montroll and one of US16 for the ring contribution 
to the partition function or equation of state. The 
result is 

"ge(r),...., _(Pe2Ir){e-Kr[1 + HAP'D)2 +" O(A/A-D)'] 
- (A/r)2e-Icrf*lI[1 + O«Alr)2, (AjA-D)2)]) (1.10) 

in the region A/A-D « 1 « riA, and 

"ge(r)'" -(7T/2)I(pe2/A)[1 + O(AlA-D)2 + O(r/A)2] 

when rlA« AIA.D« 1. 
(1.11) 

The calculations in this paper are performed for 
an electron gas immersed in a uniform background of 
neutralizing charge. The generalization to an electron­
ion plasma is straightforward for the present contri­
butions, and the method will be indicated briefly at the 
end of the appropriate sections. The system is 
translationaUy invariant. 

14 We use the terminology "dynamic screening" as a convenient 
mnemonic to distinguish such quantum corrections from exchange 
effects. 

16 H. E. DeWitt, J. Math. Phys. 3, 1216 (1962). 
11 E. W. Montroll and B. W. Ninham, "Quantum Corrections to 

the Debye Formula" (unpublished). The work was discussed by 
Professor Montroll at the February 1962 Baltimore meeting of the 
American Physical Society. 

We use the equivalent diagram perturbation 
formalisms of Montroll and Ward1•2 (MW) or 
Luttinger and WardS (LW) , since the problem has 
been formulated already by these authors in a conven­
ient form for computation. 

2. EXCHANGE CORRECTIONS 

Exchange diagrams, of first order in the interaction 
which contribute to the PDF are shown in Figs. l(b) 
and I (c). Figure lea) represents the eXChange term 
associated with the noninteracting system, which 
gives in the near classical limit the Uhlenbeck and 
Gropper formula Eq. (1.4). The diagram (Fig. l(c)] is, 
in the terminology of Luttinger and Ward, anomalous, 
and will be shown to yield a result of higher order in Ii 
than Fig. l(b). The main term to be evaluated then is 
the "crossed exchange" diagram of Fig. l(b). The 
genera] quantum-mechanical expression for its 
contribution to the PDF is given by Ref. 2 (with an 
additional factor 2 for spin weighting), 

1 
!5gE<:r) = p2(27T1i)6P2 

X tlt2~-OO f d3qleiQrr/llf d3q2[ -u(q2)}2AiE), (2.1) 

where 

A4(E) = ~ fd3p r d1)[(z-le-P~ + 1)-1 - zeP"] 
2m Je 

and 

X ([1) + ~-(p)][1] + 27Tit1/P + e(p + ql)] 

X [1] + 27Ti(t1 + t2)/P + e(p + ql + qJ] 

X [1) + 27Tit2/P + e(p + qJJ}-1 (2.2) 

u(q) = (27T1i)-3fd3rv(r)eiQ.r/ll = _e_
2

_ 

21i7T2q2 
(2.3) 

is the Fourier transform of the Coulomb interaction. 
The contribution zeJl'l has been subtracted from the 
fermion function (Z-Ie-Jl~ + 1)-1 which usually ap­
pears in An (Ref. 2), since a one-toron exchange 
diagram represents a forbidden process. In Eq. (2.2) 
e(p) = p2/2m, and the contour c is to be chosen so 
that it separates the poles of the fermion function 
(z-I e-P'I + 1)-1 from those of the rest of the 1) 

integrand. The usual MW procedure to .evaluate the 

OCDu 
(a) (b) (c) 

FIG. 1. Exchange diagrams contributing to the pair distribution 
function up to first order in the interaction e'. The crosses indicate 
unintegrated points. 
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propagator is to close the contour c in Eq. (2.1) in an 
anticlockwise direction around the poles of the energy 
denominators which occur at 

For the explicit evaluation of exchange diagrams it 
turns out to be more convenient to close the contour 
of the 'Y} integration in a clockwise direction, so that 
it encircles the poles of the fermion function. For 
electrons, we have poles due to (z-l r P'I + 1)-1 at 

'Y) = -/1 - (21 + 1)7Ti/~ == -~I (2.5) 

with residue 1/~. This leads at once to an expression 
for the propagator A4(E) in terms of the single­
particle propagators 

G(p, WI) == [~I - E(P)]-l (2.6) 

of the L W formalism. Thus we have 

(2.7) 

ex) 

S = L ([~! - E(p)][~!+t1 - E(p + ql)] 
t},t2,l=-oo 

X ['!+t1+t2 - E(p + ql + q2)] 

X [~!+t2 - E(p + q2)]}-I. (2.8) 

Note that to obtain the contribution to p-l(S(k) -1), 
where S(k) is the static form factor17 of the system, one 
simply drops the factor (27T1i)-3 S d3ql exp (iql' r/Ii) and 
puts ql = lik. 

The sums in Eq. (2.8) can be performed with the 
aid of the identity 

1 e{ta 

- L -- = {H(CI.)!_(E) - H( -Cl.)!+(E)}ea
£, (2.9) 

fJ ! 'I - E 
where 

!_(E) = If(z-l efl£ + 1), 

!+(E) = 1/(ze-fl
£ + 1) = 1 - !_(E), 

and H(!J.) is the step function. 
Changing to new summation variables 

(2.10) 

k1 =I+t1 , k2=I+t2' ka=l+tl+t2 (2.11) 

and writing for notational convenience 

E(p) = E, E(p + ql) = El , 
(2.12) 

E(p + q2) = E2' E(p + ql + q2) = E3, 

17 D. Pines. Elementary Excitations in Solids (w. A. Benjamin. 
Inc., New York, 1964), p. 73. 

we have 

S = L bk1 H2.ka+1h( k l , k 2 , ka' 1) 
l.k1.k2.ka 

= fJi (P d~' L e2"ifl'(klH2-ka-O/flh(kl' k2' ka, I), 
J 0 l.k1,ko.ka 

(2.13) 

where h represents the summand of Eq. (2.8) and we 
have used an integral representation for the Kronecker­
delta function. Then, using the identity (2.9) we have 

1 SoP e-Il'{t efl'{k1 

S = - d~' L 
fJ 0 I,k"k.,ka ('I - E) ('k1 - El) 

eP'{k2 e-fl'{ka 
X 

('k2 - E2) ('ka - Ea) 

= fJ3fuP dfJ'f+( E)!_( E1)!_( E2)f+( Ea)eP'H+E1+€2-£a). 

Finally, noting that 
(2.14) 

!_(E)eflE = Z!+(E), (2.15) 

we can perform the integration over ~' in Eq. (2.14) 
and after substituting for S in Eq. (2.7), find for the 
contribution to the PDF, the expression 

bgE(r) = (27T~)6p2 f d3qleiQl'r/l!f d
3
Q2U(Q2) f d3p 

x [f+(El)f+(E2)!_(E)!_(Ea) - !-(€1)!-(€2)!+(€)!+(€a)] 

(El + E2 - E - E3) . 
(2.16) 

A more convenient form for computation follows if 
we substitute for u(q) from Eq. (2.3) and introduce 
dimensionless variables defined by the transformations 

p = P(2m/fJ)!; ql = Ql(2m/fJ)!, 

q2 = -(P + Ql + Q2)(2m/~)i, 
where now 

(2.17) 

!_(p) = F _(P) = (z- l eP2 + 1)-1. (2.18) 

This substitution yields 

bgE(r) = _2 - (2m/~)i(~)fdaQ eiQ1.rtt>fdap 
(27T1i)6 21i7T2p2 1 

Xfd3Q 1 
2 (P + QI + Q2)2 

x {F +(P + Ql)F +(Ql + Q2)F -(P)F -(Q2) 

- F_(Q + P1)L(QI + Q2)F+(P)F+(Q2)} 
x [(P + Ql)2 + (Ql + Q2)2 - p2 - Qirl. 

(2.19) 

These somewhat tedious manipulations appear to 
be necessary to reduce the integral to a manageable 
form. Thus far our expression for bgE(r) is valid for a 
system of fermions at all temperatures. In the near 
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classical limit, F+(P) -- 1 and F_(P) __ z exp ( - P2), so 
that the leading term is of order Z2. The fugacity z is 
related to the density p through (Montroll,2 p. 67) 

z = t,1i3(27T{J/m)ip{1 - 7Tie3{Jipi + O(p)}, (2.20) 

where again we have inserted an additional factor t. 
to take care of electron spin, so that CJgE(r) becomes 

CJgE(r) = 4:5 ({Je 2/A) f d3Qleiorrl*f d3p 

x f d3

Q2 (P + Q: + Q2)2 

{ 

e-<P'+Q2') _ e-<P+Ol)'e-<OI+02)2 } 
X (2.21) 

[(P + Ql)2 + (Ql + Q2)2 - p2 - Qil . 
Further reduction of the integral is carried out in 
the Appendix, and we find that bgE(r) has the asymp­
totic expansion for r » A, 

bgE(r) ,-..., t({Je2/r)e-i <rl*)2 

x [In rIA + tIn (2y) + A2/2r2 + O(A/r)'] (2.22) 

while for r « i.", 

bgE(r),...., l( 7T/2}i({Je2/A)e-i <r1kl
2 

X [1 + (27T)-i(r/i.") - t(r/W + O(r/WJ. (2.23) 

The leading term of the large r expansion can become 
larger in magnitude than the Uhlenbeck-Gropper 
contribution under certain conditions. 

The method of the preceding calculation can be 
used to compute the corresponding correction to the 
equation of state. If we join the two crosses of the 
open diagram Fig. l(b) with an interaction line u(q), 
we obtain the corresponding closed diagram, whose 
contribution to In Zo is 

2 V 
({JPV)E == In ZOE = - "4 (27T1i)3{J 

X III d3qld3qlld3pu(ql)U(q2)S(P, Ql, Q2) = E1 E, 

(2.24) 

where the propagator for the diagram is given by 
Eqs. (2.2) and (2.8). The factor 2 arises from spin 
weighting, the factor! ensures that only topologically 
distinct diagrams are counted. The constant E is 
given by 

E = _1_V_e4Z 2(2m)2(27Tm)1_1_ 
2 (27T1i)5 {J (27T)i 

= - -;- P V(A/27T~* (2.25) 
(27T) r. 

with r. = me2jli2pt the usual quantum-mechanical 

parameter, and 

I -f d3Q
1fd3Pf d3

Q2 
E - Q~ (P + Ql + Q2)2 

[e-<p'+Qs2) _ e-<P+Ol)le-<Ol+OI)I] 

X (P + Ql)2 + (Ql + QII)2 _ p2 _ Q: 
__ (27T)t ~ [en - t)!]222» 

k (2.26) 
4 »=0 (2n + 1)! (2n + 1) 

= v'2 7T ¥- In 2. (2.27) 

The evaluation of the integral lEis also carried out 
in the Appendix. 

The contribution of the anomalous diagram Fig. 
l(c) to the PDF or equation of state can be written 
down in the same manner and for the PDF has the form 

bg(r) = -2 fd3q eiQl"r/lI 
E (27Tn)6{J3l 1 

X J d3
Q2U(Q2) J d3pS(p, Ql' Q2)' (2.28) 

where the propagator can be shown to be 

1 r 0+ r 0+ S = ! exp \>I+tl exp \>IH. 

t"/2.1 al - €)2 al+tl - €J alH. - €z) 
= -fJ'i-(€1)f-(€2)!-(€)!+(€)' (2.29) 

In the near classicallimit!_(€) __ ze-P1J/22m;f+(€) __ 1, 
and the contribution bgE(r) to the PDF, while 
proportional to e2 like bgE(r) , is of higher order 
O(zS) in the fugacity, so that it can be neglected in 
comparison with bgE(r), Fig. l(b). A similar conclu­
sion holds for the contribution of Fig. 1( c) to the equa­
tion of state. 

For a two component system in general, three 
PDF's exist, g08(r), gii(r), and gi8(r), where super­
scripts e, i refer to electrons and ions, respectively. 
To generalize the exchange diagrams to the case of 
an electron-ion plasma we observe that exchange 
diagrams can be constructed only from identical 
particles. Thus each diagram of Fig. l(b) must be 
composed of particle lines which are either all 
electron lines, contributing to gOO(r), or all ion lines 
contributing to gii(r). Contributions to the ion-ion 
PDF will have the same form as bgE(r) above, 
differing only in the mass, and in general, in the 
magnitudes of density and temperature. 

3. DYNAMIC SCREENING CORRECTIONS 

In the chain (pair) approximation, the expression 
given by Montro1l2 •18 for the PDF is 

bg.(r) 1 ! fd3 iQ.r/1l [-u(Q)][2A2(Q, t)]2. 
(27Tnt'{Jp2 t=-oo Qe 1 + 2u(q)A2(q, t) 

(3.1) 
18 S. Fujita, A. Isihara, and E. W. MontroIl, Bull. Acad. Roy. 

Belg. 44, 1018 (1958). 
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To evaluate this expression, we use the explicit 
representation of A2 for classical statistics1.2 

A 2(q, t) = A2(0, 0) L1

dX exp [_Pq2x(1 - x)j2m] 

x exp (-27Titx), (3.2) 
where 

A2(0,0) = zp(27Tmjp)i. (3.3) 

The limit of high temperature and low density is 
equivalent to small e2 , since from dimensional 
analysis the leading correction to the perfect-gas 
equation of state must involve some function of the 
dimensionless parameter e2ppt. As e2 -+ 0, the major 
contribution to the integral of (3.1) comes from the 
region of small q. We therefore write 

A 2(q, t) = A2(0, 0) + bA2(q, t), (3.4) 

where A2(0, 0) leads to the classical Debye-Hiickel 
PDF, and 

bA2(q, t) = -A(O, 0) IdX 

x {I - exp [-Pq2x(1 - x)j2m] exp (-27Titx)} 

(3.5) 

leads to quantum corrections due to dynamic screening. 
If we use Eq. (3.3) we may write the denominator of 
(3.1) as 

4u(q)A~(q, t) 4u(q)A~(q, t) 

1 + 2u(q)Alq, t) 1 + 2u(q)A2(0, 0) 

8[U(q)]2A;(q, t)bA2(q, t) ___ =---:0=-=---==---'---==--'-__ . (3.6) 
[1 + 2u(q)A2(0, 0)][1 + 2u(q)A2(q,t)] 

The major corrections are contained in the first term 
on the right-hand side of Eq. (3.6). The second term 
is of higher order in both e2 and z and can be dis­
carded, so that to order Z2e2, after substituting Eqs. 
(3.2)-(3.6) into Eq. (3.l), we obtain the result 

ogc(r) = - - - dq sin (qrjll) q 2 pe2lOO 
7T r 0 (q2 + 1l21(2) 

x fdx exp [-Pq2x(1 - x)j2m] 

X IdY exp r _pq2y(1 - y)j2m] 

00 

X I e-2lTit(O>tlll. 

t~-oo 
(3.7) 

In this expression we have performed the angular 
integration in (3.1) and have substituted for the 
fugacity z the leading term from Eq. (2.20). The sum 
over t may be carried out at once by noting that 

00 00 

I e2"it(",+vl = I o(x + y - m). 
t=-oo m=-oo 

(3.8) 

The delta function implies that y = (m - x), and the 
restriction 0 ~ y ~ 1 requires therefore that 0 ~ m -
x ~ 1. Since also 0 ~ x ~ 1, m = 1 is the only term 
of the sum which contributes, so that 

2 Pe2Loo q bgcCr) = - - - dq sin (qrjli) 2 2 2 
7Tro q+lil( 

X £1 dx exp [-2Pq 2x(1 - x)j2m]. (3.9) 

Again the q integral can be expressed in dimensionless 
variables by the substitution p = q/nl(. Then 

pq2j2m = (,J.r, 
where 

(3.10) 

is a parameter which describes in a sense the degree of 
"quantumness" of the system. In the near classical 
limit, IX is small compared to unity. Interchanging the 
order of integration, Eq. (3.9) becomes 

2 pe
2L1 Loo bg.(r) = - - - dx dp sin (pl(r) 

7T roo 

X ~ exp [-2IXp2x(1 - x)]. (3.11) 
l+p 

When IX = 0, this expression yields the classical 
linearized Debye-Hiickel PDF 

(3.12) 

which diverges for small r. On the other hand for the 
quantum Boltzmann gas while the parameter IX is 
always small, it is never identically zero, and bgc(r) 
does not diverge for small r. The asymptotic form of 
ogc(r) for large r can be obtained as follows. We first 
perform the p integration of Eq. (3.11) and find 

bgcCr) = - ! pe
2 

[ldx exp [2IXx(1 - x)] 
2 r Jo 
X {e-Kf Erfc (L) - eKf Erfc a+)}, (3.13) 

where 

~'f = [2IXx(1 - x)]! T }Kr[2IXx(1 - x)]-! (3.14) 

and 

Erfc ($) = 27T-! loo e-t2 dt. (3.15) 

In the near classical limit IX -+ 0, and since KIX-! = 
I/A, we have for r/A» 1 

(3.16) 
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Hence using the relation The integral required is 

Erfc (-e) = 2 - Erfc ee) (3.1 7) I = e-1Cr/k )
2 I c (3.25) 

and the asymptotic expansion 

Erfc(e) = (171e)-le- S'(1 - 2~2 + 0(1/e4») , (3.18) 

we find 

(Je
2 11 ~gc(r) = - - e-lCr exp [2IXx(1 - x)] dx 

r 0 

+ (2/17)f(2{Je2J;/r2
) L1

dX[X(1 - x)]+l 

x exp [-r2/8J;2x(1 - x)]{l + 0[(J;/r)2, IX]}, 

(3.19) 

where the terms neglected are of order (A.jr)2, or IX, 
by comparison with the second term retained. The 
second integral can be evaluated as follows. We 
consider 

Ie = e1c,/k)2 t dx [x(1 - x)]+! exp {-Hr/J;)2 1 } Jo 4x(1- x) 

(3.20) 

an integral which can be cast into the convenient form 

Ic = -. (p - I)! [t(r/J;)2]-" 1 1C

+
iOO 

217l c-;oo 

x [x(1 - x)]! - 1 dp, 11 [1 ]-
o 4x(1 - x) 

Re p > 0 (3.21) 

by using the Mellin integral representation for the 
exponential function. The x integral may be written, 
with the change of variable 

4x(1 - x) = y, 
as 

2 [1 [xCI _ X)]![ 1 - IJ-" dp 
Jo 4x(1 - x) 

Hence, 

=! f\p+!(1 - y)-2>-! dy 
4 Jo 

= 1 17(p + !) , -1 < Rep < 1. (3.22) 
4 sin 17(p + 1) 

Ie = _1 iC+;oo ?!.(p -I)! (p + t) [t(r/J;ir"dp, 
217i Hoo 4 sin 17(p + t) 

0< Re p = c < t. (3.23) 

For large r, we may translate the contour to the right 
to get 

Ie = (217)1 J;/r[l - 2(J;/r)2 + O(J;/r)4]. (3.24) 
4 

so that substituting Eqs. (3.24) and (3.25) into Eq. 
(3.19) and using the definition Eq. (3.10) we have 

~gc(r) = - {Je
2 

{e-Kr[1 + i(J;/A.n)2 + 0(A.jA.n)4] 
r 

- (A.jr)2e-1cr/k )2[1 + O«J;/r)2, (J;/A.n)~]). (3.26) 

This result is valid in the region A.j r « 1, A.j). D « I. 
For very small distances it is not difficult to show 
from Eq. (3.11) that 

~gcCr) = - (~t {J;2 {I + O(IX) + O(r/J;)2}, (3.27) 

where rlJ;« IX « 1. 
Thus the dynamic screening correction removes the 

small r divergence of the classical Debye-Hiickel pair 
distribution function. The leading term, one half of 
whose contribution is cancelled by the exchange term 
Eq. (2.23), stilI attains very large negative values, 
under certain plasma conditions. This can easily be 
seen by writing 

1R2 (R)l 17r ~ = '!!. -.1. > 1; T < 5 X 105 OK (3.28) 
2" 2 J; 2 kT 

so that the small r behavior of ~gc(r) given by Eqs. 
(3.27) and (2.23) is not meaningful in this region. 

The generalization of the dynamic screening contri­
bution to the case of an electron-ion plasma is 
immediate. To do this we replace A2(q, t) in Eq. (3.1) 
by a sum of separate electron and ion contributions. 
Thus, in the numerator of (3.1), 

[A(q, t)]2 ---+- [A.(q, t) + A;(q, t)]2 

= A! + 2A.Ai + A~ . (3.29) 

These terms lead to contributions to ~g"(r), t5gBi(r), 
and t5gil(r), respectively. In each case the denominator 
of (3.1) should be replaced by q2 + 1i22i(, where 

i(2 = (e2/21i7T2)[A.(0, 0) + A;(O, 0)] = K: + K:. (3.30) 

When the electron and ion temperatures are equal and 
P. = Pi' the quantum corrections to t5gBi(r) and 
t5gii(r) are negligible, being of order l/M, I/M2 with 
respect to t5gB·(r). Here M is the ion mass. 

ACKNOWLEDGMENT 

One of the authors (B. W. N.) is indebted to the 
Australian Commonwealth Government for the award 
of a Queen Elizabeth II Fellowship. 

Note added in proof Since this work was completed 
it has been brought to the authors' attention by 



                                                                                                                                    

PLASMA PAIR DISTRIBUTION 751 

Professor H. E. DeWitt that some of our results were 
obtained independently by Felixl9 and Trubnikov and 
Elesin.20 

APPENDIX: EXCHANGE INTEGRALS 

We evaluate here the integrals of Eqs. (2.21) and 
(2.26). First consider the integral of Eq. (2.21) which 
can be written as 

I =JdaQ ei01"r/t:fdapf d
a
Q2 

1 (P + Ql + Q2)2 

x exp [-(P + QJ2] exp [-(Ql + Q2)2] 11 dy 

x exp {-y[P2 + Q: - (P + Ql)2 - (QI + Q2)2]). 

(AI) 

Putting P + Ql + Q2 = - Qa, d3Q2 = d3Qa, we have 

I = J daQleiOrr/* f d3p f d~~a 

X e-[(P+Ol)'+(P+Oa)!] lid y e-2110l'o •. 

The P integration is 

(A2) 

f d3p exp {-[(P + Ql)2 + (P + Qa)2]) 

= 277e-(0IB+Oa3
) [CO p 2 dPe-2PBf+ldX e-2Plol+0. 1:1: 
Jo -1 

_(013+0.') 2 

= -277 e elIOl+0.1 
21QI + Qal 

x lco P dP{exp [-2(P + ! IQI + QaD2] 

- exp [-2(P - ! IQ1 + QaD2]} 

= E: e-l(01-08)B{2 [CO e-2:1:2 dx 
2 JI101+0sl 

+ e-2:1: dx f
+lIOl+011 B 

-1101+0,1 

= .J2 (77i /4)e-l (01-0a)·. (A3) 

The integral I then becomes 

I = (2;)i f d3Q1eiOrr/* f d~~a e-l (01-0.)z{dY e-21I0rOa 

(21T)* lco = -- A/r Ql dQ1 sin (QIr/),) 
4 0 

x [COdQae-I(01"+012) tdyf+ldZ e(I-211)0101% 
Jo Jo -1 ---

II M. Felix in Comptes Rendus de fa VIe Conference Internationafe 
sur fes Phenomenes d'Ionisation dans fes Gaz, P. Hubert and E. 
Cremien-A1can, Eds. (Published with the support of the French 
Government, Paris, 1963), Vol. I, p. 185 . 

• 0 B. A. Trubnikov and V. F. Elesin, Sov. Phys.-JETP 20, 866 
(1965). 

= (277)* Air [COQ1 dQI sin (QlrIA)e-1012 
2 Jo 

x [COdQae-10a2I (QIQa)2n 
Jo ,,=0(2n+l)!(2n+l) 

(277)* co 2n- l (n _ !)! 
= - Afr I, ---'---~:":"-

2 n=O (2n + 1)(2n + I)! 

x lco dQ1Q~"+le-lol' sin (Q1r/A) 

== (277)*(A/2r)(f. (A4) 

We have carried out this integral in some detail, since, 
unless the integrals are performed in the order 
indicated, 1 is exceedingly difficult to evaluate. In 
order to complete the quadrature, we need to obtain 
expansions appropriate to both large and small r, and 
proceed as follows. Using the duplication formula 

22n(n - i)! n! = 1Tl(2n)!, 
we have 

00 1 
(f = 1(77/2)1 ~ '( + !)2 

,,-0 n. n 

X lco dQ(Q2/2)"Qe-102 sin (Qr/A). 

Then the observation that 

1 = [1 dx [:l:t,,-l dt 
(n + !)2 Jo X Jo 

allows us to write 

(f = 1(77/2)* [1 dx [:l:t- l dt 
Jo x Jo 

(A5) 

(A6) 

x Jo lco (Q~~2t Q dQ e-l02 sin (Qr/A) 

= i{1T/2)1 [1 dx [:l:t- 1 dt 
Jo x Jo 

x 100 

Q dQ e-l02(1-t) sin Qr/A. (A7) 

Hence, after completing the Q integration we obtain 

(f = -- - t- (1- t)- exp -f(rjJl-- . 77 r 11 dxl:l: 1 ! [ 1 ] 
SAo x 0 (1 - t) 

Integration by parts with respect to x gives 

(f = - :!!.!. [ldx In x x-l (1 - x)-i 
S A Jo 

(AS) 

x exp [-Hr/A? 1 ] (A9) 
(I - x) 

and a further change of variable to 

y = !(r/A)2(x/1 - x) 



                                                                                                                                    

752 M. DIESENDORF AND B. NINHAM 

yields the convenient form 

(1 = - i _./2 e-1(rlk)S1°Ody y-1e-II{ln [2(~] 

+ In y - In [1 + 2(~2y ]}. (AIO) 

For large r we may expand the logarithm in the 
third term in the braces, and carry out the remaining 
integrals to get the complete asymptotic expansion 

(1 = -17{.J2/8)e-1(rIA)I{(17)1In [2(~1- 171 In (4y) 

+ n~l( _l)n (n ~ t)! [2(~1} (All) 

where y is Euler's constant. 
Collecting together Eqs. (All), (A4) , and (2.21), 

we have finally 

!5gE(r) = ! fJe
2 

e-1(rIA)B 
2 r 

x {In (r/A) + In :y + l(A/r)2 + O(A/r)4}, 

(A12) 
which is the result quoted in Eq. (2.22). 

For small r, we rewrite Eq. (AW) as 

(1 = 17(.J2/8)e-l(rIA)21°O dy y-1e-liln [1 + (r/A)2 21J. 
(A13) 

The integral representation 

I iC+iOO 17 
In(l + x) = -. dpX-fl. , 

2771 c-ioo p sm 17p 

-1 < Rep <0 (AI4) 

gives the alternative form 

17.J2 -1(rIA)2 1 
(1=--e -

8 217i 

X fC+iOO 
2 fl(A/r)2fl 17. dp fro dy e-1lyfl-t, 

JC-iOO p sm 17p Jo 
(A15) 

where the y integral gives (p - t)!, which restricts the 
contour to the region -t < Rep < O. For small r, 
we close the contour to the left and obtain 

!5gE(r) = t{17/2)1(fJe2/A)e-1(rIA)2 

x [1 + r/(217)lA - i(r/A)2 + O(r/A)3], (AI6) 

which is the result quoted in Eq. (2.23). 
The reduction of the integral Eq. (2.26) to the form 

quoted, 

IE = (217)t I [en - !)!]2~n ,(A17) 
4 n=O (2n + I)! (2n + 1) 

follows in precisely the same manner. The sum can be 
evaluated by using the duplication formula and the 
identity of Eq. (A6) to write 

.J2 :E = fl dx f"'dt! tn-1 (n - t)! 
17 Jo x Jo n=O n! 

= 171 fl dx f'" dt[t(l _ t)]-l. (A18) 
Jo x Jo 

Integration by parts gives then the result Eq. (2.27): 

.J2 17-11 E = - il dx[x(l - x)]-lln x 

= -[~ f\"(l - x)-l dX] 
doc Jo ,,=-1 

= 172 In 2. (A19) 
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Solution of the Transport Equation with Anisotropic 
Scattering in Slab Geometry* 

ROBERT L. BOWDEN, F. JOSEPH McCROSSON, AND EDGAR A. RHODESt 
Department of Physics, Virginia Polytechnic Institute, Blacksburg, Virginia 

(Received 4 August 1966) 

Some systematics which exist between eigenfunctions and adjoint singular integral equations arising 
in the solution of the transport equation in slab geometry are illustrated. The transport equation is 
shown to obey a singular integral equation and its relationship to the eigenfunction expansion-method 
solution is shown. A new method for solving for the expansion coefficients in the eigenfunction expansion 
method is illustrated by solving Milne's problem. The role adjoint singular integral equations play in 
finding appropriate weight functions for use in orthogonality relations between the eigenfunctions of the 
transport equation is briefly discussed. 

1. INTRODUCTION 

In recent years, exact results to various neutron 
transport problems in slab geometry have been ob­
tained in which the theory of singular integral 
equations! plays a central role. In this paper we illus­
trate some of the systematics which exist between 
orthogonality of functions and adjointness! of singular 
integral equations encountered in the solution to the 
one-speed neutron transport equation with anisotropic 
scattering in slab geometry. 

In particular, two different approaches have been 
used to obtain solutions to problems based on the 
above-mentioned equation: the eigenfunction ex­
pansion method due to Case2 as presented by Mika,3 
and the transform method due to Leonard and 
Mullikin.4 In the eigenfunction expansion method, 
the independent variables of the homogeneous 
integro-differential form of the transport equation are 
separated and the general solution is expressed as an 
eigenfunction expansion with arbitrary coefficients 
over the spectrum of the separation parameter. This 
spectrum consists of a discrete and a continuous part. 
The expansion coefficients are determined by applying 
boundary conditions and solving the resulting singular 
integral equations. In some cases the actual solving of 
the singular integral equations can be avoided by using 
orthogonality relations between the eigenfunctions. 
More recently, Leonard and Mullikin4 have analyzed 
a problem in a finite slab by considering a subcritical 
assembly with a source incident on one face. This 
scattering problem can be stated as an inhomogeneous 
integral transport equation for the source function 

* This work has been supported in part by the U.S. Atomic 
Energy commission. 

t Present address: Department of Physics, Florida State Univer­
sity, Tallahassee, Florida. 

1 N. I. Muskelishvili, Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953). 

2 K. M. Case, Ann. Phys. (New York) 9, 1 (1960). 
3 J. R. Mika, Nucl. Sci. Eng. 11,415 (1961). 
• A. Leonard and T. W. Mullikin, J. Math. Phys. 5, 399 (1964). 
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consisting of the contributions from scattered neu­
trons and the external sources. By generalizing the 
problem to include complex-valued sources, they were 
able to show that the source function satisfies a 
singular integral equation in which the space and 
angle variables enter as parameters. 

The singular integral equations obtained by Leonard 
and Mullikin are adjoint! to the corresponding singular 
integral equations for the continuum coefficient in the 
eigenfunction expansion method, indicating a duality 
between the two methods. To help explain this duality, 
it is convenient to show that the angular flux itself 
satisfies a singular integral equation in which the 
space variable enters as a parameter (cf. Ref. 5). The 
relationship between the two methods then follows 
from the orthogonality of the eigenfunctions. 

An outline of the remainder of this paper is as 
follows: In Sec. 2, a brief list of the results of Mika 
is given in order to show where similarities and differ­
ences exist between the present approach and the 
eigenfunction expansion method and in order to 
introduce results which will be used to derive the 
relationship between the two methods. In Sec. 3, 
the angular flux is shown to obey a singular integral 
equation. This is shown by using the homogeneous 
integro-differential form of the transport equation. 
This singular integral equation can be solved by the 
procedure outlined by Leonard and Mullikin.4 In Sec. 
4 the relationship between the two methods is found. 
This leads to another procedure for solving for the 
expansion coefficients in the eigenfunction expansion 
method. We illustrate this procedure by solving 
Milne's problem. In Sec. 5 the role adjoint singular 
integral equations play in obtaining weight functions 
for use in orthogonality relations between the eigen­
functions is briefly discussed. 

• G. J. Mitsis, Argonne National Laboratory, ANL-6768 
(unpublished). 
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1. EIGENFUNCTION EXPANSION METHOD 

In this section we review the eigenfunction expansion 
method as presented by Mika.3 Here it is assumed 
that the scattering function 1.(0.' -- 0.), where 
1.(0.' -- 0.) dO. represents the probability that a 
neutron scatters from the direction 0.' into a solid 
angle dO. about the direction 0., can be expanded int(l 
a finite series of Legendre polynomials: 

1 N 
1.(0.' -- 0.) = - I b1lP 11(0.' .0.). (2.1) 

41T n==O 

The b are numbers which determine the degree of 11 
anisotropy of scattering and are restricted by the 
condition I. ~ 0, with bo = 1. Under assumption (2.1), 
the source-free, one-speed neutron transport equation 
for the angular flux tp(x, ,,) has the form 

" otp + tp = ~ ! b1lP 1I{f') (1 P n{f")tp(x, ,,') d,,'. (2.2) ax 2 n=O J-l 
In the above equation x is the spatial coordinate 
measured in mean free paths, " is the corresponding 
direction cosine, and c is the mean number of second­
ary neutrons per collision. 

The eigenfunctions of Eq. (2.2) are of the form 

1>(11, ,,)e-z
/
v
, 11 E (-1, 1) (2.3a) 

and 
1>(±z;, ,,)e~Z/Zi, j = 1,"', tX, (2.3b) 

where the 1>'s are the solution to the equation 

[11 - ,,]1>(11, ,,) = lIk{f', 11), (2.4) 
viz., 

1>(11, ,,) = P[lIk{f', 11)]/(11 - ,,) + ).(lI)b(lI - ,,), 

11 E ( -1, 1), (2.5) 

1>(±z;, ,,) = [z;k{f', ±zi)]/(z; T ,,), j = 1,' . " ex., 

(2.6) 

).(11) = 1 + P (l l1k{", 11) d", (2.7) 
J-l" - 11 

with Z; [(z; ¢ (-1,1)] defined by 

Q{±z;) = 0, (2.8) 
where 

Q(z) = 1 + (1 zk(", z) d", (2.9) 
J-l" - z 

there being ex. such pairs of roots. Mika has shown that 
ex. 5: N + 1. In the above equations 

c N 
k{f', 'YJ) = - I b .. P n{f')hn('YJ) (2.10) 

2 n=O 

with 

The h .. can be shown to be polynomials which obey 
the following recursion formula: 

(n + l)hn+1('YJ) + 'YJ[cbn - (2n + 1)]hn{'YJ) 

+ nh .. _1 ('YJ) = O. (2.12) 

The hn are normalized so that 

ho('YJ) = 1 (2.13) 

from which it follows with Eqs. (2.4) and (2.11) that 

h1('YJ) = (I - c)'YJ. (2.14) 

Equation (2.12), together with Eqs. (2.13) and (2.14), 
can then be regarded as an alternate definition of the 
hn • The symbol P denotes that the Cauchy principal 
value is to be taken in any integration involving the 
term following it and b(lI - ,,) is the Dirac-delta 
function. 

Mika has shown that the above solutions of Eq. 
(2.4) form a complete set for sufficiently well-behaved 
but otherwise arbitrary functions defined on the 
interval (s, t), -1 5: s < t 5: 1. One consequence of 
this completeness property is that the general solution 
of Eq. (2.2) can be written in the form 

tp(x, ,,) = i [a+i1>{zl' ,,)e-Z/ZI + a-l1>( -z;, ,,)~/'/] 
1=1 

+ f~{lI)1>(lI' ,,)e-z/v dll, (2.15) 

where the a±1 and A(v) are arbitrary expansion 
coefficients which can be determined by applying 
appropriate boundary conditions to tp{x, ,,). 

"Mika has also shown the following useful orthog­
onality properties: 

ff1>(v, ,,)1>('YJ, ,,) d" = 0, v:;f:. 'YJ, (2.16) 

for two arbitrary solutions of Eq. (2.4), either from 
the continuous or discrete parts of the spectrum, and 

ff1>(V, ,,) fp('YJ)1>{'YJ, ,,) d'YJ d" = vS(v)Q{v) (2.17) 

for solutions of Eq. (2.4) from the continuous part of 
the spectrum only. In the above, Q('YJ) is a sufficiently 
well behaved but otherwise arbitrary function and 
S(lI) is defined by 

S(lI) == n+(v)Q-(v) = [).(V)]2 + [1TlIN(1I)]2, (2.18) 

where 
N(v) == k(v, v) (2.19) 

and 
n±(v) = 1(v) ± i1TVN(v), (2.20) 

are the limits given by Plemelj's formulas1 of Q(z) 
from the upper (+) and lower (-) half-planes as z 
tends to 11, -1 < 11 < 1. For simplicity, we shall 
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assume throughout this paper that S(v) =;l: 0, -1 ~ 
v ~ 1. The case for which this condition is not 
satisfied can be treated3 by increasing the index 2oc, 
and hence the number of discrete solutions, by the 
number of zeros of S(v), -1 ~ v ~ 1. We shall also 
assume that 

n(oo) =;l: 0, (2.21) 
where4 

n(oo) = IT (1 - ~). 
n=O 2n + 1 

(2.22) 

We shall view those c and bn for which the right side of 
Eq. (2.22) vanishes as limits of a sequence of cases 
where the inequality (2.21) holds. 

For the discrete spectrum, the following norms are 
found: 

where6 

(2.24) 

The expansion coefficients can be determined a la 
Mika by applying boundary conditions directly to 
Eq. (2.1S) and solving the resulting singular integral 
equation using the general theory presented by Mus­
kelishvili.l For example, in examining the critical 
problem, we consider an infinite slab extending from 
x = -a to x = +a and bounded by vacuum. The 
critical angular flux is given by Eq. (2.IS) subject to 
the symmetry condition 

1jJ(x, J-t) = 1jJ( -x, J-t) (2.2S) 

and the boundary condition 

(2.26) 

Equation (2.25) expresses the fact that the angular 
flux must be symmetric about the x = 0 plane, while 
Eq. (2.26) states the condition that no neutrons which 
migrate from the slab into the vacuum return to the 
slab. It follows from the symmetry condition (2.2S) 
that 

(2.27a) 

and 
A(v) = A( -v). (2.27b) 

Application of the boundary condition (2.26) leads 
to the singular integral equation 

A(J-t)A'CJ-t) + P (1 vk(J-t, v) A'(v) dv = 'F'(J-t), (2.28) 
)-1 v - J-t 

• N. J. McCormick and I. Ku§cer, J. Math. Phys. 7, 2036 (1966). 

where 
« 

'F'(J-t) = - ~a+j[4>(Zj,J-t)eafzl + 4>(Zj' -J-t)e-a
/
zl

] 

;=1 

- fA'(v)4>(V, _J-t)e-2a
/
v dv (2.29) 

and 
A'(v) = A(v)ea

/
v
• (2.30) 

Equation (2.28) can be reduced by standard techniques 
to a Fredholm integral equation plus a set of homoge­
neous equations for the a+; for which the vanishing 
of the secular determinant yields the critical condition 
(see, for example, Ref. 7). The singular operator in 
Eq. (2.25) is adjoint to the singular operator obtained 
by Leonard and Mullikin [Ref. 4, Eqs. (3.22)] in their 
analysis of the critical problem. In the following 
section we present another method for solving trans­
port problems which also lead to singular operators 
which are adjoint to those arising in the eigenfunction 
expansion method but which can be easily connected 
to the eigenfunction expansion method. 

3. SINGULAR INTEGRAL EQUATION 

In this section, we present an alternate procedure 
for solving Eq. (2.2) by showing that the angular 
flux satisfies a singular integral equation. We start by 
setting 

Pn(X) = f~p nCv)1jJ(x, v) dv, (3.1) 

so that we may write Eq. (2.2) as 

01jJ c N 
J-t:;- + 1jJ = - ~ bnP n(J-t)Pn(x). (3.2) 

uX 2 n=O 

We now define 

II key, J-t) 
'Fo(x, J-t) = -- [V1jJ(x, v) - J-t1jJ(x, ,u)] dv. (3.3) 

-IV - J-t 

Noting from Eq. (3.2) that 

(J-t :x + 1) v1p(x, v) 

eJ-t N 
= 2" n~o bnP n(v)Pn(x) + (v - J-t)1jJ(x, v), (3.4) 

we find 

(3.5) 

7 F. J. McCrosson, M.S. thesis, Virginia Polytechnic Institute 
(1964). 
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Inspection of Eqs. (3.2) and (3.5) shows that if the 
h" satisfy the equation 

h.(p,) + pI
l 

k(lI, p) [P ,,(11) - Pip)] dll = P ,,(p,), (3.6) 
-111 - P 

then 'l"o(x, p) is a "particular solution" of Eq. (2.2). 
This can be shown by first noting that Eqs. (3.6) yield 
ho(p,) = 1 and h1(P) = (1 - c)p. Using the recursion 
relation for Legendre polynomials, we also find that 
Eqs. (3.6) yield the same recursion formula as Eq. 
(2.12), so that the h" do indeed satisfy Eq. (3.6). 

The function 'I" o(x, p) then is a "particular solution" 
of Eq. (2.2). To obtain the "general solution," we 
must add to 'l"o(x, p) a solution 'F1(x, p) of the 
homogeneous equation 

(3.7) 
viz., 

'Fl(X, p) = - F(p)e-3J/I', (3.8) 

where F(p) is an arbitrary function of p whose form is 
to be determined by appropriate boundary conditions. 
Expressing the "general solution" of Eq. (2.2) as 
'Fo(x, p) + 'l"l(X, p), we write 

II k(lI p) 
1jJ(X, p) = -' - Il11jJ(x, 11) - P1jJ(X, p)] dll 

-1 11- P 
- F(p)e-3J/I'. (3.9) 

Interpreting each part of the integral in Eq. (3.9) 
Cauchy principal valued integrals, we find the singular 
integral equation 

).(p)1jJ(x, p) - pI
l 

lIk(lI, p) 1jJ(x, 11) dll = - F(p)e-3J/I' 
-ll1-P 

(3.10) 

in which x appears only as a parameter. Equation 
(3.10) can be solved by a procedure very similar to 
that outlined by Leonard and Mullikin4 (also see 
Ref. 5). For example, in the critical problem we first 
find the form of F(p) by use of the symmetry and 
boundary conditions (2.26) and (2.25): 

[

e-a/I' (1 lIk(lI, -p) 1jJ(a, 11) dll, p > 0 
Jo 11 + p 

F(p) = (3.11) 

ea/I' (1 'IIk('II, p) 1jJ(a, 'II) dll, P < O. 
Jo 11 - P 

At this point, we analytically continue 1jJ from Eq. 
(3.9) to the complex plane of z. To do this, we define 
a function/(a, z) such that/(a, p) = F(p) for p > 0 
and/(a, -p) = F(p) for p < 0: 

I( ) -a,zl1 vk(v, -z) ( ) d (3 12) a, z = e 1jJ a, v v. . 
o v + z 

We then get the functional equation 

II vk(v,z) 
Q(Z)1jJ(X, z) - -1 V _ Z 1jJ(X, v) dv 

__ {-e-3J/"!(a, z), Re z > 0 

-e,r:fzl(a, -z), Re z < 0, 
(3.13) 

where Q(z) is defined by Eq. (2.9). Recalling that 
Q(z) has IX pairs of zeros in the complex plane cut 
along (-1, 1), we see that the remainder of Eq. (3.13) 
must vanish to the same order as Q(z) at these points 
in order for 1jJ(x, z) to be analytic on 0 < Izl < 00. 

This gives linear constraints such as 

I(a, ±Zi) = e'F3J/ZI i 1jJ(X, v) dv, II vk(v, 1= z ) 

--0 v ± Zi 

j = 1, ... ,IX, (3.14) 

for Q(Zi) = 0, [dQ(z) I dZ]z=zl ~ O. Setting x = a in 
Eq. (3.13) and using the definition of/in Eq. (3.12), 
we also find 

lea, Zi) = lea, -Zi)' j = 1, ... , IX. (3.15) 

We note that from the general theory of singular 
integral equations, the solution for 1jJ(x, p) can be 
expressed in terms of lea, p). But with z = p in Eq. 
(3.12), lea, p) is defined as an integral over 1jJ(a, p). 
Thus, the critical angular flux 1jJ(x, p) at every point in 
the slab can be determined from the emerging critical 
angular flux 1jJ(a, p) at the face of the slab. A singular 
integral equation for 1jJ(a, p) can be obtained by letting 
x = a and restricting p > 0 in Eq. (3.10): 

i1 vk(v, p) / 
).(p)1jJ(a,p) - P -- 1jJ(a, 'II) dv = _e-a I'/(a, p), 

o v-p 
(3.16) 

where use has been made of the boundary condition 
(2.26). We note that the singular operator in this 
equation is adjoint to the singular operator arising in 
the eigenfunction expansion method. This type of 
singular integral equation has been analyzed by 
Leonard and Mullikin' by first treating lea, p) as a 
known function and inverting the singular operator 
by a slightly modified form of the theory of singular 
integral equations, finally obtaining a regular Fred­
holm equation for lea, p). The critical condition 
obtained with minor modification is that obtained by 
Leonard and Mullikin.4.8 

4. RELATIONSHIP BETWEEN DIFFERENT 
APPROACHES 

We are now prepared to show the relationship 
between the approaches in Secs. 2 and 3. We do so 

8 E. A. Rhodes, M.S. thesis, Virginia Polytechnic Institute (1965). 
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by noting first that if we use the explicit form of 
c/>(fl, v) from Eq. (2.5) we can write the integral 

flVc/>(fl, v)tp(x, v) dv 

= fl[A(fl)tp(X,fl) - pf1Vk(V, fl) tp(x, v) dvJ. (4.1a) 
-1 v - fl 

On the other hand, if we use the eigenfunction ex­
pansion (2.15) for tp(x, v) and then apply the orthog­
onality relations (2.16) and (2.17), we get 

flVc/>(fl, v)tp(x, v) dv 

= ft c/>(fl , V){~1 [a+jc/>(z j' fl)e-X/z; 

+ a-ic/>( -Zj, fl)e'>:/ZI] +.C A(t)c/>(t), v)e-x/q dt)} dv 

= flS(fl)A(fl)e-x/l'. (4.1b) 

Equating the equalities of Eq. (4.1a) and (4.1b), we 
have . 

f

1Vk(V,U) -/ 
A(fl)tp(X, fl) - P -1~ tp(x, v) dv = S(fl)A(fl)e XI', 

(4.2) 
which when we compare with Eq. (3.10), we find 

F(fl) = -S(fl)A(fl) = [f(a, fl) for the critical 

problem]. (4.3) 

A similar procedure yields an expression for the 
discrete expansion coefficients: 

ftc/>(±Z;, v)tp(x, v) dv = ±a±;zjM;e':Fx/ZI, (4.4a) 

or 

f

1Vk(V, ±z) ( ) d _ _ M 'fOX/ZI (44b) tp x, v v - a±; je . . 
-1 V =t= z; 

Letting x = a in Eq. (4.3b) and recalling Eq. (3.12), 
we find for the critical problem 

a±j = -f(a, ±z;)/Mj • (4.5) 

Equations (4.3) and (4.5) reflect the relation between 
the two different methods and allow one to go from 
one representation to the other, i.e., substitution of 
Eqs. (4.3) and (4.5) into the Fredholm equation for the 
continuum expansion coefficient and the set of homo­
geneous equations for the discrete coefficients in the 
eigenfunction expansion method yields the critical 
condition indicated in the last section, provided the 
secular determinant of the above-mentioned equation 
vanished (which of course is another representation 
for the critical condition). The relationship between 
the transform method of Leonard and Mullikin4 and 
the eigenfunction expansion method is obviously 
similar. 

However, this relationship is more general. In fact, 
the development of Eq. (4.2) can be interpreted as a 
derivation of Eq. (3.10). It can also be used as an 
alternate procedure for obtaining the expansion 
coefficients in the eigenfunction expansion method. 
We illustrate this procedure by considering Milne's 
problem for the infinite half-space medium with the 
following boundary conditions: 

tpm(O, fl) = 0, fl> ° (4.6) 
and 

where Zk is the largest positive eigenvalue and an 
arbitrary constant B describes the strength of the 
source at infinity. 

From the boundary condition at infinity (4.7), we 
get 

a_ j = 0, j =;6 k. (4.8) 

We then write the solution as 

" tpm(x, fl) = Bc/>( - Zk' fl)erx/zk + L a+;c/>(z j' fl)e-x/z1 

;~1 

+ flA m(v) c/>(v, fl)e-X/v dv. (4.9) 

In a procedure similar to that used in Eq. (4.2), we 
obtain 

flVc/>(fl, v)tpm(x, v) dv = flS(fl)Am(fl)e-x/l', (4.10) 

from which we write [cf. Eq. (3.10)] 

A(fl)tpm(x, fl) - pfl vk(v, fl) tpm(x, v) dv 
-1 V - fl 

__ {-F(fl)e-X/I', fl > ° 
0, fl < 0, 

(4.11) 

where 
F(fl) = -S(fl)Am(fl), (4.12) 

and we have used the boundary condition (4.7) to 
specify that Am(fl) = 0, fl < 0. Boundary condition 
(4.6) yields an expression F(fl): 

F(fl) = (1 vk(v, -fl) tpm(O, -v) dv. (4.13) 
Jo '11+ fl 

We can analytically continue tpm to the complex plane 
if we define 

F(z) = e vk(v, -z) tpm(O, -v) dv, (4.14) 
Jo '1'+ z 

with which we write from Eq. (4.11) 

f1Vk(V, z) 
Q(z)tpm(x, z) - -- tpm(x, v) dv 

-1 V - Z 

__ {-F(z)e-x
/
z
, Re z > ° 

0, Rez < O. 
(4.15) 
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Now for "Pm(x, z) to be analytic on ° < Izl < 00, 
z ~ -Zk' we must have 

J
1
Vk(V,-Z;) ( )d ° . k (416) ---'~-~ "Pm x, V V = , ] ~ . 

-1 V + Zi 

which when we let x = ° and apply Eq. (4.5) we find 

F(-z;) = 0, j ~ k. (4.17) 

Since "Pm(x, z) has a simple pole at z = -Zk' we find 
/Z 

F( -Zk) = 2BQ( oo)X( -Zk)X(Zk)Z!N(Zk) II (z~ - z!), 
;>#k 

(4.18) 
where we have used the identity 

/Z 

O(z) = X(z)X( -z)O( 00) II (z~ - Z2) (4.19) 

with 
;=1 

X( ) 1 1 11 In (0+(",)/0-(",» d 
Z = exp- '" 

(1 - z)/Z 27Ti 0 '" - Z 

(4.20) 

as the solution of the homogeneous Hilbert problem 
whose boundary values along the cut (0, 1) satisfy 

X+C!J,) = 0+(",) (4.21) 
X-("') 0-(",) 

An expression for F(",) can be obtained by con­
sidering Eq. (4.11) with x = 0: 

1I Vk(V, "') 
J.("')"Pm(O, -"') - p -- "Pm(O, -v) dv = 0, 

o v-", 

'" > 0. (4.22) 

We then define the sectionally analytic function in the 
complex plane cut along (0, 1), 

1 1Ivk(v, z) D(z) = -. -- "Pm(O, -v) dv. (4.23) 
2m 0 v - z 

With the use of Plemelj's formulas, we can then re­
write Eq. (4.21) as 

O+(fJ)D-(",)jO-(",) - D+(",) = 0, (4.24) 

where O±(",) are given by Eqs. (2.20). 
Recalling Eq. (4.21), we have 

D+(",)jX+(",) - D-(",)jX-{tJ-) = 0. (4.25) 

We now consider the function 

H(z) = D(z)jX(z) (4.26) 

which is analytic everywhere in the finite plane except 
perhaps for a cut along (0, 1). But from Plemelj's 
formulas and Eq. (4.25), it is obvious that H+(",) -
H-(",) = 0, so that H(z) is analytic everywhere in the 
finite plane. Since we are assuming Q( 00) ¥= 0, 
ken, z) is of degree Nin z. Therefore, from Eqs. (4.20) 
and (4.23) the behavior of H(z) at infinity is that of a 

polynomial of degree N + IX - 1 at most. Hence, by 
Liouville's theorem, we find 

X( )N+/Z-l 
D(z) = ~ ! p,z', (4.27) 

2m ,=0 
where the coefficients p, can be determined as outlined 
below. We note first that 

N+/Z-l 
F(z) = 27TiD( -z) = X( -z) ! P,( -z)'. (4.28) ,=0 

Therefore, from Eq. (4.17) we have 

N+/Z-l 

F( -Zi) = X(zi) ! P,zL j ¥= k, (4.29) 
1=0 

so that we can write 
/Z N 

F(z) = X( -z) II (z; + z) !IX"Z" (4.30) 
;=k ,,=0 

with 
N+/Z,-1 /Z N 

! PI( -Z)I = II (z; + z)! IX"Z", (4.31) 
1=0 ;>#k ,,=0 

where now only the N + I IX" are to be determined. 
One of the equations necessary to do this comes from 
Eq. (4.18) which yields 

N /Z 

! IXn( -Zk)" = 2BO( oo)X( -zk)z!N(Zk) II (z, + Zk)' 
n=O i>#k 

(4.32) 

The other N equations are found by eliminating the N 
moments 

U; = fVH1"Pm(0, -v) dv (4.33) 

from the 2N equations 
N-l 

! wi;(Yi)(±l)i+1Ui 
;=0 

/Z N 

= X(±Yi)II(zi =F Yi)!IX..(=FYi)", (4.34) 
;>#k n=O 

where the ±Yi are the zeros of N(z) and the poly­
nomials Wii(n) are obtained from the relation 

N-l 

k(v, ±Yi) = ! W i;(±Yi)(±1)i+1"i(" =F Yi)' (4.35) 
i=O 

With F(z) so determined we have Eq. (4.12), 

X( ) /Z N 
A(",) = ~ II (Zi + "') !1XnfJ-". 

S(",) ;>#k n=O 

We also find 

f1Vk(V, "') ( ) d M -"/ZI "Pm x, V V = -a+i ie , 
-IV - zi 

which with Eq. (4.14) and x = ° yields 

a+i = -F(zi)jM;. 

(4.36) 

(4.37) 

(4.38) 
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5. WEIGHT FUNCTIONS 

It seems appropriate to conclude with a few brief 
remarks about the role adjoint singular integral 
equations play in obtaining weight functions for use in 
orthogonality relations between the eigenfunctions of 
the transport equation. The central point here is that a 
necessary condition is the weight function be a solution 
to a sirigular integral equation which is adjoint to the 
singular integral equations arising in the eigenfunction 
expansion method. For example, in the case of iso­
tropic scattering, Eq. (2.4) takes the form 

(1 - ft/v)cp(v, ft) = e/2 (5.1a) 
or likewise 

(1 - ft/'YJ)cp('YJ, ft) = e/2. (5.1 b) 

We look for the appropriate weight function ftg(ft) 
for orthogonality on (-1, 1) by multiplying Eq. (5.1a) 
by g(ft)cp('YJ, ft) and Eq. (5.1b) by g(ft)cp(v, ft) and 
integrating on ft over (-1, 1) to find 

2(1/11 - 1/'YJ) fl ftCP(lI, ft) cp('YJ , ft)g(ft) dft 

= c ff(ft)CP('YJ, ft) dft - c fl(ft) </>(v, ft) dft· (5.2) 

If ftg(ft) is the appropriate weight function, the right 
side of Eq. (5.2) must vanish. Using the explicit form 
of cP, we have 

g('YJ»)'('YJ) - pJl £. '1g(u) dft = const (e.g. = 1), 
-12ft - '1 

(5.3) 

which is the adjoint singular integral equation having 
the solutiong(ft) = 1. In this case, the weight function 
is ft in agreement with the previous results of Case.2 

If, on the other hand, we wish the orthogonality to be 
on the interval (0, 1), we find, instead of Eq. (5.2), the 
equation 

2(1/v - 1/'YJ) fftCP(V, ft)cp('YJ, ft)g(ft) dft 

= c Ll
g(lt)cp('YJ,ft) dft - c fg(ft)cp(V, ft) dft, (5.4) 

which yields analogous to Eq. (5.3) the adjoint singular 
integral equation 

g('YJ»)'('1) - P (1 :. '1g('YJ) dft = const, (5.5) 
Jo 2ft-'YJ 

which has the solution 

ftg(ft) = (ZI - ft)[X+(ft) - X-(ft)]/27Ti, 

in agreement with the results of Kuscer, McCormick, 
and Summerfield.9 

The case of anisotropic scattering is more involved. 
In this case the equation analogous to Eq. (5.2) for 
determining the weight function for orthogonality on 
( -1, 1) has the form 

(1/11 - 1/'YJ) ftcp(V, ft)</>('YJ, ft)g(ft) dft 

= f/(It)k(ft, v)cp('YJ, ft) dlt 

- flg(ft)k(ft, 'YJ)cp(v, ft) dft, (5.6) 

which yields the adjoint singular integral equation 

P nC'YJ)g('YJ»).('YJ) - pJl 'YJP n(ft)k(ft, '1) g(lt) dft = hn('YJ), 
-1 ft - 'YJ 

(5.7) 

which has the solution g(ft) = 1. This again gives the 
weight function It in agreement with the results of 
Mika.3 For orthogonality on (0, 1) the above proce­
dure leads to rather intractable results. Perhaps a 
better procedure is the use of the bi-orthogonality 
results of McCormick and Kuscer.6 Here the weight 
function ftg(ft) satisfies the dominant adjoint singular 
integral equation 

11 N() 
g('1»)'('YJ) - p :LL g(lt) dlt = 1, 

olt-'YJ 

which has the solution 

(5.8) 

ftg(ft) = [n( 00)]1 fr (z; - ft)[X+(It) - X-(ft)]/27Ti. 
;=1 

• I. Ku§cer, N. J. McCormick, and G. C. Summerfield, Ann. Phys. 
(N.Y.) 30, 411 (\961). 
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. ~ particular area-preserving mapping of a plane onto itself has been studied in detail with the aid of a 
digital computer. A large number of fixed points, finite sets of points that transform into each other 
were I?cated and classified lI:s elliptic or hype~bolic depending on the nature of the linearized mapping i~ 
the nelghborho?d. A quantity called the reSidue was calculated for each fixed point. This quantity can 
be used to pre~lct whethe~ oth~r n~rby fixed points are ellipti~ or hyperbolic. The results showed that 
there are conslde~able regions In which almost al.1 the .fixed pOints are hyperbolic. Further calculations 
were made to estimate the area enclosed by the InvarIant curves whose existence has been established 
by Moser. The boundary of this region appeared to coincide with the boundary of the region in which 
almost all the fixed points are hyperbolic. 

I. INTRODUCTION 

Problems in many branches of physics can be re­
duced to the study of two-dimensional measure­
preserving mappings. A most pictorial example is the 
behavior of magnetic field lines in a toroidal system. 1 

A mapping of a cross section of the toroid onto itself 
is formed by following magnetic lines of force around 
the system from one intersection with the cross 
section to the next. The possible containment of a line 
of force within a given region for many traversals 
around the system can be deduced from the behavior 
of iterates of the corresponding two-dimensional 
mapping. The magnetic flux through each neighbor­
hood is conserved by this mapping, so it is measure 
preserving. 

A more typical example is a particle in a two­
dimensional potential. 2-4 Conservation of energy 
restricts the motion to a three-dimensional hyper­
surface in the four-dimensional phase space. Any 
phase variable whose value recurs in the course of the 
motion can be used to define a two-dimensional cross 
section. Dynamical orbits are used to define a mapping 
of this surface onto itself, analogous to that described 
in the example above. Poincare's invariant5 shows that 
area, defined in canonical coordinates, is conserved 
by this mapping. 

The restricted three-body problem of celestial 
mechanics can also be reduced to such a mapping.6•7 

It is most interesting to know whether these two­
dimensional measure-preserving mappings are ergodic 
or not. This means determining whether or not suc-

1 L. Spitzer, Jr., Phys. Fluids 1, 253 (1958). 
• G. D. Birkhoff, Collected Mathematical Papers (American 

Mathematical Society, Providence, R.I., 1950), Vol. II, p. 333. 
3 M. Henon and C. Heiles, Astron. J. 69, 73 (1964). 
• P. A. Sturrock, Ann. Phys. (N.Y.) 3, 113 (1958). 
5 H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co., 

Reading, Mass., 1951), p. 247. 
8 J. Moser, Nachr. Akad. Wiss. Gottingen, II Math.-Physik. 

Kl., No.6, 87 (1955). 
1 V. I. Amol'd, Russian Math. Surveys 18, No.6, 8S (1963). 

cessive images of a given point cover densely a finite 
area.s It appears that both types of behavior occur 
in different regions for almost every mapping. 
Moser9•10 has shown that there are isolated closed 
invariant curves, subject to certain restrictions detailed 
in Sec. III. These exact invariant curves separate 
regions of ergodic behavior. It is interesting that 
similar invariants exist for higher-dimensional map­
pings but they do not separate different regions of 
phase space. 9 The two-dimensional problem appears 
to be the most interesting. 

Moser's paper proved the existence of invariant 
curves but gave no indication of the area that they 
might be expected to enclose. The purpose of the 
work described in this paper was to find some way of 
estimating this area. 

The estimation was sought in terms of the fixed 
points of the mapping. These correspond to closed 
magnetic field lines, or to periodic orbits in a dynam­
ical problem. Such orbits may close after one, or 
many, traversals through the chosen cross section. 
These periodic orbits are attractive for study because 
they are finite in length, and because there are many 
of them. PoincanS2 hypothesized that they are dense 
in phase space, but that has not been proven either 
way. In any event, they are thickly scattered. The hope 
is that all the properties of a mapping can be under­
stood in terms of its fixed points. 

The location of the fixed points is, of course, not 
enough. Each fixed point must also be characterized 
by the linearized mapping in its immediate vicinity. 
It is the parameters of this linearized mapping that 
have been studied and in terms of which the properties 
of the mapping have been interpreted in this paper. 

S D. R. Halmos, Lectures on Ergodic Theory (Mathematical 
Society of Japan, Tokyo, 1956), p. 25. 

• J. Moser, Nonlinear Problems, R. E. Langer, Ed. (University of 
Wisconsin Press, Madison, Wisconsin, 1963), p. 139. 

10 J. Moser, Nachr. Akad. Wiss. Gottingen, II Math.-Physik. Kl., 
No.1 (1962). 
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These parameters are defined and discussed in Sec. II. 
In Sec. III a scheme is described for selecting certain 

fixed points for study. 
A· number of fixed points, for a particular simple 

choice of mapping, have been located numerically 
with the aid of a digital computer and the correspond­
ing parameters have been evaluated. These com­
putations are described in Sec. IV. 

These computations indicate that there are regions 
in which all the fixed points are hyperbolic. The image 
of any given point in the neighborhood of such a point 
tends to move away from the fixed point on successive 
iterations of the mapping. Ergodic behavior appears 
to be restricted to these regions. This is discussed in 
more detail in Sec. V. 

II. DEFINITIONS 

The mappings considered in this paper have the 
general form 

Xl = I(xo, Yo), Yl = g(xo, yo), (1) 

or, more compactly, 

(2) 

The functions I and g will be taken to be infinitely 
differentiable. The condition that the mapping be 
area preserving is 

det (J) = 1, (3) 

where J is the Jacobian matrix ofthe partial derivatives, 

j(X,y) = (I'" IN). 
g", gil 

(4) 

We will consider also iterations of the mapping, 

(Xl' Yl) = T(xo, yo), (X2' Y2) = T(XI' YI), (5) 

which can be written 

(6) 

and generalized to any power of T. 
It is frequently useful to linearize the mapping 

around a given initial point. This approximation can 
be expressed in matrix form using products of the 
Jacobian matrix of Eq. (4): 

(~2 - X2) = J(x1 , YI)(~1 - Xl) 
Y2 - Y2 Yl - Yl 

(
xo - xo) = j(XI,YI)j(XO,Yo) _ ' 
Yo - Yo 

(7) 

where (Xo, Yo), (Xl' YI), and (X2' Y2) are related by 
Eq. (5). 

Special attention will be focused on fixed points. 
The fixed points of T satisfy the equation 

(8) 

The matrix representing the linearized mapping in the 
vicinity of this fixed point will be denoted by M == 
j(xf , Yf). It is convenient to introduce four parameters 
a, b, c, and d, 

M_ , = (a + d c + b) 
c-b a-d 

(9) 

in discussing such 2 X 2 matrices. Equation (3) then 
becomes 

a2 + b2 - c2 - d2 = 1. (10) 

The quadratic form, 

1p == (b - c)(x - Xf)2 + 2d(x - xf)(y - Yf) 

+ (b + c)(y - Yf)2 (11) 

is invariant under this linearized mapping. Three of 
the four independent parameters that will be used to 
specify M describe this quadratic. One of these is an 
ellipticity parameter, 

(12) 

which is somewhat more convenient than the classical 
ellipticity. When E = 1 the constant-1p surfaces are 
circles, E> 0 corresponds to a set of ellipses, E = 0 
to a set of parallel lines, and E < 0 to hyperbolas. 
Fixed points will be called elliptic or hyperbolic, 
depending on the sign of E. When the denominator of 
Eq. (12) vanishes, b = c = d = 0, a = ±l. This will 
be called the degenerate case. 

Another parameter describes the orientation of the 
quadratic form. Under a rotation of coordinates, a 
and b, and hence c2 + d2 , are constant, but c and d 
vary as the sine and cosine of twice the angle. Thus we 
define 

eM == t tan-1 (cld). (13) 

The sign of b is necessary to reconstruct M from the 
full set of parameters. It also affects the orientation of 
the quadratic form. 

The remaining important characteristic of the 
matrix M is the displacement of a point aiong an 
invariant curve. This can be deduced from a quantity 
that will be called the residue of the fixed point, 
defined by 

R == t - i Tr (M), 

= t(1 - a). 
(14) 

The interpretation of the residue depends on whether 
the fixed point is elliptic or hyperbolic. Indeed, the 
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sign of E is related to the magnitude of R, since, from 
Eqs. (12) and (14), 

E = 4R(1 - R)/(b2 + c2 + d2). (15) 

For hyperbolic points the eigenvalues of the matrix 
M are the ratios of the distances of a point and its 
image when both lie on an asymptote of Eq. (11), and 
they depend only on R: 

;. = 1 - 2R ± 2[R(R - 1)]1. (16) 

Note that when R is small and negative;' is nearly 
unity and the distance between a point and its image 
is small. 

The behavior of elliptic points is best understood 
from an examination near the fixed point of iterates of 
the mapping T. The Jacobian matrix of TQ evaluated 
at the fixed point of T is 

MQ(xt , y,) = MQ = (sin 21TQwo)/(sin 21TWo) 

x (Sin ~::~ 21TQWo + d b + c ) 

c - b sin~::~ 21TQ
W

o _ d ' 

(17) 
where 

cos 21TWo == a, R = sin2 ?TWo, (18) 

which can easily be established by induction. When 
Qwo ,...., 1, MQ is approximately the identity, and a 
given point has returned to nearly its original position. 
Thus wo, which will be called the rotation number, is 
the average rotation of a point around the ellipse. As 
with hyperbolic points, small values of the residue 
correspond to small displacements. 

Note that the residue is always real, while A is com­
plex for elliptic points and Wo is complex for hyper­
bolic points. 

It is obvious that, aside from the singular case 
when E vanishes and b ~ 0 must be specified, the 
matrix M is completely determined by R, E, OM, 
and sign of b. Namely, 

a = 1 - 2R, 

b = ± [2R(1 - R)(1 + E)/E]1, 

c = sin 20M [2R(1 - R)(1 - £)/£]1, 

d = cos 20M [2R(1 - R)(1 - £)/£]1. 

(19) 

Henceforth these parameters wilI be used to describe 
M. 

It follows from Eq. (15) that 0 < R < 1 always 
indicates an elliptic fixed point, while if R < 0 or 
R > 1 the fixed point is hyperbolic. Equation (16) 

shows that there are two types of hyperbolic points ,11 

depending on the sign of the residue. When it is 
positive, the eigenvalues A are negative and M inter­
changes the corresponding branches of the hyper­
bolas of Eq. (11). When R is negative, the eigenvalues 
are positive and M maps each branch into itself. Thus, 
for small residues, the distinction between positive 
and negative residues corresponds to the distinction 
between elliptic and hyperbolic fixed points, whereas 
for large residues it corresponds to the difference 
between two types of hyperbolic points. 

A quantity called the indexl2 can be defined for 
closed curves and is useful for counting and classifying 
the enclosed fixed points. Consider the set of vectors 
connecting each point of a closed curve with its image 
under the mapping. The index of the curve is the 
number of rotations the vector makes as the initial 
point traverses the closed curve, taken to be positive 
if the rotation is in the same sense as the traversal of 
the curve. Similarly, the index of a discrete fixed point 
is defined as the index of an enclosing curve that lies in 
the immediate neighborhood. It can readily be estab­
lished by repeated subdivision that the index of a 
closed curve is the sum of the indices of the enclosed 
fixed points. It can also be established that the index 
of a fixed point is equal to the sign of the residue, 
when the latter does not vanish. 

Now consider iterations of the mapping, and 
particularly the fixed points of T2, T3, etc. If (x" Yt) is 
a fixed point of TQ, then T(xt , Yt) is also a fixed point. 
Thus the fixed points of TQ form families of Q 
members. The quantity Q is useful as an identification 
of a given fixed point. Again, matrices can be found 
that represent the linearized mapping in the vicinity 
of each of these fixed points. These can be expressed 
as products of Q Jacobian matrices, Eq. (4), evaluated 
respectively at the successive fixed points of the corre­
sponding family, following Eq. (7). Such matrices can 
be analyzed in exactly the same manner as discussed 
above. It follows that each fixed point of a given 
family has the same residue since 

A family of fixed points tends to lie on a ring, or a 
series of rings enclosing elliptic fixed points. The 
indices under TQ of closed curves lying just inside and 
just outside such rings are almost always + 1. Thus 
there must be as many families with positive as with 
negative residue. As we have seen above, this may 

11 G. D. Birkhoff, Ref. 2, p. 111. 
11 H. Poincare, Oeuvres (Gauthier-Villars et Cie., Paris, 1928), 

Vol. I, p. 85. 
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mean that elliptic and hyperbolic points alternate, 
but it does not exclude all points being hyperbolic. 

m. A HIERARCHY 

This section presents a scheme for obtaining an 
over-all picture of the structure of any given mapping. 
The approximate invariant curves given by Eq. (11) 
serve as the starting point. These can be extended in a 
qualitative way into the nonlinear region where they 
provide a framework to discuss the mapping. 

Near the fixed point the deviation from the linearized 
mapping of Eq. (7) can be treated as a small param­
eter. It is thus possible to extend Eq. (11) and obtain 
a formal seriesll for the approximate invariant curves 
tp = const in powers of x - xt and Y - Yt. Our 
primary interest is in those curves that enclose 
elliptic fixed points. The rotation number w, defined 
for these closed curves as the average number of 
rotations around the central fixed point per iteration 
of the mapping in the limit as the number of iterations 
goes to infinity, depends on the value of tp when the 
mapping is approximated using higher powers of the 
distance from the fixed point. For surfaces very close 
to the central fixed point w approaches Wo of Eq. (18). 

The shear of the mapping, defined by 

s = dwldtp, (21) 

is very useful in classifying different mappings. For 
example, higher-order terms in the expansion of 'IjJ 

discussed above may only slightly alter ~he shape of the 
curves or may change their character completely, 
depending on the shear. In particular, if the rotation 
number Wo of a fixed point is close to a rational number 
with a small denominator, and the shear is higher order 
than resonant nonlinear terms, the approximate 
invariant curves may no longer be closed.s.s. 9 

Moser9
•
10 has shown that when the shear is of lower 

order than any resonant perturbation there are exact 
invariant curves enclosing the central fixed point. 
These invariant curves have irrational rotation 
numbers that satisfy the inequaIity13 

Iw - tIki> €/ki (22) 

for all integers I and k, where € is a constant inde­
pendent of k. 

In between these surfaces, where w = PIQ (P and 
Q relatively prime) would be rational if it varied 
continuously, there must be fixed points of TQ 
according to a theorem of Birkhoff's.14.l5 In certain 
special integrable cases these fixed points may be 

13 I. Niven, Irrational Numbers (Mathematical Association of 
America, Menasha, Wise., 1956). 

14 G. D. Birkholf, Ref. 2, Vol. I, p. 673. 
10 G. D. Birkholf, Ref. 2, Vol. II, p. 252. 
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FiG. 1. Some fixed points of the mapping given by Eqs. (23)-(25). 
Two families for each of PIQ = t and -!r are shown enclosing thl 
fixed point at (1, 1). Positive residue points are represented by 0 
and negative residue point by +. Also shown by . are 20 points of a 
family, for which Q = 180, belonging to the third order of hierarchy 
and associated with the elliptic points with PIQ = t, 

dense on a curve and so complete a set of nested 
invariant curves. In such cases the residue of each 
fixed point vanishes. However, in almost every 
situation perturbations break up the surface; there 
are only isolated fixed points of TQ and they have 
nonvanishing residue. 

These isolated fixed points can be identified by 
their rotation number P/Q. It is possible to establish 
a rotation number for this finite set of points because 
the exact and approximate invariant curves impose 
considerable organization on any given mapping. 
Each family of fixed points will appear to lie on a closed 
curve that is close to an approximate invariant curve 
and encloses a central fixed point. A typical example 
is shown in Fig. 1. Thus P - 1 is the number of mem­
bers of the family which lie between a fixed point and 
its image. Alternatively, P is the number of rotations 
around the central point when following from a fixed 
point to its image through all Q members of the 
family. In either case P is ambiguous to an additive 
multiple of Q. A further requirement on P is that two 
fixed points which lie close to each other should have 
nearly equal values of P/Q, which follows from the 
continuity of the approximate organization of the 
mapping. 

The structure of invariant closed curves and fixed 
points enclosing an elliptic fixed point of rCJ is similar 
to that enclosing a fixed point of T. The additional 
fixed points in this structure are then fixed points of 
(TQ)N. Their rotation number around the central 
fixed point of T is the same as that of the fixed point 
of TQ with which they are associated. Thus the values 
of P and Q (w = P/Q, Q = QN) are not relatively 
prime for these fixed points. This structure may also 
exist around hyperbolic points in certain cases. 
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In order to avoid dealing with all the fixed points 
and invariant surfaces as a single unit, it is convenient 
to organize this structure recursively in a hierarchy. 
The zero order of this hierarchy consists of the fixed 
points of T. The first order consists of the invariant 
curves that enclose the fixed points of T and those 
fixed points of TQ for which P and Q are relatively 
prime. The second order of the hierarchy includes this 
same structure around elliptic fixed points in the 
first order of the hierarchy. It is clear that there are 
an infinite number of orders in the hierarchy. 

Some such organization into a hierarchy is necessary 
for making gerleral statements. For example, in the 
next section a connection is found between the in­
variant curves of a given order of the hierarchy and 
the fixed points in the same order. If the fixed points 
of higher orders were not discarded it would be 
difficult to discover any meaningful relationships. 
However, it has not yet been possible to develop a 
rigorous definition of the concept. In particular, it is 
not clear that all fixed points can be ordered in the 
hierarchy. 

IV. COMPUTATIONS 

A. Description of the Chosen Mapping 

The specific mapping chosen for study is 

Xl = (l/A)(xo - Byo + Cy~), (23) 

YI = Ayo + BXI - Cx~, (24) 

A = 1.25, B = 0.1, C = 0.35. (25) 

This mapping is symmetric around the line X = Y in 
the sense that if 

(26) 
then 

(27) 

It follows that if (cI , c2) is a fixed point of TQ, (c2 , CI) 

is another fixed point of TQ. The mapping is also 
invariant under change of sign of both x and y. (See 
note added in proof.) The fixed points of T consist of 
a hyperbolic point at (0, 0) and elliptic points at 
(i, 1) and (-1, -1). The residue of the hyperbolic 
point is R = -0.0105. For the elliptic points R = 0.168 
and Will = 7.4388. 

The fixed point at (0, 0) belongs to the zero order 
of the hierarchy considered in the previous section. 
The first order of the hierarchy is composed of 
families of fixed points of iterates of T which enclose 
the origin. The two elliptic fixed points of T can be 
considered as the innermost of these families with a 
P/Q value of ~. These families extend continuously 
in P/Q from this value to 1 for fixed points of T2 at 
[±(2.35jO.35)!, =r(2.35/0.35)i]. This is a case where 
the central point is hyperbolic. 

Most attention was concentrated on the second 
order of the hierarchy, the structure around the fixed 
points of the first order, in particular, around the 
elliptic fixed points at (1, 1). There are pairs offamilies 
of fixed points of iterates of T for all values of P and 
Q that are relatively prime and whose ratio lies in the 
range 0 < P/Q < Wo' Two such pairs of families are 
shown in Fig. 1. 

By the symmetry of Eqs. (26) and (27), one member 
of most of these families lies on the line x = y. Such 
points are easy to locate numerically, so effort was 
concentrated on corresponding families. 

Surrounding each positive-residue fixed point in 
the second order of the hierarchy are families of 
fixed points belonging to the third order of the 
hierarchy. A part of one such family is shown in 
Fig. 1. ' 

B. Calculation of Residues 

Residues were calculated for approximately 150 
families of fixed points, including all those for which 
P ~ 11, P/Q ~ (9.5)-1, and IRI > 10-14• A selected 
set are listed in Table I. It can be seen from Eq. (14) 
that small residues are calculated as the difference of 
two numbers of order 1. For fixed points with the 
smallest residues it was necessary to carry 14 to 18 
decimal places in all the calculations. The two families 
of fixed points for a given P/Q had residues that were 
very nearly equal and opposite, especially when they 
were small in magnitude. This would not be true for 
fixed points with Q ~ 4 but none such occurred in 
this system. 

The behavior of the residues in the limit of large Q 
can be understood by assuming that they depend 
exponentially on Q. This leads to defining a function 

TABLE I. Q/P, location, and residue for a selected set of 
fixed points. 

Q/P Q/P x=y R /= (4R)2/Q 

15/2 7.5 0.940 -1.34 . 10-10 0.0581& 
79/10 7.9 0.823 -3.2 .10-14 0.472 

8/1 8.0 0.805 -1.08.10-2 0.456 
17/2 8.5 0.727 -2.25' 10-2 0.753 
53/6 8.833 0.6948 -0.116 0.971 

115/13 8.846 0.6944 0.115 0.987 
62/7 8.857 0.6942 -0.254 1.0005 

133/15 8.867 0.6940 0.593 1.013 
71/8 8.875 0.6939 -0.590 1.024 

151/17 8.882 0.69382 3.31 1.035 
80/9 8.889 0.69377 -1.41 1.044 
9/1 9.0 0.658 0.229 0.980 

82/9 9.111 0.621 -65.9 1.145 
28/3 9.333 0.611 -1.04 1.107 
19/2 9.5 0.599 -0.888 1.143 

a The positive residue family with the same value of Q/P has 
been used to calculate f. 
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FIG. 2. A plot of f(Q/P), defined in Eq. (28). 

R == a [j(P/Q))Q/2. (28) 

A plot of/vs Q/P is given in Fig. 2, and selected values 
are listed in Table I, where a has been chosen to be 
equal to ! to make the curve as smooth as possible. 

If / were continuous it would be possible to extrap­
olate the calculated residues to large values of Q by 
interpolating in! In regions with/greater than unity, 
the residues would increase indefinitely with Q, and 
with / less than unity the residues would approach 
zero in this limit. 

It is clear that Eq. (28) is a necessary first step to 
obtain a smooth curve suitable for interpolation, but 
it does not quite do the job. Apparently each fixed 
point creates a perturbation in its neighborhood 
which affects the value of / for neighboring points. 
This is especially evident in Fig. 2 near where Q/P 
equals 8, 81, and 9. 

This perturbation is illustrated in Fig. 3. The loca­
tion of fixed points with Q/P = 892 = 9t are strongly 

I I I 

0.7 

[J 

o 

0.6 °ot 
o 

0.6 0.7 

FIG. 3. A plot showing the relation between fixed points with 
P/Q = 1.- and nearby fixed points with P/Q = t. The elliptic t 
fixed point is denoted by D, the corresponding hyperbolic fixed 
points by +, and part of one family of :. fixed points by O. 

TABLE II. Residues of fixed points near Q/P = '.7. 

n Q/P R f= (4R)2/Q 

3 59(7 1.83 10-5 0.724 
7 127/15 4.5610-8 0.783 

11 195/23 2.9710-9 0.829 
15 263/31 1.49 10-9 0.866 
19 331/39 2.21 10-9 0.894 
23 399/47 5.63 10-9 0.916 
27 467/55 1.65 10-8 0.932 

affected by their proximity to fixed points with Q/P = 
~. It is reasonable that this distortion in location is 
accompanied by an effect on the residues, though no 
direct calculation is available. It is also reasonable that 
this distortion should depend on the ellipticity 
parameter E of the fixed points with Q/P = ~ since 
this gives the shape of the invariant curves in the 
vicinity. 

To further illustrate the effect of distortions caused 
by nearby fixed points, residues were calculated for a 
series of fixed points with values of Q/P given by the 
formula 

Q/P = 8 + (2 + l/n)-l. (29) 

In Fig. 2, this series approaches Q/P = 8.5 from the 
left. These calculated residues are listed in Table II. 
It appears that / will increase beyond unity and that 
for large values of n the residue will become inde­
finitely large. This confirms that the disturbance 
around the fixed points Q/P = 1.; dominates the 
behavior of nearby fixed points. Since there is nothing 
special about this fixed point, it can be said with 
confidence that there are intervals in every range of 
P/Q where/is larger than unity. 

A series of rational numbers that avoids these 
disturbances can be constructed with the aid of the 
series of numbers Fn , 

1 
Fl = 1, F2 = 1 + -, 

1 
F3=1+ 1 .... 

1 + 1/1' , 

(30) 

the partial convergents of the infinite continued 
fraction with the partial quotients all unity. Table III 

TABLE III. Residues of certain fixed points. 

n Q/P R f= (4R)2/Q 

1 53/6 1.15 10-1 0.97126 
2 62/7 -2.5410-1 1.00050 
3 115/13 1.15 10-1 0.98660 
4 177/20 1.2210-1 0.99200 
5 292/33 -5.5410-2 0.98973 
6 469153 2.6610-2 0.99048 
7 761/86 5.77 10-3 0.99014 
8 1230/139 -6.03 10-4 0.99025 
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is similar to Table II except that the values of P/Q are 
chosen by the formula 

Q/P = 9 - (5 + Fn)-l. (31) 

In this series the values of I are rapidly converging on 
a value slightly less than unity, and the residues are 
decreasing. 

In conclusion, there appear to be significant regions 
where all the fixed points are hyperbolic. This is 
evident from the following argument. In Table II it 
was illustrated that values off increase with increasing 
proximity to other fixed points. This proximity can be 
measured in terms of the partial quotients of a partial 
fraction expansion of P/Q. Thus values of I increase 
with increasing partial quotients. Then the opposite 
case was considered and a series with the smallest 
possible partial quotients was given in Table III. In 
this series I converged on a value that fits smoothly 
into the series of points in Fig. 2. Thus a curve sketched 
through the points of Fig. 2 gives a lower bound to the 
values off This lower bound will be labeledlm(Q/P), 
a continuous function of QfP. In regions where 
1m > 1 all fami~ies of fixed points will have I greater 
than unity, and by Eq. (28) almost all positive residue 
fixed points will have R > 1. By Eq. (15) and the 
discussion below Eq. (12), this is equivalent to the 
statement that almost all fixed points are hyperbolic 
in regions where 1m > 1. 

c. Escape Calculations 

Another type of calculation that was made was to 
test experimentally whether a given point lay inside or 
outside the outer most invariant curve of the type 
whose existence Moser has proved. A rigorous test 
was devised by noting that, for the chosen mapping, 
any invariant curve must be symmetric around the 
lines x = y and x = -yo Since invariant curves 
cannot intersect, any point whose image under 
multiple iteration crosses the line x = - y must lie 
outside any Moser surface enclosing the fixed point at 
(1, I) but not the one at (0, 0). Hence the point must 
lie outside all the Moser surfaces in the second order 
of the hierarchy. Of course, it is impossible to prove 
that a point lies inside a Moser surface by a finite 
number of iterations. A maximum of 50 000 was used. 

A more annoying difficulty was the loss of significant 
figures, resulting from roundoff errors, when many 
iterations were calculated. The results did not meet the 
usual tests of accuracy after a few hundred to a 
thousand iterations were performed. However, these 
tests are more stringent than are required. They 
require that if the image of a given point (xo, Yo) under 
the exact mapping Tn is (xn' Y n)' then the calculated 

y -­o 

(0) (b) (e) 

FIG. 4. A sketch of a neighborhood of Xo and Yo and its image 
~fter nand n + I iterations of a given mapping. The central points 
In band c represent the numerical approximation to the image of 
the central point in a. The circle in b is transformed to the ellipse in c. 

image (Xn, Y n) should lie within a neighborhood of 
(xn,Yn)' However, to prove that a neighborhood of 
(xo ,Yo) lies outside a Moser surface we only need to 
know that the true mapping takes some point in the 
neighborhood of (xo, Yo) to some point in the neigh­
borhood of (xn' Yn). As will now be shown, this 
condition is much easier to satisfy. 

Figure 4 illustrates the geometry used in calculating 
the effect of roundoff error. The central points of Figs. 
4(a), 4(b), and 4(c) are the initial point and its images 
as calculated numerically after nand n + 1 iterations 
of T. A neighborhood of (xo, Yo), shown shaded in 
Fig. 4(a), is assumed to be transformed by the exact 
mapping into the shaded regions of Figs. 4(b) and 
4(c). The mapping of the neighborhood of (Xn• Yn) to 
a neighborhood of (xn+1' Y n+1) will now be treated 
in detail in the linearized approximation. utilizing Eq. 
(7), to confirm the general picture. 

In the linearized approximation a circle is trans­
formed into an ellipse with a ratio of major to minor 
diameter of 

Dmaxf Dmln = [(e~ + d;)! + (1 + e~ + d;)!]2. (32) 

Here en and dn are defined by parameterizing j(xn , Yn) 
as in Eq. (9). In this approximation the separation of 
two points br n is related to the separation of their 
images 6r n+1 by 

(brn+1)2 = {I + 2e! + 2d! + [(e! + d;) 

x (1 + e! + d;)]! cos 2(0 - 0M)}(brn)2. (33) 

Here 0 - OM is the angle between the line connecting 
the images of the two points and the major axis of the 
ellipse of Fig. 4(c), and OM is given by Eq. (13). On 
the other hand, the relation connecting the distance 
between a point and a line br! and the distance be­
tween their images br:+1 is 

(br!+1)2 = {I + 2c! + 2d! + [(e~ + d!) 

x (1 + e~ + d!)]! cos 2(0* - 0M)}-\br:)2. (34) 
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On the average, assuming successive phase angles 
are uncorrelated, the distance between two points is 
increased by the factor 

/ tJr n+l \ = exp {l.. r2lr! In (tJr n+l)2 dO} 
\ tJrn / 21T Jo tJrn 

= (1 + c~ + d~)l (35) 

while a point and a line move toward each other by 
the factor 

(tJr:+1/tJr:> = (1 + c~ + d!)-l. (36) 

This describes a situation in which every region is 
being continually stretched into long thin fibers by 
successive iterations, as shown in Figs. 3(a) and 3(b). 

We thus see from Eq. (35) that small errors in the 
distance between two points tend to grow exponen­
tially with the number of iterations so that the stringent 
criterion for accuracy shows a rapid loss of significant 
figures. On the other hand, small errors of the distance 
from a point to a region tend to decrease exponentially. 
This would apparently lead to the conclusion that 
when more significant figures appear to be lost, more 
confidence can be placed in the results! Of course, the 
theory is highly simplified, but it should give some 
credence to the results of the "escape" calculations. 
These are summarized in Table IV. The first column 
gives the initial value for each calculation and the 
second column gives the number of iterations required 
for the image to cross the line x + y = O. Those 
calculations that were stopped before the image 
crossed this line were discarded as inconclusive. 

The first set of seven points in Table IV illustrates 
behavior outside all the structure associated with the 
fixed point at x = y = 0.6580 with P/Q = i. In the 
neighborhood of this fixed point are Moser surfaces of 
the third order of the hierarchy that enclose a portion 
of the line x = y. Part of this structure is illustrated 
in Fig. I. Further exploration was conducted near 
hyperbolic fixed points to avoid these third-order 

TABLE IV. Results of escape calculations. 

Xo = Yo N 

0.50 42 
0.52 67 
0.54 53 
0.56 61 
0.58 430 
0.60 222 
0.62 2453 

0.69385 2155 
0.69387 3721 
0.69389 3843 
0.69415 45216 

Moser surfaces. The next three points were selected 
near the negative-residue fixed point at x = y = 
0.6938903 with P/Q = .i\. The last point in the table 
was chosen near the fixed point at x = y = 0.69417 
with P/Q = i2. The residue of this fixed point is 
R = -0.254 (and R = 0.253 for the corresponding 
positive residue family) so that the corresponding f 
of Table I is very slightly greater than unity. It is 
apparent that this point is close to the boundary of 
the ergodic region since its image escapes only after a 
very large number of iterations. 

V. CONCLUSIONS 

The major features, at least, of the behavior of 
multiple iterations of a two-dimensional mapping can 
be understood in terms of the fixed points of the map­
ping. This paper investigated the relation between 
invariant curves enclosing an eIIiptic fixed point and the 
character of related families of fixed points. These 
families were identified as belonging to the same order 
of the hierarchy as the closed invariant curves. It was 
inferred from numerical computations that in an 
annulus that contains closed invariant curves an 
infinite number of the corresponding fixed points are 
elliptic. Some of these fixed points have an arbitrarily 
small residue. In outer regions there are no invariant 
curves and all but a finite number of the fixed points of 
the given order of the hierarchy are hyperbolic. Thus 
there is a close relation between containment, ergo­
dicity, and the character of the fixed points. 

This is intuitively a very satisfactory result. Consider 
a series of fixed points for which the residue ap­
proaches zero and Q approaches infinity such as given 
by Eq. (31) and Table III. Such a series of fixed points 
approaches a closed invariant curve since the positive 
and negative residue points become indistinguishable 
in the limit as they become dense on a curve. The 
limit of Eq. (31) as n goes to infinity is an irrational 
number of a type13 that most easily satisfies Eq. (22), 
so that this intuition is entirely consistent with Moser's 
theorem. 

On the other hand, hyperbolic fixed points act as 
scattering centers. Successive images of a given point 
must ultimately move away from any hyperbolic point 
that they approach. In a region where almost all the 
fixed points are hyperbolic and they are dense or 
almost dense, it would seem reasonable that only 
isolated points would have correlated images. These 
correlated images would be another set of fixed points. 

It is useful to have some notion of the location of the 
region in which all the fixed points are hyperbolic 
without having to calculate hundreds of residues. It 
is fairly clear that there will be extensive ergodic 
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regions near fixed points for which E is distinctly 
different from zero, so that the mapping is strongly 
pertu·rbed. In the computed example this effect was 
strong enough to bring the boundary of the outer 
ergodic region inside the fixed points with P/Q = t. 
It seems reasonable that the boundary will always lie 
just inside a fixed point with E greater than a tenth or 
so. The well-developed, relatively fat structures 
associated with these fixed points are easy to locate 
and thus provide a good first estimate of the stability 
region of the mapping. Increasing the shear, a quantity 
introduced in Eq. (21), tends to reduce the values of 
E. Thus the critical value of E will tend to be larger in 
systems with small shear. 

Only a few other authors have endeavored to 
establish some boundary to the ergodic region. Rosen­
bluth et al. I6 attempted to identify this boundary with 
the overlap of resonances. In the terms of this paper 
this translates to the statement that in regions outside 
a Moser surface of a given order in the hierarchy, 
elements of the next higher order of the hierarchy 
around a given point overlap with similar elements 
associated with neighboring points. This is not incon­
sistent with the results of the present paper but it 
seems more difficult to express quantitatively. Their 
criterion depends heavily on the size and shape of the 
secondary structure and thus depends on the param­
eter E of this paper. Here it is deduced that E plays 
only a secondary role in determining the boundary of 
the ergodic region, through its relation to R by Eq. 
(15) and also through its effect on the location of 
fixed points as illustrated in Fig. 3. 

Roels and HenonI7 related the boundary of the 
ergodic region to an approximate radius of conver­
gence of the asymptotic seriesll for invariant curves 
that was mentioned in Sec. III. Since this series is 
asymptotic, it has an irreducible error that increases 
with radius. An approximate radius of convergence 
of the series is a region in which this irreducible 
error is sharply increasing with radius. One reason 

18 M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor, and G. M. 
Zaslavski, Nucl. Fusion 6, 297 (1966). 

17 J. Roels and M. Henon, Bull. Astron. Ser. 32,267 (1967). 

that the error is irreducible is that the series is unable 
to handle all the details of higher orders of the 
hierarchy that was introduced in Sec. III. Thus it is 
reasonable that an approximate radius of convergence 
should occur at a point at which the character of higher 
orders of the hierarchy is changing. However, it is 
difficult to make any quantitative statements. 

Morozov and co-workersI8- 20 have noted a corre­
spondence between ergodic regions and hyperbolic 
fixed points but their work has been confined to fixed 
points with P = 1. Thus they do not find an . exact 
correspondence. In their work the mapping is gener­
ated by integrating differential equations for magnetic 
field lines. It is gratifying that they get results com­
parable to those found for the very much simpler 
mapping utilized in this paper. 

Note added in proof: The information on fixed 
points derivable from symmetry arguments has been 
thoroughly discussed by de Vogelaere.21 
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The Weyl transform is applied in quantum dynamics to derive and extend Moyal's statistical theory 
of phase-space distributions for noncommuting coordinate and momentum operators. The distinction 
is made between Weyl transforms in Schrodinger and Heisenberg pictures; the general case of time-de­
pendent Hamiltonians is considered. The Wigner function for the probability distribution in a phase 
space of Cartesian coordinates Q and momenta K propagates according to a conditional probability 
P(t, Q, K I to, Qo, Ko), which is exhibited as a Feynman path integral in phase space. Properties of 
P(t, Q, K to, Qo, Ko)are developed; it is expressed in terms of the quantum generalization of the classical 
Liouville operator. The Weyl transform of a Heisenberg operator propagates according to P(t, Qo, Ko I 
to, Q, K) which is also given as a Feynman path integral. An equation for the time evolution of Weyl 
transforms of Heisenberg operators is obtained, according to which the transform of Heisenberg coor­
dinate and momentum operators obey a quantum form of Hamilton's equations of motion. If the initial 
density operator of the system commutes with the coordinate operator, then the state of the system 
is a mixture of pure coordinate states; the spectrum of the density operator in this case is 
continuous. For a Heisenberg operator AH(t) with Weyl transform AH(t, Q, K), the function A(t, Q) = 
f dKAH(t, Q, K) is the expectation at time t of the dynamical property for a quantum system initially in a 
pure state of coordinate Q; it is the quantum-mechanical generalization of the dynamical property of the 
system along the classical trajectory in configuration space at time t. The probability amplitude for the 
time dependence of A(t, Q) can be expressed as a Feynman path integral with a Heisenberg Lagrangian. 
The amplitude of the conditional probability P(t, Q I to, Qo) considered by Feynman is expressed as a 
path integral with a SchrOdinger Lagrangian. The velocity in the Heisenberg Lagrangian is the negative 
of that in the Schrodinger Lagrangian of Feynman, but it agrees with the velocity appearing in the 
Hamiltonian equations. It is the Heisenberg Lagrangian that is the Lagrangian of classical dynamics. 
For a particle whose potential energy is a function of position, a quantum form of Newton's second law 
is obtained. An extension of the formalism to non-Cartesian coordinate systems is given. 

1. INTRODUCTION 

Properties of the Weyl transform have been 
developed in a previous paper.1 It is the purpose of this 
paper to apply the transform in formulating non­
relativistic quantum dynamics, by means of proba­
bility distributions and trajectories in phase space. 
The probability density is given by the Wigner distri­
bution function. 2 Some of the results on probability 
distributions are anticipated in a paper by MoyaP 
on quantum mechanics as a statistical theory. His 
treatment is simplified' and extended here by use of 
the Weyl transform, which permits a derivation of 
Moyal's statistical theory from Dirac's formulation 
of quantum mechanics. 4 It is important to distinguish 
the Weyl transforms of operators in the SchrOdinger 
and Heisenberg pictures. With this distinction, con­
nection can be made with Feynman's path-integral 
formulation of quantum dynamics.5 •6 Feynman's path 

1 B. Leaf, J. Math. Phys. 9,65 (1968), additional references to the 
Weyl transform are given in this article. See also the paper by 
K. Imre, E. 6zizmir, M. Rosenbaum, and P. F. Zweifel, J. Math. 
Phys. 8, 1097 (1967); the "Wigner equivalent" of these authors is 
the same as the "Weyl transform." 

• E. Wigner, Phys. Rev. 40, 749 (1932). 
3 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949). 
4 P. A. M. Dirac, The Principles of Quantum Mechanics (Claren­

don Press, Oxford, 1947), 3rd ed. 
5 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
• R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path 

Integrals (McGraw-Hili Book Co., Inc., New York, 1965). 

integrals for propagation of probability are in the 
Schrodinger picture; his SchrOdinger Lagrangian 
funCtion differs in the sign of the velocity from the 
Heisenberg Lagrangian. It is the Heisenberg Lagrang­
ian which is the quantum-mechanical generalization 
of the classical Lagrangian. In the Heisenberg picture, 
the Weyl transform of the coordinate and momentum 
operators satisfy Hamilton's canonical equations in 
quantum form; when averaged over the initial phase­
space distribution these equations became the 
Ehrenfest equations.7 

In Sec. 2 the properties of the Weyl transform 
which will be needed in this paper are summarized. 
In Sec. 3 Weyl transforms of operators in SchrOdinger 
and Heisenberg pictures are discussed for the case of 
a time-dependent Hamiltonian. The time dependence 
of the Wigner function is determined by 

the probability of the phase-space point (Q, K) at 
time t conditional on (Qo, Ko) at to. The time 
dependence of the Weyl transforms of Heisenberg 
operators is determined by pet, Qo, Ko I to, Q, K). 
For Heisenberg coordinate and momentum operators 

7 See, for example, A. Messiah, Quantum Mechanics (North­
Holland Pub I. Co., Amsterdam, 1961), Vol. I, p. 216. 
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the Weyl transforms satisfy Hamilton's equations 
in quantum form. The properties of the conditional 
probabilities 

and 

are developed; they are expressed in terms of the 
quantum-mechanical generalization of the Liouville 
operator. In Sec. 4 the Markoffian properties of the 
conditional probabilities are considered. These prop­
erties permit formulation of the Wigner function and 
of the Weyl transforms of Heisenberg operators as 
Feynman path integrals in phase space. Feynman's 
path integrals are in configuration space. As discussed 
in Sec. 5, the transition probability considered by 
Feynman is P(t, Q I to, Qo), the probability of co­
ordinate Q at time t conditional on Qo at to. The 
amplitude for this probability is given as a Feynman 
path integral with a SchrOdinger Lagrangian function. 
The Lagrangian formulation of classical dynamics 
does not express the time evolution of probability 
distributions. It describes rather the time dependence 
of the dynamical properties of the system along the 
classical trajectory. For a quantum-mechanical 
Heisenberg operator AH(t), a function A(t, Q) can be 
defined; it is the integral over the momentum variables 
of the Weyl transform of AH(t). A(t, Q) is the expec­
tation of the dynamical property of the quantum 
system initially in a pure state of coordinate Q at time 
t; it is the quantum-mechanical generalization of the 
dynamical property along the classical trajectory 
in configuration space at time t. The relevant ampli­
tude for the time dependence of A(t, Q) can be ex­
pressed as a Feynman path integral with a 
Heisenberg Lagrangian function. The velocity in the 
Heisenberg Lagrangian is the negative of that in the 
SchrOdinger Lagrangian of Feynman, but it agrees with 
the velocity appearing in the quantum form of Hamil­
ton's equations. For a particle whose potential energy 
is a function of position, a quantum-mechanical form 
of Newton's second law is derived. Up to this point 
only Cartesian coordinates and momenta have been 
considered. In Sec. 6 path integrals in other coordinate 
systems are discussed 

2. THE WEYL TRANSFORM 

Properties of the Weyl transform have been 
developed in a previous paper. l In this section are 
summarized the more important results which will 
be needed in the present work. 

An operator of quantum mechanics is expressed, 

according to the Weyl transformation, as 

A = r . J dQ dK~(Q, K)A(Q, K), (2.1) 

where the Weyl transform A(Q, K) is given by the 
inverse transformation 

A(Q, K) = Tr [A~(Q, K)], (2.2) 
and 

~(Q,K) == r· J dudv 

x exp {27Ti[u. (q - Q) + v· (k - K)]). (2.3) 

q and p = 27Tlik are Cartesian coordinate and mo­
mentum operators for which 

q.P; - P;qi = iMij' (2.4) 

Q and K are eigenvalues of q and k. Alternative forms 
of the Hermitian operator ~(Q, K) are 

~(Q,K) = f· .. f dv exp (27Tiv. K) IQ + tv)(Q - tvl 

= r· J duexp(-27Tiu.Q) IK + tu)(K - tul 

= exp [(i/47T)(O/OQ) • (%K)] IK)(K I Q)(QI. 

(2.5) 

Matrix elements of any operator can be obtained 
from (2.1) and the matrix elements of ~(Q, K), 

(Q'I ~(Q, K) IK') 

= (Q' I K') exp [( -i/47T)(O/OQ)· (%K)] 

x d(Q' - Q)d(K' - K), 
(Q"I ~(Q, K) IQ') 

= d[Q - tcQ' + Q")] exp [27TiK. (Q" - Q')], 

(K"I ~Q, K) IK') 

Also, 

= d[K - tcK' + K")] exp [-27TiQ. (K" - K'D. 

(2.6) 

Tr ~(Q, K) = 1, f' J dQ dU(Q, K) = 1, (2.7) 

f dQ~(Q, K) = d(k - K) = IK)(KI, 

f dU(Q,K) = d(q - Q) = IQ)(QI· 
(2.8) 

The Weyl transform of an operator A(q), which is a 
function of q only, is A(Q); the transform of A(k), 
a function of k only, is A(K). Such transforms are 
unchanged in the classical limit Ii -- 0 and are there­
fore the' same as classical dynamical functions of 
coordinate Q or momentum P = 27TIiK, respectively. 
The set of components of the vectors (Q, K) specify 
the coordinates of a point in phase space. 
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If A and B are two quantum operators, then the 
Weyl transform of their commutator is 

[AB - BA](Q, K) 

= 2i f' J dQ' dK'r5(Q - Q')r5(K - K') 

x sin {(1/41T)[(%Q). (%K') - (%K)· (%Q')]} 

x A(Q, K)B(Q', K'). (2.9) 

Tr (AB) = J' .. J dQ dKA(Q, K)B(Q, K), (2.10) 

Tr [A(Q,K)A(Q',K')] = r5(Q - Q')r5(K - K'). (2.11) 

3. SCHRi>DINGER AND HEISENBERG 
PICTURES 

A time-dependent operator in the SchrOdinger 
picture is written A.(t). The Weyl transformation (2.1) 
gives 

As(t) = f· . J dQ dKA(Q, K)As(t, Q, K), (3.1) 

with Weyl transform 

A.(t,.Q, K) = Tr [A(Q, K)A.(t)]. (3.2) 

Obviously, Q.(t, Q, K) = Q and Ks(t, Q, K) = K 
are the transforms of the position and momentum 
operators, qs and k s • The expectation of a dynamical 
property As(t) when the system is in a state described 
by the probability density operator Ps(t) is, according 
to (2.10), 

(A(t» = Tr [A.(t)p.(t)] 

= f . J dQ dKA.(t, Q, K)Ps(t, Q, K). (3.3) 

The Weyl transform Ps(t, Q, K) is the Wigner func­
tion.2 The density operator defined in terms of the 
initial states I "I'm , to) as 

p.(to) = ! Wm I "I'm , to)("Pm, tol, Wm ;;::: O,! Wm = 0, 
m m 

(3.4) 
becomes at time t > to 

Ps(t) = U(t, to)Ps(to)U\t, to). (3.5) 

The unitary operator U(t, to) is the solution of the 
Schrodinger equation, 

iii dUet, to) I dt = H.(t)U(t, to) = U(t, to)HH(t), (3.6) 

with U(to, to) = 1. Hs(t) is the (time-dependent) 
Hamiltonian operator in the Schrodinger picture; 
HH(t) , the Hamiltonian in Heisenberg picture. 
ut(t, to), the Hermitian adjoint of U(t, to), is the 
solution of the adjoint equation, 

-iii dUt(t, to) I dt = HH(t)Ut(t, to) 

= Ut(t, to)H.(t), (3.7) 

with Ut (to, to) = 1. Accordingly, by integration and 
iteration of (3.6) and (3.7), for t > to, 

U(t, to) = T exp [ -(i/Ii) L dt'Hs(t')] 

= yr exp [ -(i/Ii) L dt'HII(t') J, (3.8) 

Ut (t, to) = T exp [(i/Ii) { dt'HH(t')] 

= Trexp [(i/Ii) L dt'Hs(t')]. (3.9) 

T indicates the time-ordered product 

T H(t')H(t") = (3.10) 
(

H(t')H(t") , if t' > t" 

H(t")H(t'), if t" > t'. 
rr indicates the reversed time-ordered product for 
which the inequalities of (3.10) are interchanged when 
T is replaced by rr. 

According to (3.5) and (3.2), the Wigner function 
can be written as 

Ps(t, Q, K) = Tr [A(Q, K)U(t, to)PsCto)Ut(t, to)] 

= f . J dQo dKoP(t, Q, K I to, Qo, Ko)Ps(to, Qo, Ko), 

(3.11) 

where the probability of (Q, K) at t conditional on 
(Qo, Ko) at to is the real quantity 

pet, Q, K I to, Qo, Ko) 

= Tr [A(Q, K)U(t, to)A(Qo, Ko)Ut (t, to)]. (3.12) 

Like the Wigner function, pet, Q, K I to, Qo, Ko) is 
not everywhere nonnegative. 

Since P(t, Q, K I to, Qo, Ko) plays a central role, 
its properties are now considered. From the expres­
sions for A(Q, K) given in (2.5), various forms are 
readily obtained, as for example, 

pet, Q, K I to, Qo, Ko) 

= exp W/41T)[(O/OQ). (%K) - (%Qo)· (a/oKo)]} 

x exp [21Ti(Qo • Ko - Q • K)] 

x (QI UCt, to) IQo)(Kol ut(t, to) IK). (3.13) 

According to the Weyl transformation (2.1), from 
(3.12), 

U(t, to)A(Qo, Ko)Ut (t, to) 

= r· J dQ dKA(Q, K)P(t, Q, K I to, Qo, Ko), 

U\t, to)A(Q,K)U(t, to) 
(3.14) 

= f· J dQo dKoA(Qo, Ko)P(t, Q, K I to, Qo, Ko)· 

(3.15) 
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Therefore, from (2.11), r· J dQdKP(t,Q,K I to, Q',K')P(t, Q,K I to, Q",K") 

= b(Q' - Q")b(K' - K"), (3.16) r· J dQo dKoP(t, Q', K' I to, Qo, Ko) 

X pet, Q", K" I to, Qo, Ko) = b(Q' - Q")b(K' - K")' 

(3.17) 
From (3.14) and (3.6), 

r·· f dQ dKA(Q, K)ap(t~ Q, K I to, Qo, Ko)/at 

= -(i/h)[H.(t)U(t, to)A(Qo, Ko)ut(t, to) 

- U(t, to)A(Qo, Ko)Ut(t, to)Hs(t)], 

so that the Weyl transformation gives 

ap(t, Q, K I to, Qo, Ko)/at 

= -(i/h) Tr ([A(Q, K)H.(t) - Hs(t)A(Q, K)] 

X U(t, to)A(Qo, Ko)Ut(t, to)} 

= -O/h) r· J dQ' dK'P(t, Q', K' I to, Qo, Ko) 

X Tr{A(Q, K)[Hs(t)A(Q', K') - A(Q', K')Hs(t)]. 

(3.18) 
But, from (2.9) and (2.11), 

Tr {A(Q, K)[Hs(t)A(Q', K') - A(Q', K')H.(t)]} 

According to (3.11), the Wigner function becomes 

Ps(t, Q, K) 

= Texp [-(i/h) 1: dtT.(t', Q,K)}s(to, Q,K), 

(3.24) 

a solution of the differential equation for the time 
evolution of the Wigner function, 

ap.(t, Q, K)/at = -(i/h)L.(t, Q, K)p.(t, Q, K), (3.25) 

which is the Weyl transform of the quantum-mechan­
ical von Neumann equation for the density operator, 

dp./dt = -(iJh)[H.(t)p.(t) - p.(t)H.(t)]. (3.26) 

Alternatively, from (3.15), 

j- • -J dQo dKoA(Qo, Ko)ap(t, Q, K I to, Qo, Ko)/at 

= (i/Ii)[HH(t)U\t, to)A(Q, K)U(t, to) 

- Ut(t, to)A(Q, K)U(t, to)HH(t)], 
so that 

ape t, Q, K I to, Qo, Ko)/at 

= O/h) r· . f dQ~ d~P(t, Q, K I to, Q~,~) 

X Tr {A(Qo, Ko)[HH(t)A(Q~,~) 

- A(Q~, ~)HH(t)n. (3.27) 
= Ls(t, Q, K)b(Q - Q')b(K - K'), (3.19) 

But (3.19) gives 
where the quantum-mechanical Liouville operator 
Ls(t, Q, K) is defined as Tr {A(Qo, Ko)[HH(t)A(Q~, K~) - A(Q~, ~)HH(t)]} 

L.(t, Q, K) = 2ij-"f dQ" dK"b(Q - Q")b(K - K") 

X sin {Cl/47T)[(a/aQ") • (a/aK) - (ajaK"). (a/aQ)]} 

X H.(t, Q", K"). (3.20) 
Therefore, 

= LH(t, Qo, Ko)b(Qo - Q~)b(Ko - ~), 
where 

LH(t, Q, K) = 2i r . J dQ" dK"b(Q - Q")b(K - K") 

X sin {(lj47T)[(ajaQ"). (ajaK) - (ajaK")· (ajaQ)]} 

ap(t, Q, K I to, Qo, Ko)/at Therefore, 
X HH(t, Q", K"). (3.28) 

= -(i/h)Ls(t, Q, K)P(t, Q, K I to, Qo, Ko)· (3.21) a I ja 
pet, Q, K to, Qo, Ko) t 

Since initially, according to (3.12) and (2.11), 

P(to, Q, K I to, Qo, Ko) = b(Q - Qo)b(K - Ko), 
(3.22) 

integration and iteration of (3.21) gives the solution, 
for t > to, 

pet, Q, K I to, Qo, Ko) 

= Texp [ -(ijli) 1: dtTs(t', Q, K)] 
b(Q - Qo)(K - Ko). (3.23) 

= (ijh)LH(t, Qo, Ko)P(t, Q, K I to, Qo, Ko), (3.29) 

with solution, for t > to, 

pet, Q, K I to, Qo, Ko) 

= Texp [OJ h) 1: dtTH(t', Qo, Ko)] 

X b(Q - Qo)b(K - Ko). (3.30) 

If the Hamiltonian is independent of time, then 
H. = HH = H, so that the quantum Liouville 
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operators of (3.20) and (3.28) are the same: 

L.(Q, K) = LH(Q, K) = L(Q, K). (3.31) 

In this case the two expressions in (3.23) and (3.30) 
become, for t > to, 

From (3.36) and (3.30) 

AH(t, Q,K) 

= Texp [(i/Il) (dt'LH(t', Q, K) ]As(t, Q, K). (3.39) 

From (3.3 6) and (3.17) 
pet, Q, K I to, Qo, Ko) 

) 
A.(t, Q, K) 

= exp [- (i/Il)(t - to)L(Q, K)]b(Q - Qo b(K - Ko) 

= exp [(i/Ii)(t - to)L(Qo, Ko)]b(Q - Qo)b(K - Ko), = r· J dQo dKoAH(t, Qo, Ko)P(t, Q, K I to, Qo, Ko), 

(3.32) (3.40) 

and so that, according to (3.23), the transformation inverse 

pet, Q, K I to, Qo, Ko) = P(to, Qo' Ko It, Q, K). to (3.39) is 

(3.33) A.(t, Q, K) 

Equation (3.33) is equivalent to Moyal's equation 
(9.10p for conservative systems; but it is not valid 
when the Hamiltonian is time dependent, because of 
the time-ordering operations in (3.23) and (3.30). 

A Heisenberg operator A H(t) is defined as 

AH(t) = ut(t, to)A.(t)U(t, to). (3.34) 

In particular, according to (3.5), the Heisenberg 
density operator is 

(3.35) 

independent of time. The Weyl transform of AH(t) is 

AH(t, Q, K) > Tr [~(Q, K)Ut(t, to)As(t)U(t, to)] 

= f· .. f dQo dKoAs( t, Qo, Ko) 

x Tr [~(Qo, Ko) U(t, to)~(Q, K)Utct, to)] 

= r . J dQo dKoAs(t, Qo, Ko) 

x P( t, Qo, Ko I to, Q, K). (3.36) 

The Weyl transform of the Heisenberg density 
operator is time independent 

PH(Q, K) = Ps(to, Q, K). (3.37) 

The expectation of the dynamical property given in 
(3.3) becomes 

(A( t» = J ... J dQ dK dQo dKoA.( t, Q, K) 

X pet, Q, K I to, Qo, Ko)Ps(t, Qo, Ko) 

= r· J dQo dKoAH(t, Qo, Ko)PlI(Qo, Ko) 

(3.38) 

= T exp [ -(i/Ii) i: dt'Lit', Q, K) ]AH(t, Q, K). (3.41) 

The change from LH in (3.39) to Ls in (3.41) should be 
noted; for conservative systems (3.31) applies, so 
that this distinction disappears. Equation (3.39) is a 
solution of the differential equation 

oAlI(t, Q, K)/ot 

= T exp [(i/Ii) l: dt'CH(t', Q, K) ]OA.(t, Q, K)/ot 

+ (i/Ii)LH(t, Q, K)AlI(t, Q, K), (3.42) 

which is the Weyl transform of the quantum­
mechanical Heisenberg equation for the operator 
AH(t), 

dAlI(t)/dt = oAH(t)/ot + (i/Il) 
x [HH(t)AlI(t) - AlI(t)HlI(t)]. (3.43) 

In addition to (3.21) and (3.29), two other expres­
sions can be derived for oP(t, Q, K I to, Qo, Ko)/of. 
If H.(t) is replaced by U(t, to)HlI(t)Ut(t, to) in the 
equations leading to (3.18), it is found that 

oP(t, Q, K I to, Qo, Ko)/ot 

= -(i/Il) r . J dQ~ dK~P(t, Q, K I to, Q~, K~) 

x LlI(t, Q~, ~)b(Qo - Q~)b(Ko - ~). (3.44) 

Similarly, replacement of HH(t) by 

ut (t, to)H.(t) U(t, to) 

in the equations leading to (3.27) gives 

oP(t, Q, K I to, Qo, Ko)/ot 

= (ijli) r· J dQ' dK'P(t, Q', K' I to, Qo, Ko) 

x L.(t, Q', K')b(Q - Q')b(K - K'). (3.45) 
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From (3.44) and (3.11), 

op.(t, Q, K)/ot 

= -(i/Ii) r· J dQo dKoP(t, Q, K I to, Qo, Ko) 

x CH(t, Qo, Ko)PH(Qo, Ko), (3.46) 

an alternative to (3.25). From (3.45) and (3.36), 

oAH(t, Q, K)/ot 

=f· -J dQo dKoP(t, Qo, Ko I to, Q, K) 

x [oA.(t, Qo, Ko)/ot + (i/Ii)C.(t, Qo, Ko)A.(t, Qo, Ko)], 

(3.47) 

an alternative to (3.42). According to (3.40), the 
right-hand side of (3.46) is in the form of the Weyl 
transform of a Schrodinger operator; according to 
(3.36), the right-hand side of (3.47) is in the form of 
the Weyl transform of a Heisenberg operator. 

Equation (3.47) is particularly suitable for com­
paring quantum-dynamical relations with those of 
classical dynamics. Substitution of the time-evolution 
equation for the Wigner function (3.25) into (3.47) 
gives the quantum form of the Liouville equation, 

OPH(Q, K)/ot = 0, (3.48) 

in agreement with (3.37). The time-rate of change of 
the Weyl transform of the Heisenberg Hamiltonian 
is determined by the explicit time dependence of 
H.(t, Q, K); (3.47) gives 

OHH(t, Q, K)/ot 

= r· -J dQo dKoP(t, Qo, Ko I to, Q, K) 

x oHit, Qo, Ko)/ot. (3.49) 

Similarly, (3.47) gives the quantum form of Hamil­
ton's canonical equations, 

OQH(t, Q, K)/ot 

= f' .. f dQo dKoP(t, Qo, Ko I to, Q, K)(21T1i)-1 

x oR.(t, Qo, Ko)/oKo 
oKH(t, Q, K)/ot 

= - f· .. f dQo dKoP(t, Qo, Ko I to, Q, K)(21Tlirl 

x oHit, Qo, Ko)/oQo' (3.50) 

The Ehrenfest equations7 for d(Q(t»fdt and d(K(t»/dt 
follow directly on averaging over the initial phase­
space distribution, with the use of (3.38) and (3.37). 
It will, in fact, be shown at the end of Sec. 4, by the 
use of the phase-space path integral form of (3.36), 

that 

oAH(t, Q, K)/oQ 

= r· J dQo dKoP(t, Qo, Ko I to, Q, K) 

x oAit, Qo, Ko)/oQo, 
oAH(t, Q, K)/oK 

=j- . J dQo dKoP(t, Qo' Ko I to' Q, K) 

(3.51) 

x OA,(t, Qo' Kg)/oKg. 

so that (3.50) takes precisely the canonical form, 

OQH(t, Q, K)/ot = (21T1i)-10HH(t, Q, K)/oK, 

oKH(t, Q, K)/ot = -(21T1i)-10HH(t, Q, K)/oQ. 

(3.52) 

In the classical limit, l according to (3.28), the 
Liouville operator CH(t, Q, K) becomes 

CH(t, Q, K) -+ (i/21T){[oHH(t, Q, K)/oQ] • (%K) 

- [OHH(t, Q, K)/oK] • (%Q)} 

= (li/i){[oKH(t, Q, K)/ot] • (%K) 

+ [OQH(t, Q, K)/ot] • (%Q)). (3.53) 

In (3.30), the operator becomes 

T exp [(i/Ii) i:dt'CH(t', Q, K) 

-+ T exp tdt'{[oKH(t', Q, K)/ot']. (%K) 
Jto 

+ [OQH(t', Q, K)/ot'] . (%Q»]. (3.54) 

a displacement operator along the classical trajectory. 
If the coordinates along the trajectory at time tare 
defined as 

Q(t) == T exp {i:dt'[OQH(t', Q, K)/ot'] • (%Q)}Q, 

K(t) == T exp {i:dt'[OKH(t', Q, K)/ot'] • (O/OK)}K, 

(3.55) 
then, in the classical limit, 

pet, Qo, Ko I to, Q, K) -+ <5[Q(t) - Qo]<5[K(t) - Ko], 

(3.56) 
so that, from (3.36), 

AH(t, Q. K) -+ AB[t, Q(t), K(t)], (3.57) 

the classical dynamical variable for the system along 
its trajectory in phase space at time t. In (3.55), 
initially, Q(to) = Q and K(to) = K. 
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4. MARKOFFIAN PROPERTIES AND 
PHASE-SPACE PATH INTEGRALS 

When the Hamiltonian operator is time dependent, 
two forms can be distinguished for the operators 
U(t, to) and ut(t, to); these are given in (3.8) and (3.9). 
It is convenient to designate the forms in which H. 
appears as Us(t, to) and U!(t, to), the forms in which 
H H appears as U H(t, to) and U1(t, to). If t > t1 > to, 
then 

But 

U.(t, to) = Us(t, t1)Us(t1, to), 

U; (t, to) = U; (t1' to)U! (t, t1)' 

Ulit, to) = uk(t, t1)u1(t1' to), 

UH(t, to) = UH(t1, to)UH(t, t1)' 

(4.1) 

(4.2) 

From (4.1) and (3.12), 

pet, Q, K I to, Qo, Ko) 
= Tr [6.(Q, K)Us(t, t1)Us(t1, to) 

X 6.(Qo, Ko)U;(t1, to)U1(t, t1)] 

= Tr [U!(t, t1)6.(Q,K)U.(t, t1) 

X U.( t1 , to)6.( Qo , Ko) U! (t1' to)] 

= r . J dQ1 dK1Ps(t, Q, K I t1, Ql> K1) 

X P(t1' Q1' K11 to, Qo, Ko). (4.3) 

On the other hand, from (4.2), 

pet, Qo, Ko I to, Q, K) 

= Tr [6.(Qo, Ko)U H(t1, to) U H(t, t1) 

X 6.(Q, K)Uk(t, t1)U1(t1, to)] 

= Tr [U1(t, to)6.(Qo, Ko)U H(t1, to) 

X U H(t, t1)A(Q, K)Uk(t, t1)] 

= f·· J dQ1 dK1PH(t, Q1' K11 t1, Q, K) 

X PH(t1, Qo, Ko I to, Q1' K1). (4.4) 

(Here, p. designates a quantity containing Us; PH' a 
quantity containing UH .) For a sequence of times, 
t = t" > t,,_l > ... t1 > to, and with Q" = Q,K" =K, 

pet, Q, K I to, Qo, Ko) 

= f···f dQ1 dK1'" dQ,,_l dK"_l 

,,-1 

X IT P.(tI+1' Q1+1' KI+1 I t;. Q;, K;), (4.5) 
;=0 

P( t, Qo, Ko I to, Q, K) 

=f· . ·fdQ dK ... dQ dK 1 1 ,,-1 ,,-1 

n-1 

X IT PH(tm , Q;, K; I t;, Qm' KI+1)' (4.6) 
i=O 

According to (4.5) the propagation of probability 
in phase space is a Markoffian stochastic process3.8 
which can be written as a continuous product of 
unitary transformations; from (3.11), 

p.(t, Q, K) 

= lim f·· ·fdQo dKo' .. dQ"_l dK"_l 
"-+00 

n-1 

X II Ps(tm, Qm' KI+11 t i , Q;, K;)p.(to, Qo, Ko)· 
~ ~n 

According to (3.40) the transformation from Heisen­
berg to Schrodinger pictures proceeds by the same pro­
cess; in (4.7), Ps(t, Qo, Ko) can be replaced by PH(Qo, 
Ko). On the other hand, the inverse transformation 
from Schrodinger to Heisenberg pictures goes by way 
of (4.6); from (3.36), 

AH(t, Q,K) 

= lim f·· ·fdQo dKo'" dQ,,_l dK"_l 
"-+00 

,,-1 

X II PH(tm , Q;, K; I t i , Q;+1' Km)As(t, Qo, Ko)· 
~ ~~ 

Equations (4.7) and (4.8) appear as weighted 
averages over all paths in phase space connecting 
(Qo, Ko) at to with (Q, K) at t, analogous to the 
Feynman path integrals in configuration space.s The 
weight attached to each path is the product of con­
ditional probabilities for infinitesimal displacements 

n-1 

II P.(ti+1, Qi+1' K;+11 t;, Q;, K;) 
;=0 

in (4.7), or 
n-1 

II PH(ti+1' Q;, Ki I ti , Qi+1' K1+1) 
i=O 

in (4.8). In the limit as n ---+- 00, the largest time 
interval t HI - t j vanishes. Accordingly, in each 
factor only terms to first order in t i+1 - t; need be 
retained. From (3.23) and (3.30), to first order in 
ti+1 - t; 

Piti+1, Q1+1' K;+1 It;, Q;, K;) 

= exp [ -(i/Ii) {1+1 dtTit' , Qi+1' K;+1) ] 

X t5(Qi+1 - Q i )t5(Ki+1 - Ki), 

PH(ti+1, Q;, K; It;, Qm, Km) (4.9) 

= exp [(i/Ii) !:1+l dtl£'H(tl, Q1+1' Ki+l)] 

X t5(QI+1 - Q;)t5(Km - K;). 

8 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 
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In the classical limit, C(t, Q, K)fli remains finite in 
(3.23) and (3.30), as seen, for example, in (3.53). The 
corresponding phase in the Feynman path integrals 
in configuration space diverges along all paths except 
the classical dynamical path where the action is 
stationary. In the classical limit, C(t, Q, K)fli becomes 
the classical Poisson-bracket Liouville operator, 
which contains only first derivatives with respect to Q 
and P = 21TIiK. Quantum effects arise from the 
higher-order derivatives in the quantum Liouville 
operators (3.20) and (3.28). According to (4.9), these 
effects persist, to first order in t HI - t;, along the 
infinitesimal portion of the phase-space path between 
(QHl' K/+l) and (Q/' K;). 

The proof of (3.51) follows from the need to retain 
only terms to first order in the infinitesimal time 
intervals, t l+1 - t i • As Feynman has pointed out, 
contributions from higher-order terms vanish in the 
limit n -- 00. From (4.8) and (4.9) 

oAH(t, Q, K)foQ 

= lim f·· ·fdQo dKo ... dQ .. _l dK .. _1(o/OQ .. ) 
...... 00 

x exp [(ifli) [~ldt'CH(t" Q .. , K .. ) ] 

x <5(Q .. - Q .. _1)<5(K .. - K .. _J 

x exp [(ifli) (t"_
1 

dt'CHCt', Q .. -l' K .. _1)] 
)/ .. _1 

x <5(Q"_l - Q .. _Jb(K"_1 - K,,_2) ... As(t, Qo, Ko)· 
(4.10) 

To first order in t .. - t"_I' 

(%Q,.) exp [(i/ Ii) i~_1 dt'CH(t', Q .. , K .. ) ] 

x b(Qn - Qn_l)b(Kn - Kn- 1) 

= exp [(i/Ii) i:~1 dt'CH(t', Q", K .. } ]co/OQ .. } 

x b(Qn - Qn_l}b(Kn - Kn- 1), (4.11) 

since differentiation of the exponential gives a factor 
tn - t,,_I' Therefore, an integration by parts with 
respect to Qn-l, gives 

(JAH(t, Q, K)joQ 

= lim f·· ·fdQo dKo ... dQn-l dKn_1 
"""00 

X exp [(i/ Ii) i:~ldt'CH(t" Q .. , Kn) ] 

x b(Qn - Qn_l)b(K .. - Kn_1)(ojoQn_l) 

x exp [(ifli) i:~~ldt'I:H(t" Q .. -l' K .. _1)] 

x t5(Q .. _l - Q .. _Jb(Kn_l - K .. _2) ••• AB(t, Qo, Ko)· 
(4.12) 

Repetition of this process moves the differential down 
the chain until (ojoQo)A8(t, Qo, Ko) is produced at the 
right-hand end; (3.51) is proved. 

S. COMMUTIVITY OF PH WITH q, AND 
FEYNMAN PATH INTEGRALS 

A case of special interest arises when the density 
operator in Heisenberg picture PH = P.(to) commutes 
with the coordinate operator q. Since PH is independ­
ent of time, the commutativity is time independent. 
In this case, for any two eigenkets of q, IQ) and 
IQ'), 

(Q'I PHq - qPH IQ) = (Q - Q')(Q'I PH IQ) = O. 

(5.1) 

Therefore, the matrix elements of PH have the form 

(Q'I PH IQ) = PH(Q)b(Q' - Q), (5.2) 

so that 

PH = r· J dQ dQ'IQ') pH(Q)b(Q' - Q)(QI 

= f dQ IQ) PH(Q)(QI 

= f dQpH(Q)b(q - Q). (5.3) 

PH is a function of the operator q only. According 
to (2.8), 

so that PH(Q) is the Weyl transform of PH when PH 
commutes with q. According to (5.2), PH(Q} is an 
eigenvalue of PH. 

PH IQ) = f dQ'IQ')(Q'/ PH /Q) = PH(Q) IQ), (5.4) 

so that the spectrum of PH is continuous. Since PH 
is a function of q only, the inverse Weyl transformation 
(2.2) gives 

PH(Q) = Tr [PHa(Q, K)] = Tr [PH<5(q - Q)]. (5.5) 

By definition, the last equality, 

Tr [PH<5(q - Q)] == f dQ' (Q'/ PH IQ), (5.6) 

since in the continuous spectrum only the diagonal 
matrix element Q' = Q contributes to the trace, 
because of the <5-function singularity of the matrix 
elements (5.2). 
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For any operator A, the Weyl transform gives, 
with (2.5), 

A = f' 'f dQ dKA(Q,K) 

x f dv exp (27Tiv • K) IQ + tv)(Q - tvl 

= r . J dQ' dQ" dKA[HQ' + Q"), K1 

x exp [27TiK· (Q' - Q")] IQ')(Q"I 

= r· JdQ' dQ"IQ')(Q"IA[HQ' + Q"), 

(i/27T)(O/oQ")1b(Q" - Q'). (5.7) 

If A commutes with q, its Weyl transform is A(Q), 
so that (5.7) gives 

A = r· 'f dQ' dQ" I Q')(Q" 1 

x A[HQ' + Q")1c5(Q" - Q') 

= f dQ IQ)A(Q)<QI. (5.8) 

If A commutes with k, its Weyl transform is A(K), 
so that (5.7) gives 

A = f' . 'f dQ' dQ" IQ')(Q"1 

X A[(i/27T)(O/OQ")]b(Q" - Q') 

= f dQ IQ)A[(1/27Ti)(%Q)]\Ql· (5.9) 

Equation (5.3) is a special case of (5.8) where the 
operator A which commutes with q is PH' Just as 
PH(Q), the Weyl transform of PH, is given by (5.5), so 
in general, if A commutes with q, its Weyl transform 
is 

where 

A(t, Q) == f dKAH(t, Q, K). (5.13) 

In a Heisenberg pure state for which PH = b(q - Q'), 
PH(Q) equals d(Q - Q'), and <A(t» = A(t, Q'). 
A(t, Q) is, therefore, the expectation at time t of the 
dynamical property of the system in the pure state 
PH = b(q - Q). From (2.8), (3.36), and (3.12), 

A(t, Q) = Tr [AH(t)d(q - Q)] 

= r . 'f dQo dKoA.(t, Qo, Ko) 

x f dKP(t, Qo; Kol to, Q, K) 

= (QI Ut(t, to)A.(t)U(t, to) IQ). (5.14) 

If As(t) commutes with q, then according to (5.8), 

If Ait) commutes with k, then according to (5.9), 

A(t, Q) = f dQo (QI Ut(t, to) IQo) 

X A.[t, (lj27Ti)(ojoQo)](Qol u(t, to) IQ). (5.16) 

Consider the case to which (5.15) applies, when 
A.(t) commutes with q. According to (5.12), if PH 
also commutes with q, then 

(A(t» = r . 'f dQo dQA.(t, Qo) 

x I(Qol U(t, to) IQ)12 P.(to, Q) 

= f dQAs(t, Q)Ps(t, Q), (5.17) 

A(Q) = Tr [Ab(q - Q)]. (5.10) where 

Equations (5.8) and (5.10) are the Weyl transformation 
and the inverse transformation for any operator which 
commutes with q. 

As shown in (5.3), if PH commutes with q, then, 
in general, it is a mixture of pure coordinate states 
IQ>(QI with weights PH(Q). The weights are non­
negative, and they are normalized to unity, since 

f dQPH(Q) = f dQ Tr [pHb(q - Q)J = Tr PH = 1. 

(5.11) 

In this case, according to (3.38), the expectation at 
time t of any observable A(t) is 

(A(t» =f dQA(t, Q)PH(Q), (5.12) 

PaCt, Q) = f dQo I<QI U(t, to) IQo>12 p.(to, Qo) 

= Tr [ps(t)c5(q - Q)], (5.18) 

the reduced Wigner distribution function for con­
figuration space. Comparison with (3.11) shows that 
if the probability of Q at t conditional on Qo at to 
is defined by 

pet, Q I to, Qo) 

== f·· J dK dKoP(t, Q, K I to, Qo, Ko), (5.19) 

then P(t, Q I to, Qo) is the nonnegative quantity in 
(5.18), 

pet, Q I to, Qo) = /<QI U(t, to) IQO>/2. (5.20) 
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This is the transition probability considered by 
Feynman.6 

The probability amplitude (QI U(t, to) IQo) can be 
exhibited as a Feynman path integral. From (4.1), 
with t == I .. > 1 .. _1 > ... 11> '0' and Q .. = Q, 

(QI U (t, to) I Qo) 

= lim f" 'fdQ1 '" dQ .. _l 
,,-t<Xl 

.. -1 

X II (Q/+ll Us(t/+l' ti) IQi)' (5.21) 
i=O 

Now, 

(Q/+ll U,(tJ+l' ti) IQi) 
= (QA exp l21Tik. (QiH - Qi)] U,(ti+!' ti) IQ,.) 

= (Qil exp {(i/It) 1:1

+
1 

dt'L,lt', Qi(t')]} I Qi)' (5.22) 

to first order in 1/+1 - 1,., where the quantum­
mechanical Lagrangian operator is defined as 

L.[/, (MI)] == 21Tlik· Qi(l) - H,(/), (5.23) 
with 

Lagrangian for the classical path joining Q I at tl to 
Q"+l at fi+l' The postulated form is readily obtained 
if the Hamiltonian is quadratic in K. For example, if 

H. = (21Tlik)s/2m + V,(q), (5.27) 

for a particle of mass m and potential energy V,(q), 
so that, from (2.5), 

H,(Q, K) = exp [(i/41T)(O/OQ) • (a/oK] 

x (K I Q)(QI H.IK) 

= (21TIiK)2{2m + V,(Q), 

then, from (5.25), to first order in At = tiH - t~, 

(Ql+ll U,(tl+l' ti) IQi) 

= exp {-(i/Ii)V.[!(Q,. + QJ+l)]At} 

x f dK exp {(i/Ii)[21TIiK. (QJ+l - Q,.) 

- (21TIiK)1 At/2m]) 

= (m/i21TliAt)1 exp {( i/Ii)L,[Q,. (t,.), 

t(Q,. + QJ+l)]At}, (5.28) 

where the Lagrangian is 
Q,.(t,.) == (Qi+l - Q,)f(ti+l - Ii)' (5.24) 

The matrix element (5.22) can be evaluated by the L,[Q,.(t,.), l(Qi + Q/+l)] 
use of Weyl transforms. To first order in I,.+l - Ii' = (m/2)QW,.) - V.[l(Q,. + QJ+l)], (5.29) 

U,(II+1' ti) = 1 - (i{Ii)(tJ+l - li)H,(I,.), 

with Weyl transform, 

1 - (i/Ii)(ll+l - It)Hs(tiQ, K) 

= exp [ -(i/Ii) f/+1 dt'H.(t', Q, K)]-
Accordingly, to first order in li+1 - Ii' from (2.6), 

(Qi+ll U.(1J+1' Ii) IQ,.) 

= r . J dQ' dK'(QJ+11 A(Q', K') IQ,.) 

X exp [ -(i/Ii) 1:1

+1 dl'H.(t, Q', K') 

= f dK exp {-(i/Ii) fl+l dt'H,lt', l(Q,. + QJ+J, K]} 
X exp [21TiK. (Qi+l - Q,.)]. (5.25) 

The result of the integration on K will be a function 
of HQ,. + Qi+l) and Qi(li). It is Feynman's postulateS 
that this function has the form 

(QiHI U,(tlH' ti) IQ,.) 

= IX-I exp {(i/Ii) 1'1+1 dt'L,lt', Qi(t'), l(Q,. + QJ+JJ}, 

(5.26) 

where IX is a constant, and L,(t, Ql' Q,.) is the 

in agreement with Feynman.9 

On the other hand, in (5.15) and (5.16), the relevant 
amplitude is (Qol U(t, 10) IQ), not (QI U(t, to) IQ)· 
(Qol U(t, to) IQ) can also be exhibited as a Feynman 
path integral. From (4.2), with 

t = t .. > t 1l- 1 > ... tl > 10, 

and 

(Qol U(t, to) IQ) 

= lim f' . ·fdQl ... dQ .. _l 
...... <Xl 

(5.30) 

(5.31) 

(5.32) 
with 

Qi(ti) == (Qi - Q/+l)/(f/+1 - Ii) = -QJ(tJ). (5.33) 

Evaluation of the matrix element 

• Reference 5 , Eqs. (20) and (28). 
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by means of Weyl transforms gives, to first order in 
tH1 - t l , 

(Q/I UH(tm, ti) IQi+1) 

= f dK exp {-(i/Ii) {I +1 dt'HH[t', t(Qi + Qm),K]} 

X exp [21TiK. (Ql - Qm)]. (5.34) 

The result of integration on K is a function of 
HQI + QH1) and Qi(t l ). Feynman's postulate (5.26) 
may be modified to require that this function take 
the form 

{ rtl
+1. } = ex-1 exp (i/Ii) Jtl dt'LH[t', Qi(t'), t(Qi + Qi+1)] . 

(5.35) 

If the Hamiltonian is time independent, then H H = 
Hs = H, and (5.25) gives 

(QH11 Us(tm, t) IQ) 

= f dK exp {-(i/Ii)(tl+1 - ti)H[t(Qi + Qi+1)' K] 

+ 21TiK· (Qm - Qi)}' 
while (5.34) gives 

(Qil U H(tm, ti) I Qi+1) 

= f dK exp {-(i/Ii)(tH1 - ti)H[t(Q; + QH1), -K] 

+ 21TiK· (Qi+1 - Qi)}' 

(5.30) and (5.34), 

AB[t, (1/21Ti)(%Qo)] (Qol U(t, to) IQ) 

= lim f·· 'f dQ1 '" dQn-1 IT (Qil UH(tH1' ti) IQi+1) 
n-+OO 1=1 

X As[t, (1/21Ti)(%Qo)] f dK 

X exp {-(i/Ii) i:1dt'HH[t', t(Qo + Ql)' K] 

+ 21TiK· (Qo - Q1)} = !~~ f· . J dQ1 ... dQn-1 

n-1 
X II (Qil UH(ti+1, tl) IQm) 

1=1 
X As{t, [21Ti(tl - to)]-lO/OQo(to)} 

X f dKexp [-(i/Ii) i:1dt'{HH[t', t(Qo + Ql),K] 

- 21TIiK· Qo(t')} 1 
According to the modified Feynman postulate (5.35), 
the last K integration can be expressed in terms of 
the Lagrangian L H , so that 

As[t, (1/21Ti)(%Qo)] (Qol U(t, to) IQ) 

= !~~ f" J dQl'" dQn_l n (Q;I U H(tHl, ti) IQm) 

X As{t, (1/21TIi)oLH[to, Qo(to), Qo]/oQo(to)} 

X (Qol U H(t1 , to) IQ1)' 

A(t, Q) in (5.16) therefore becomes 

A(t, Q) = f dQoP(t, Qo(to, Q) 

X As{t, (1/21TIi)oLH(to, . o(to), Qo]/oQo(to)}, (5.38) 
When H(Q, K) is an even function of K these two with 

matrix elements are equal, and P(t Q \ t Q) \(Q I U(t t) IQ)\2 

LH[Qi(t), t(QI + Qm)] = Ls[Q;(t), HQI + Qi+1)]' 

This is the case in the example of (5.27) for which, 
with tJ..t = tHI - t l , 

(QjJ UH(tm, t l ) IQHl) 

= (m/i21T1itJ..t)f 

X exp {(i/Ii)LH[Qj(tI)' HQj + QHl)]tJ..t}, (5.36) 

where 

LH[Qi(t;), t(Qi + Q/+1)] 

= (m/2)(Qi)2(t;) - Vs[t(Q; + QHl)], (5.37) 

equal to L.[Q;(ti ), HQ; + QHl)] in (5.29). 
Return now to the expression for A(t, Q) in (5.16), 

the case in which A.(t) commutes with k. From 

, 0 0, = 0 '0 • 

According to (5.15), if A.(t) commutes with q, then 

A(t, Q) = f dQoP(t, Qo I to, Q)A.(t, Qo)· (5.39) 

In the example of (5.27) for which the Lagrangian 
LH is given in (5.37), 

A(t, Q) = f dQoP(t, Qo I to, Q) . 

X As[t, mQo(to)/21T1i], (5.40) 

according to (5.38) when A.(t) commutes with k. For 
the momentum operator p = 21Tlik, A(t, Q) becomes 
~(t, Q), where 

~(t, Q) == f dK21TIiKH(t, Q, K) 

= f dQoP(t, Qo I to, Q)mQo. (5.41) 
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The first Hamiltonian equation (3.50) gives, in this 
example, 

OQH(t, Q, K)/ot = r· -J dQo dKo 

X pet, Qo, Ko I to, Q, K)27fIiKolm. 

Therefore, with the definition 

a(t, Q) == f dKQH(t, Q, K), (5.42) 

oa(t, Q)/ot = r . -J dQo dKo(27fIiKo/m) 

X J dKP(t, Qo, Ko I to, Q, K) 

= f dQoP(t, Qo I to, Q)Q;), (5.43) 

according to (5.14), (5.16), and (5.40). According to 
(5.41), 

~(t, Q) = moa(t, Q)/ot. (5.44) 

The second Hamiltonian equation (3.50) gives, in this 
example, 

o~(t, Q)/ot = - r· J dQo dKo 

X f dKP(t, Qo, Ko I to, Q, K)oV.(Qo)/oQo 

= - f dQoP(t, Qo I to, Q)Ov.(Qo)/oQo· 

(5.45) 

(5.44) and (5.45) give the quantum-mechanical form 
of Newton's second law, 

mo2a(t, Q)/ot 

= - f dQoP(t, Qo I to, Q)oV.(Qo)/oQo 

= - J dKoVH(t, Q, K)/oQ == -o9J(t, Q)/oQ. (5.46) 

It is clear from this example that the velocity of the 
system along a path in configuration space must be 
identified with Q-(t) in (5.33), and not with Q(t) in 
(5.24). Furthermore, the classical Lagrangian corre­
sponds to the quantum operator LH[t, Qi(t)] in 
(5.32), and not to the operator Ls[t, Q;(t)] ofFeynman 
in (5.24). 

6. OTHER COORDINATE SYSTEMS 

The discussion in the previous section has been 
based on the case for which the density operator 
PH = Ps(to) commutes with the coordinate operator q. 
The system is prepared initially in a state which is a 
mixture of pure coordinate states, as given in (5.3). 

A(t, Q) is the expectation at time t of the dynamical 
property of the system initially in the pure state 
Ps(to) = ~(q - Q). Generalization is readily made to 
other initial states. Suppose PH commutes with a 
complete commuting set10 of observables, j == 
{jl ,h' .. jN} with common eigenvectors IJ) specified 
by the set of eigenvalues J, so that 

~J IJ)(J/ == ~J6(j - J) = 1. (6.1) 
Then 

PH = ~J /1) PH(J) (J/, PH(J) = Tr [pH6(j - J)]. 
(6.2) 

The expectation at time t of an operator A(t) is given 
by 

(A(t» = ~J A(t, J)PH(J), (6.3) 
where 

A(t, J) = Tr [AH(t)6(j - J)] 

= (JI ut(t, to)As(t)U(t, to) IJ). (6.4) 

If As(t) also commutes with the set of j, then 

so that 

where 

Ait) = ~J 11) Ait, J) (J/, 

Ait, J) = Tr [A.(t)6(j - J)], 
(6.5) 

(6.6) 

(6.7) 

the probability of J o at t conditional on J at to' The 
probability amplitude can be written as a Feynmann 
path integral, 

(Jol U(t, to) IJ) 
n-l 

= lim ~Jl ••• ~Jn-l II (Ji / U H(tH1 , t.) IJH1). (6.8) 
n-+o:> i=O 

For example, if PH commutes with the momentum 
operator k, then 

A(t, K) == Tr [AH(t)6(k - K)] = f dQAH(t, Q, K) 

= (KI Ut(t, to)As(t)U(t, to) IK), (6.9) 

corresponding to (6.4) and (5.14). In momentum 
representation, (5.15) and (5.16) become 

A(t, K) = f dKo (KI Ut (t, to) /Ko) As[t, (i/27f)(%Ko)] 

x (Kol U(t, to) IK), (6.10) 

if As(t) commutes with q, and 

A(t, K) = f dKoA.(t, Ko) I(Ko/ U(t, to) /K)12, (6.11) 

10 Reference (4), p. 57. 
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if A.{t) commutes with k. The probability amplitude 
<Kol U{t, to) IK) can be written as the Feynman path 
integral, 

(Kol U{t, to) IK) = lim f' . ·fdKI ••• dKn_ 1 
n .... oo 

n-l 

X II (KA U H(tm, t1) IKm) (6.12) 
1=0 

= lim f' . ·fdKi .•. dKn _ 1 n (K;I exp {-(if Ii) 
n .... oo ~o 

X 1:1+1 dt'[HH(t') + q. 27TIiKj(t')1} IKi ), (6.13) 

JOURNAL OF MATHEMATICAL PHYSICS 

with 
(6.14) 

Evaluation with the use of Weyl transforms gives, 
to first order in t 1+1 - t i , 

(Kil UH(tm , ti) IKi+1) 

= f dQ exp [ -(ifli) fi+ 1

dt'{HH[t" Q, t(KI + Ki+l)l 

+ Q. 27TIiKj(t')}} (6.15) 

a function of !(Ki + Ki+1) and Ki(t i). 
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An approach similar to the methods of renormalization of the Green's functions equations of quantum 
field theory is adopted to the singular potential in the Lippman-Schwinger equation. The close relation 
between our approach and the one used in field theory gives a method to be applied to nonrenormalizable 
field theories. The physical implication of this approach is discussed. 

1. INTRODUCTION 

One of the outstanding problems in high-energy 
physics is to give a consistent theory of nonrenormal­
izable interactions (e.g., weak interactions, spin-l 
electrodynamics, etc.) beyond the lowest order of 
perturbation theory. 

Various attempts to solve this problem! have been 
made without complete success. However, due to the 
difficulties inherent in this problem, attention has 
been focused on the study of the quantum theory of 
singular potentials, although results for such singular 
potentials can at most hint at the actual properties 
of nonrenormalizable interactions in quantum field 
theory. Of course, singular potentials have an intrinsic 
interest and do indeed raise many interesting questions. 

In this paper we wish to describe a new approach to 

-. Department of Physics, Queen Mary College, London, England. 
1 In the case of quantum field theory see, for example, J. G. 

Taylor, Supp!., Nuovo Cimento 1, 857 (1963). In the study of 
potential theory see A. Bastai, L. Bertocchi, G. Furlan, S. Fubini, 
and M. Tonin, Nuovo Cimento 30,1512 (1963); W. Giittinger and 
E. Pfatfelhuber, "Generalized Lippman-Schwinger Scattering 
Equations for Singular Interactions," CERN Report 65/1211/5, 
Th 586; and W. Giittinger, R. Penyl, and E. Pfatfelhuber, Ann. 
Physik 33, 246 (1965). 

singular potentials which is intimately related to the 
methods of renormalization of the Green's functions 
equations of quantum field theory. This intimate 
relation allows us to hope that properties similar to 
those we find for singular potentials will also occur in 
nonrenormalizable field theories. 

For several years the formulation of renormalized 
Green's functions equations for renormalizable inter­
actions has been understood. 2 The crucial steps for 
renormalization of masses and coupling constants is 
achieved by a differentiation and integration procedure 
on the external momenta entering the propagators 
and vertex functions. We wish to set up equations for 
nonrelativistic potential scattering to which such a 
renormalization procedure may be applied success­
fully. In the field-theoretic case we deal only with 
scattering amplitudes (connected parts of time-order 
products), so that we expect it to be necessary to do 
the same for singular potentials. 

We restrict our discussion to two particles scattering 
through real velocity-independent potentials. The 

• J. G. Taylor, Suppl. Nuoyo Cimento 1, 857 (1963), papers I, II, 
and III. 
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situation is described in field theory by the Bethe­
Sal peter equation (BS). 

The potential-theory analog of the BS equation is 
the Lippman-Schwinger equation (LS). Our approach 
consists in discussing the renormalization of the LS 
equation in a manner as similar as possible to that 
used for the BS equation.aa 

In Sec. 2 we first discuss the renormalization of the 
potential analog of the ).cp4 theory (or other renormaliz­
able interactions). We then show that this renormaliza­
tion may be extended to more singular potentials, 
with the LS equation being generalized to a linear 
integrodifferential equation. The solutions to this 
equation depend on a finite number of additional 
parameters, which cannot be specified a priori. In 
Sec. 3 we discuss the partial-wave separation of our 
extended LS equation. In Sec. 4 we discuss and 
summarize the results and· indicate the physical 
implication for nonrenormalizable field theories. 
We also raise a number of related questions which we 
have not been able to solve. 

2. EXTENSION OF THE LS EQUATION 

Let us first review briefly the relation between the 
BS equation and potential theory. We recognize three 
classes of field-theoretic interactions: 

Class I: only finite quantities appear; 
Class II: renormalizable interactions; only those di­

vergences appear which are removable by absorption 
into masses and coupling constants; 

Class III: nonrenormalizable interactions. 
The BS equation is given by 

M(p, p'; q) 

= Yep, p'; q) + f d4kV(p, k; q)M(k, p'; q) 

x [(k + q)2 - m2r1[(k _ q)2 - m2r 1, (1) 

where q2 is the invariant total energy, q ± p, q ± p' 
are the initial and final momenta of the particles, 
and Yep, p'; q) is the relativistic potential. 

Class I corresponds to potentials which tend to 
zero for large momentum transfer and external 
masses. For Class II (for spinless particles) the 
potential is constant. In Class III, the potential may 
increase either (a) as a power or (b) at least exponen­
tially in momentum transfer or external masses. We 
remark here that the BS equation is a well-defined 
integral equation under iteration for potentials of 
Class I. This is not the case for potentials of Class II 
or III. 

38 Reference 2, papers II and V. 
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FIG. 1. Diagrammatic comparison of the three classes 
of LS and BS potentials. 

We use the symmetric differential operator 
4 

~ = L PiP.O/OPiP.' 
i,/4=1 

1 

tl 
II 
~2 

DI 

where Pip. are the components of the external momenta 
PI'P2,Pa,p, = q ± p,q ± p'. We apply ~-1~ to both 
sides of Eq. (1)for a BS potential V(p,p';q) arising 
from a renormalizable field theory (of Class II). The 
resulting equation is now a differentio-integral 
equation containing the ambiguity arising from ~-l, 
i.e., the value of the scattering amplitude at zero 
momenta for all particles. This equation is now well­
behaved under iteration for BS potentials of Class II, 
as has been carefully discussed in the work of one of 
US.3b The value of the scattering amplitude at zero 
momenta cannot be determined from the differentio­
integral equation, but plays the role of the renormal­
ized charge. 

It may be possible to discuss BS potentials of 
Class IlIa by means of ~n applied to both sides of 
Eq. (1) and the integration by means of ~-n (where 
n - 1 is the power dependence of the "potentials" on 
momentum transfer and external masses). However, 
we may remark that it is not known if such procedure 
can, in fact, be done completely, nor is it known if such 
a discussion can be extended to the complete set of 
Green's functions equations in this case. We wish to 
see if we can carry through such a procedure for the 
LS equation. 

The LS analog to the BS potentials again may be 
divided into three classes: 

Class I: regular potentials behaving as does r-a. 
(or. < 2) when r -+- 0; 

Class II: VCr) = r-IZ
, (or. = 2), as r -+- 0; 

Class III: (a) VCr) = r-«(or. > 2) as r -+- 0; (b) VCr) 
has a singularity stronger than a pure power at r = O. 

Previous work leads us to compare Classes II and 
III of the LS potentials with Classes II and III of BS 
potentials. 

In Fig. 1 we present a diagrammatic form of the 
situation. In the first column we describe the nature 
of the class. In the second column the LS equation 
for each class is indicated. In the third the BS equation 
for each class is indicated. 

3b Reference 2, papers I, II, and V. 
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We may relate corresponding classes horizontally 
by the standard method. We have made step (1), 
extending the BS equation from Class I to II by 
means of ~-l~. We conjectured that we can make 
step (2), extending it further to Class III by use of 
~-n~n for n > 1. We wish to show here that it is 
actually possible to make both these extensions, 
steps (3) and (4), for the LS equation. 

The LS equation is 

f(p, p', k 2
) 

= Y(\p - p'!) +fY(IP - ql/(q, p', k
2

) d3q (2) 
(k2 _ q2) , 

where 

(3) 

We may also use the relativistic energy (k2 + m2)t -
m in place of k 2J2m in the LS equation (2) if, at the 
same time, we replace d 3q by the invariant measure 
d3qj(q2 ± m2)t. This gives the same high-energy 
behavior as (2), so our further discussion is the same 
for either case. We will explicitly keep to (2). 

The asymptotic behavior of Y(lpl) as Ipi - 00 is 

(4) 

where all logarithmic dependencies are neglected. We 
insert the behavior of Eq. (4) in Eq. (2), where we see 
that the equation is well-defined under iteration for 
IX < 2. When IX = 2, we find logarithmic divergence 
on iteration. This may be removed exactly, as was 
done for the BS equation. replacing the operator ~ 
by the operator d defined as acting on any function of 
the three-vector p by 

(~f)(p) = [(djdJ.)!(J.p)],,=\p\, 

where p = p/lpl is the unit vector along p. Similarly, 
(d=!)(p) = [(dnjdJ.n)!(J.p)],,=\p\. Then Eq. (2) becomes 

f(p, p', k2
) = Y(lp - p'l) - Y(lp'l) + f(O, p', k2

) 

+ [\P\dJ.[dpnY(IP" - ql)f(q, p', k
2
)] d3q. (5) 

Jo (k2 _ q2) p"="p 

We define 

U(p, p') = YOp - p'!) - Y(lp'l) + leO, p'). (6) 

Since dpU(p, p') = dp Y(lp - ql), we may rewrite Eq. 
(5) as 

f(p, p', k 2
) 

= U(p, p') + [IPld). dpnU(p", q)f(q, p', k
2
) d3q. (7) 

Jo (k2 _ q2) 

We may regard the replacement of Y [in Eq. (5)] 
by U [in Eq. (7)] as a renormalization of the LS 
potential in a manner analogous to the Charge 

renormalization for 7T-7T scattering discussed prev­
iously.3 

It is evident that iteration of Eq. (5) for Class II 
potentials (e.g., r-2) is convergent at every step. 
This is due to the differentiation acting on P(lp" - g!) 
under the integral sign of Eq. (7) together with inte­
gration over a finite range of the J. variable. Thus we 
regard Eq. (7) as the correct equation which extends 
the LS equation to the r-Z-type potentials in a manner 
as similar as possible to the renormalized BS equation 
for J.cfo4 theory. 

We would like to remark that we now have an 
integrodifferential equation in place of the integral 
equation structure for the LS equation. This means 
that we no longer expect many properties of the LS 
equation to remain valid for our extended equation. 
We shall. return to this point later. 

It is now possible to see how to generalize our 
extended LS equation to apply to nonrelativistic 
potentials of Class IlIa (e.g., r-rz, IX > 2). This may be 
achieved by the use of the integrodifferential operator 
d-(M)d+(M), where M (as in the relativistic case) is 
equal to 1 plus the singular power of the potential 
and for any integrable function of p: 

[IPI 
(d-If)(p) = Jo dJ.f(J.p)· 

We see now that the form of Eq. (2) becomes 

f(p, pI, k2) 

= V'(p, pI, k2) + LIPldJ.IL"ldJ.2· .. L"M-ldJ.
M 

where 

X {d';¥Y(IP" - ql)f(q, pI, k2
)} as, 

(k2 _ q2) p"=)..IJ(P, q, (8) 

V'(p, pI, k 2
) = Y(lp - p'!) + I (drf)p=o, 

where only the derivatives of!in (d,/)p=o are evaluated 
at p = O. 

We immediately see that Eq. (8) is not finite under 
iteration for the corresponding Class IlIa potentials. 
We may remedy this as follows. We take the expansion 

_ N 

V(lp!) = I a~ Ipl" + W(lpl), (9) 
~=O 

where W(x) = D(X-l
) as Ixl- 00. An expression ·of 

the form of Eq. (9) always exists for Class IlIa 
potentials when we restrict (IX - 3) to being a non­
negative integer N. If, in addition, a = ° for n odd 
then d~+I Y(lp - ql) = ~+l W(lp -'" ql).4 Thus, i~ 

• This restriction is not as severe as it sounds, since, if V(r) = 
e~l'rr1J, we. have formally that V<!p!> = 411J: exp (':""w)r1-'1 

sm (Ipl r)!lrlls an even function of Ipl. It is natural to preserve this 
evenness, even under the ambiguity of the definition of r-rJ at r = O. 
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this case, Eq. (8) becomes 

f(P,p', k2
) 

= V'(p,p/, k2
) + LIPldAlf·ldA2· .. LAN dAN+1 

[
(dp,,)N+1V' (Ip" - ql)f(q, p', k2

)] d3 • (10) 
X (k2 _q2) q 

Then iteration of (10) will be finite at each step. 
since 

V'(p, p', k2
),...., IplN as Ipl,-...; 00. 

If 
f(q, p', k2

) '" IqlN as Iql""'" 00, 

the last term on the right of (10) is finite for finite 
Ipl and behaves as IplN as Ipl ,.-...,; 00 (to within logarith­
mic behavior, which we neglect). Thus we see that 
we have a denumerable set of the extended LS equa­
tions, each one corresponding to a certain class of 
singular potentials, i.e., these behaving as ,3-N as 
r ~ 0, with the coefficients an vanishing for odd n. 

Each such extended LS equation has a number of 
free parameters, and we may insure unitarity by 
choosing these parameters as real. 

Since we have not altered the factor (k2 - q2)-1 
entering in the kernel of Eq. (10) by our differentiation 
and integration procedure, we expect that the discus­
sion of the existence, uniqueness and other general 
properties will apply exactly as for the original LS 
equation. We also expect that analyticity will be 
unchanged. 

It is necessary to discuss briefly the ambiguity in the 
definition of the Fourier transformation of the ,-r.c 
potentials for (X > 2. 

This ambiguity arises from the singularity character 
of r-a at , = O. We may define the singular potential 
,-a by means of the pseudofunctions. f) 

The ambiguity in this definition is that of a linear 
sum of derivatives of <5(r).6 These derivatives are of 
order (X - 3. This will give an added polynomial of 
degree (X - 3 in Y(lp!). We see no natural way to 
reduce this ambiguity except to enforce the condition 
that a = 0 for odd n. Thus we add further arbitrary ". . constants to the solutIOn of our extended LS equatIOn. 
So we see that there are two sources of arbitrary 
constants for our solution to Eq. (10) in addition to 

& L. Schwartz, Theorie des distributions (Hermann & Cie., Paris, 
1947). . 

6 The general approach to the ambiguity in r-'l ar r =. 0 IS t~ de­
fine a function (such as a distribution on the subspace of mdefimtely 
differentiable functions of compact support in r which are zero) 
together with all partial derivat!ve~ of. order les~ than .(11 - ~) at 
r = O. The extension of such a distrIbutIOn to all mdefinItely differ­
entiable functions of compact support involves additional !erms 
which are derivatives of a3(r) with arbitrary coefficients, as mentIOned 
in the text. 

those arising in the potential. These are (1) the 
differentiation-integration procedure and (2) the 
Fourier transformation of the singular potentials. 
It has been shown7 that the explicit solution of the 
radial Schrodinger equation with the potential ,-4 
has four arbitrary constants. 

We hope to discuss elsewhere the relation between 
the solution of the extended LS equation and the 
Schrodinger equation in this and other cases. 

3. PARTIAL WAVE ANALYStS 

We now investigate the partial wave analysis of our 
extended LS equation. We do this in detail only for 
Eq. (5). 

Our method evidently extends to the more general 
equation (10)_ (We shall proceed in manner very 
similar to that used in Ref. 3.) We use the expression 

00 

f(p, p', k2
) = ~(21 + 1)P/ (cos Op, JI,)ft(lpl, Ipl, ki

), 
1=0 

with 

~(lpl, Ip'!) = ~ L:1

pt(COS Op,II·)V(lp - p'l) d(cos 0ll,po) 

and the recurrence relation between the Legendre 
polynomials to obtain 

ft(lpllp'l, k 2
) 

riPI 
d [(21 1) = ~(lpl, Ip'l)+ Jo dA d)' 21 ~ 1 ~_l(A Ipl, Iql) 

-G:: ~)~+l(A IPI.lqD] 

x ft(lql.lp'l, k
2

) d3q. (11) 
(k2 _ q2) 

[We note the similarity between Eq. (11) and the 
corresponding equation (25) in Ref. 3, No.5.] In 
Eq. (11) we see that the different partial waves are not 
coupled to each other, and thus the partial wave 
separation is sufficient to decouple separate partial 
waves. 

However, partial wave projections of the potential 
which arise in the kernel of Eq. (11) are different 
than in the inhomogeneous term. Such is not the case 
for the BS equation (as was discussed in Ref. 3). We 
attribute this to the difference between the ~ and d 
operators. In particular, ~ depends on the internal 
and final momenta, while d does not. 

4. SUMMARY AND CONCLUSIONS 

We may summarize our results by saying that the 
extended LS equation. Eq. (10), is the formulation 
which should be used in the discussion of singular 

7 H. H. Aly and H. J. W. Muller, J. Math. Phys. 7,1 (1966). 
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potentials in order to come as close as possible to the 
renormalization process in renormalizable field theory. 
This completes steps (3) and (4) of Fig. 1. We use this 
to give some indications of the results obtained after 
making step (5). In other words, we can speculate 
about the general nature of the structure of non­
renormalizable field theories. We see that these 
theories are expected to be of two classes with 
properties similar to Classes lIla and Illb of LS 
potential theory. The solution belonging to interac­
tions of Class IlIa will, in general, depend on a finite 
number of additional parameters occurring in the 
potential. For those of Class Illb we cannot really say 
anything, siilce we have not been able to write a 
suitable extended form for the LS equation which is 
convergent under iteration. It is possible that our 
restriction to an integro-differential equation which is 
finite under iteration is too restrictive. However, 
without this restriction it is difficult to say anything 
rigorous using the present mathematical tools. 

We may surmise tQat, in the case of Class IlIa field 
theories, only a finite number of differentiations and 
integrations will be necessary to transform the 
complete set of Green's functions equations to a form 
convergent under iteration. We may also expect that 
the solutions to Class IIIb field theories will very likely 
depend, in general, on an infinite number of arbitrary 
constants (however the solutions are obtained). 

JOURNAL OF MATHEMATICAL PHYSICS 

We hope that weak interaction of the current­
current form are of Class IlIa. 

In this short paper we have left many questions 
unanswered-and even unasked. In particular, we 
would like to know the following. 

(a) What is the nature of the set of bound states? 
(b) What is the relation of solutions to our equation 

to those for the Schrodinger equation? 
(c) We would like to know the properties of the 

linear operators which are the kernels of our 
extended form of the LS equation. In particular, 
are they completely continuous? Is the Fredholm 
alternative valid? And, finally, is it possible to 
give a general existence theory for the solutions? 

(d) Is the Levinson theorem valid? It has been 
shown8 that, at least for the two classes of 
singular potentials like (sinh 11')-2 or ,-4, the 
Levinson theorem is violated in the non­
relativistic limit; it is possible that all singular 
potentials violate it. 
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The ten generators of the proper inhomogeneous Lorentz group are explicitly constructed for spin-O 
and spino! particles, in the case when wavefunctions are given on a light cone (rather than on an equal 
time hypersurface, as usual). The advantage of this formulation is that the generators J (spatial rotations) 
and K (Lorentz boosts) involve only elementary local operators. The Hamiltonian H and momentum 
operators P also contain the inverse radial momentum (olor)-" but do not involve any square roots. 
Moreover, only two-component spinors are required for spino! particles. 

I. INTRODUCTION 

The problem of covariance in quantum theory is 
rather different from its classical counterpart. l In 
classical theory, the dynamical variables have numer-
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ical values which are equal to the observable values 
ofthese variables, and covariance can easily be ascer­
tained if the dynamical variables transform in a 
definite way (e.g., as tensor components) under the 
appropriate group. 

On the other hand, the dynamical variables of 
quantum theory are linear operators acting on some 
Hilbert space. The state of a physical system, as seen 
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by a set of observers,2 is not specified by ascribing 
numerical values to the dynamical variables of that 
system (as in classical physics), but is now represented 
by a ray in Hilbert space. A different set of observers2 

will attribute to that state a different ray. The problem 
of covariance is to find the relationship between these 
rays. 

If the two sets of observers are physically equivalent 
(e.g., related by a Lorentz transformation) this 
relationship is a unitary one.3 In the important case of 
infinitesimal transformations, this unitary transforma­
tion can be written as 

(1) 

where the Ej are the infinitesimal parameters which 
characterize the transformation from one set of 
observers to another () = I, ... ,lOin the case of 
inhomogeneous Lorentz transformations), and the Gj 

are Hermitian operators, which are called the gener­
ators of the transformation group. They satisfy well­
defined commutation relations, depending only on 
that group. The problem of covariance is essentially 
solved when these· generators have been constructed 
explicitly.' 

However, not every realization of the Hilbert 
space, and hence of the Poincare group generators, is 
useful. For the purpose of correspondence with clas­
sical physics, we are often interested in taking the 
quantum~mechanical Hilbert space for a system of 
particles, as the set of square integrable functions over 
the classical configuration space of these particles. 
Moreover, again for the purpose of correspondence 
with classical physics, we wish to interpret the 
operator Xk as the x coordinate of the kth particle. 
This implies that (xk)QP must transform exactly as the 
classical coordinate xk , at least under transformations 
which map the configuration space onto itself. The 
latter requirement is a stringent constraint on the 
generators Gj : Those generators which map the con­
figuration space onto itself must involve only geo­
metrical quantities, while the dynamics of the system 
is represented solely by the other generators. 

Now, the configuration space of a system of 
particles is the direct product of the individual 

2 Even in classical physics, the state of a physiCal system must 
always be referred to some set of observers (and not to a single 
observer). For example, the familiar formulas for Lorentz trans­
formations relate coordinates xyzt and x'y'z't' in two synchronized 
Lorentz frames. (Ignoring this important point leads to "paradoxes." 
such as the twin paradox, which actuaJly are not at all paradoxical 
when properly interpreted.) 

• E. P. Wigner, Ann. Math. 40, 149 (1939). 
• As pointed out by E. Kazes, Phys. Rev. 157, 1309 (1967), 

"unless the ten generators of the inhomogeneous Lorentz group can 
be realized, we may be dealing with an empty formalism." 

configuration spaces of each particle,5 and the latter 
are usually taken as t = const hypersurfaces in space­
time (with the same t for all particles). In this case, the 
generators P (space translations) and J (space 
rotations) have simple forms, and are additive for 
several particles, while H (time translations) and K 
(Lorentz boosts) convey dynamical meaning and have 
complicated forms (even for a single particle).l In 
particular, they involve the nonlocal operator (p2 + 
m2)!, where p = -iV.' 

However, it was pointed out long ago by Dirac7 

that it might be more convenient to take, as the one­
particle configuration space, a hyperboloid (or 
possibly a light cone) invariant under homogeneous 
Lorentz transformations. In this case, the "simple" 
geometrical generators are J and K (which are 
additive for several particles) while Hand P are the 
complicated dynamical generators. Some advantages 
of this formulation were pointed out by Thomas.s 

The classical generators H, P, J, and K, satisfying 
the Lorentz-group Poisson-bracket relations, were 
constructed explicitly by Dirac? for a single particle, 
in terms of the canonical variables p and q. The pur­
pose of the present paper is to derive a quantum 
realization of these generators, in the special case 
where the configuration space is a past light cone.9 •10 

This is done in two steps. In Sec. II, we construct 
J and K, satisfying 

[Jm, I n] = iEmn.J., 

[Jm, Knl = ;"mnsK., 

(2) 

(3) 

[Km, Knl = -iEmn.J.. (4) 

for particles of arbitrary spin s, whose wavefunctions 
are given on a past light cone. 

Sections III and IV are then devoted to the con­
struction of the Hamiltonians of spin-O and spino! 
particles, respectively. Once H is known, P is readily 
obtained from 

[H, K] = -iP. (5) 

• Or can be reduced to it by a suitable coordinate transformation 
(no reasonable alternative is known to the author). 

6 Locality can be restored only at the expense of adding redundant 
components, so that a spin-s wavefunction has 220+1 components 
(with suitable constraints) rather than 2s + I. This artifice leads to 
the aesthetical feature of'P satisfying a manifestly covariant wave 
equation. (Such wave equations are often misinterpreted as being 
the essence of quantum theory.) 

7 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
8 L. H. Thomas, Phys. Rev. 85, 868 (1952). 

·9 The generators for a future light cone are simply obtained by 
reversing the signs of K and P. 

10 Possibly, the use of a past light cone might obviate to what I. 
Bloch [phys. Rev. 156, 1377 (1967)] calls "some relativistic oddities 
in the quantum theory of observation." In his paper, Bloch points 
out that some contradictions "could be avoided if the transition 
from pure state to mixture somehow took place along a light 
cone ... " See also W. C. Davidon and H. Ekstein, J. Math. Phys. 
5, 1588 (1964). 
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However, it is not at all trivial to construct H, 
because we must satisfy all the other commutation 
relations, namely 

[H, J] = 0, (6) 

[P m, Kn] = -iCJmnH, (7) 

[H, P] = 0, (8) 

[Jm, Pn] = i€mnsP., (9) 

[Pm' Pn] = 0. (10) 

While (6) is satisfied by any rotational scalar, (7) 
implies that H satisfies 

[Km' [Kn,Hl] = -CJmnH, (11) 

and (8) leads to the nonlinear condition 

[H, [H, Kml1 = 0, (12) 

the fulfillment of which is the main difficulty of our 
problem. 

Equations (9) and (10) are consequences of the 
preceding ones and of the Jacobi identity. 

Finally, Sec. V is devoted to a brief discussion of 
our results, and of possible generalizations. Some 
auxiliary formulas are listed in an Appendix. 

Throughout this paper, we use natural units: 
n=c=l. 

II. THE HOMOGENEOUS LORENTZ GROUP 

In this section, we construct J and K. We consider 
first the case of spinless particles, and use polar 
coordinates, so that the state of a particle is described 
by a wavefunction w(r, (), cp). 

Rotations, generated by J, are transformations of 
() and cp leaving the quadratic form d()2 + sin2 () dcp2 
invariant. They are generated, as usual, byll 

Lx = i (sin cp ~ + cot () cos cp ~), (13a) 
o() ocp 

Ly = i (-cos cp ~ + cot () sin cp ~), 
o() ocp 

(13b) 

L = -i~ 
• ocp , 

(13c) 

with J == L for spinless particles. 
More generally, W will have (2s + 1) components, 

and then 
J = L + S, (14) 

where the S are (numerical) spin matrices.l2 

11 L. I. Schiff, Qualltum Mechanics (McGraw-Hili Book Co., Inc., 
New York, 1955), p. 75. 

12 The sum (\4) is reducible, but its irreducible parts are not local, 
and we shall not consider them. 

We now turn to Lorentz transformations proper. 
On the past light cone r = - t, we have 

ds2 == dt 2 - dr2 - r2(d()2 + sin2 () dcp2) 

(15) 

so that homogeneous Lorentz transformations, which 
keep ds2 invariant, induce conformal transformations 
of the unit sphere.13.I4 

Taking the special case of an infinitesimal boost 
in the z direction, we have (omitting spin) 

x' =x, 

y' =y, 

z' = z - vt = z + vr. 

(16a) 

(16b) 

(16c) 

We thus see that CJz = vr is generated by rp., i.e., 
K. = rp.. More generally, it is easily seen that 
K = rp satisfies Eqs. (3) and (4) and hence is the 
solution of our problem for s = O. (The Hermiticity 
problem will be discussed at the end of this section.) 

To generalize this result for nonzero s, it is con­
venient to separate, in K = rp, radial and angular 
variables by means of the identity 

r x L = r(r . p) - r2p. (17) 
We define 

n = ,-Ir = (sin () cos cp, sin () sin cp, cos (), (18) 

and further define p as being the Hermitian part of 
o • p [it will be given explicitly in Eq. (23), after we 
derive the form of the Lorentz-invariant scalar 
product]. 

Classically; we have 

K = rp = orp - 0 x L, 

from which we guess 

(19) 

K = Hrp + pr)o + HJ x 0 - 0 x J). (20) 

It is now a matter of routine to verify that (20) 
indeed satisfies Eqs. (3) and (4) for any s, and there­
fore is the solution of our problem. Some auxiliary 
formulas have been listed in the Appendix. 

To complete this section, we still have to define a 
Lorentz-invariant scalar product, i.e., to find the 
weight function p(r, (), cp) in 

(wllw2) = I wier, (), cp)W2(r, (), rp)p(r, e, rp) dr de drp, 

(21) 

such that (Wl IW2) will be invariant under proper 
homogeneous Lorentz transformations. To this 
effect, we note that both r2 sin () dt dr d() dcp and 

13 R. K. Sachs, Phys. Rev. 128,2851 (1962). 
14 A. Komar, Am. J. Phys. 33, 1024 (1965). 
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t5(t 2 - r 2) are Lorentz scalars, and therefore their 
product is a scalar. Integration over t then shows that 

p = r sin 0, (22) 

is the desired weight function, up to a multiplicative 
constant (rather than r2 sin 0, as usual). 

The result (22) can also be derived by noting that 
mere rotational symmetry implies that p = fer) sin 0. 
Then, direct use of (16) shows that r sin 0, dr dO and 
drp are separately invariant under boosts in the z 
direction. Q.E.D. 

It follows from (21) and (22) that all the components 
of L and hence of J are Hermitian. Likewise 

p = -i(! + 1-), 
or 2r 

(23) 

is also Hermitian, and therefore all the components 
of K, Eq. (20), are Hermitian. 

It is also convenient to define the Hermitian 
operator 

q = i(rp + pr) = -;(%r)r, (24) 

in terms of which we can readily write down the 
Casimir invariants 

J oK = J onq, (25) 

and 
J2 - K2 = (J 0 0)2 - q2 - 1. (26) 

We thus see that q and J 0 0 are invariant under 
proper homogeneous Lorentz transformations. 

III. THE SPIN-O HAMILTONIAN 

The next, and much more difficult problem, is to 
find an Hsatisfying (6), (11), and (12). In the classical 
case, with Poisson brackets instead of commutators, 
it was shown by Dirac1 that 

H=- p+-+-. 1 ( m
2 )2) 

2 p rpr 
(27) 

This expression is Hermitian, but, unfortunately, 
satisfies neither (11) nor (12) in quantum theory 
(the right-hand sides are of the order of ;z3). 

The correct expression for H can however be 
easily found, by seeking the "missing terms" necessary 
to satisfy (11) and (12). It is 

H=- p+ +--, 1 ( m
2 

)2 + *) 
2 p + (irpr) rpr 

(28) 

from which we derive 

P = -Hn + K(,-l - ij2rpr), (29) 

= -HHn + nH) + HKr-1 + ,-lK) + (nj4rpr). 
(30) 

[The correction terms in (28) and the last term in 
(30) would have ;'2 factors, if we had not set Ii = 1.] 
Some auxiliary formulas are given in the Appendix. 

N. THE SPIN-! HAMILTONIAN 

The preceding results are valid only for spin-O, 
because, when substituted in (12), the right-hand 
side of (12) is proportional to n 0 J, which vanishes 
only for spin-O. 

A possible approach to get a Hamiltonian for 
spin-t particles is to transform the Dirac equation to 
coordinates r, 0, rp, and u = r + t, and to set H = 
iO/OU.15 

We first go over to the equal time polar coordinates 
trOrp. The Dirac equation then reads16 

where OCr = a 0 0 and the (1' are 4 X 4 block-diagonal 
matrices, the blocks of which are Pauli's (1 (in the 
representation where [3 is diagonal, the blocks being 
1 and -I). We now introduce the null coordinate 
u = r + t and Eq. (31) becomes 

i(1 + ocr)(o"P/ou) = (ocrPr + iocrr-1[3k + [3m)"P, (32) 

where16 

and 
Pr = -i[(o{or) + ,-1], 

k = [3(a' 0 L + 1). 

(33) 

(34) 

Note that k commutes with r,p" OCr' and [3, and that 
k 2 = J2 + t. 

We now define two projection operators 

P± = HI ± ocr), 

satisfying P~ = P ± and P +P _ = 0, and write 

"P = "P+ + "P-, 
where 

Noting that OCr = P+ - P_ and that 

(35) 

(36) 

(37) 

P ±{J = (JP =f ' (38) 

Eq. (32) becomes 

2i(0"P+/or) = Pr("P+ - "P-) - ir-1{3k("P+ - "P-) 
+ {Jm("P+ + "P_)o (39) 

Multiplying on the left by P _, we obtain 

"P- = (Pr)-l{J(m - ir-1k)"P+. (40) 

IS This method does not work with the Klein-Gordon equation, 
presumably because of d~fferent normali.zati.ons of 'P. Actually, even 
the Dirac'P does not satIsfy the normahzat~on (21), and th~ success 
of this method for spin-t particles may be Just a lucky aCCIdent. 

16 Reference 11, p. 334. 
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On the other hand, multiplying (39) by P + yields 

2i(o"P+/ou) = Pr"P+ + ir-1f3k"P_ + f3mljJ_, (41) 

= Pr"P+ + (m + i,-1k)p;:1(m - i,-1k)1jJ+. 

(42) 

From the above result, which is exact, we guess17 

H = Up + (kr-1 - im)p-\kr-1 + im)], 

=- p+-+---- . 1 ( m
2 

J2 + t mk ) 
2 p rpr rppr 

(43) 

(44) 

It is now a matter of tedious, but straightforward, 
calculations to check that (11) and (12) are satisfied. 
Details are given in the Appendix. 

Moreover, from Eq. (34), we note that k is block 
diagonal, the blocks being ±(a. L + 1). Hence His 
reducible, and it is obviously possible to retain only 
one of the blocks, e.g., 

k = a • L + 1 = a . J - i, (45) 

so that two-component spinors are indeed adequate 
for spin-i particles (in conformity with Sec. II). 
This result is the main advantage of the present 
formulation of quantum mechanics. 

The two possible forms of the Hamiltonian, 
corresponding to opposite signs of k, may be inter­
preted as pertaining to particles and antiparticles, 
respectively. 

Finally, we write the explicit form of the momentum 
operators: 

P = H -np + r-1K + K,-1 - (kr-1 - im)np-1 

x (kr-1 + im)], (46) 

= -HnH + Hn) + iCr-1K + Kr-1) 

+ (n/4rpr) - ma x n(rp + pr)/4rppr. (47) 

V. OUTLOOK 

There is a striking similarity between Eqs. (2S-30) 
which give Hand P for spin-O, and Eqs. (43-47), 
which refer to spin-i. However, there are also impor­
tant differences, and there is no obvious generalization 
to arbitrary spin. More powerful methods will there­
fore be needed in order to obtain Hand P for higher 
spin. 

Another important problem, which we have not 
discussed, is that of interactions.I •7•s It was pointed 

17 Note the difference between Eqs. (23) and (33), and see Ref. 15 
above. 

out by Dirac7 that the "point form" of quantum 
mechanics (of which the present work is a special 
case) might possibly be more suitable than the more 
familiar "instant form" to discuss relativistic inter­
actions between particles. Further calculations will 
clearly be needed to investigate this point. 
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APPENDIX 

The following is an assortment of formulas which 
were useful in our calculations. We recall that J is 
given by Eq. (14) and K by Eq. (20). 

HJ x n - n x J) = J x n - in = -n x J + in, 

(AI) 

= M[J2, n]. 

[na' (J x nh] = i( bab - nanb), 

[(J X n)a, (J x n)b] = -iEabcJe> 

[na , J . n] = 0, 

[Ka, nb] = i(nanb - bab), 

[K, r-1] = in/r, 

[K,p] = inp, 

[K, (rpr)-l] = in/rpr, 

[K,r1] = -in/p, 

[K, (rppr)-1] = 0, 

[Ka, O'b] = i(nbO'a - babn • a), 

[Ka,n'a] =0, 

[r\ ,-1] = -ijrppr = -i/prrp, 

[r-\ (rpr)-1] = ij(rpr)2, 

k = a • L + I = a • J - i, 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(AI2) 

(Al3) 

(AI4) 

(AIS) 

(AI6) 

[Ka, k] = i[tEabcO'bnC(rp + pr + i) - nak], (AI7) 

[na' k] = iEabcO'bnc, (AIS) 

[Ka, k/r] = iEabcO'bncP, 

[k2 , [k, nJ] = kn + nk. 

(A19) 

(A20) 

(A2I) 
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Properties of Higher-Order Commutator Products and 
the Baker-Hausdorff Formula 
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. The element z = log ere", whic~ is ~nown to be ~n elemen.t of th~ Lie~algebra generated by x and y, 
IS expressed as a co~~tator ser~e~ In x a~d y wIth coefficIents gIven In terms of certain fixed poly­
nomIals. The result IS gIVen explIcItly to sIxth order. Useful recurrence relations are obtained. The 
method is based on certain properties of higher-order commutator products, particularly their idempotent 
character. 

I. INTRODUCTION 

The problem of compounding exponentials of 
noncommuting quantities is of interest in various 
fields of mathematics 1 and theoretical physics,2 for 
instance: in group theory, perturbation theory, trans­
formation theory, Glnd statistical mechanics. The 
problem has its origin in group theory where it led 
to the Baker-Hausdorff theorem: 

If e"'ell = eZ
, then z is a Lie element generated by 

x and y; that is, z is a sum of repeated commutators 
of x and y (including x and y itself).3 

The theorem was proved by Baker4 and Hausdorff5 

by a recursive construction of z. A simpler proof has 
been given by Magnus1 by means of a characterization 
of Lie elements found by Friedrichs. 6 

The present investigation was stimulated by the 
need of an explicit commutator expansion for practical 
use. The author found only scattered results available 
in the literature, except the systematic approach due 
to Goldberg.7 His expansion, however, is not an 
explicit commutator expansion, but an expansion in 
terms of the monomials 

1, x,y, X2, xy,yx,y2., r, x2y, xyx, etc., 

which are linearly independent elements (basic ring 
elements) in the free associative ring generated by x 
and y. The coefficient for any specified monomial is 
expressed by Goldberg as an integral over a product 
of certain fixed polynomials. 

1 W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954). 
2 K. Kumar, J. Math. Phys. 6, 1923, 1928 (1965). 
8 To be precise, x and y should be considered as free generators 

of an associative ring R over the field of real numbers. Then the 
element z in R defined bye' = ere" is a Lie element . 

• H. F. Baker, Proc. London Math. Soc., Second Series 3, 24 
(1904). 

5 F. Hausdorff, Ber. Verhandl. Sdchs Akad. Wiss., Leipzig, Math. 
Phys. KI. 58, 19 (1906). 

8 K. O. Friedrichs, Commun. Pure Appl. Math. 6, I (1953). 
7 K. Goldberg, Duke J. Math. 23, 13 (1956). 

One of the main results of the present investigation 
is a commutator expansion, with coefficients which 
are closely related to those of Goldberg. There is a 
new feature in the' commutator expansion compared 
to the expansion in terms of monomials; namely, 
while the manifold of monomials by definition are 
linearly independent, the corresponding commutator 
products are not. Consider, for instance, the mono­
mials xyxy and xy2x, which are linearly independent 
elements in the free associative ring. The corresponding 
commutator products, however, exhibit linear de­
pendence. In fact, we have the identity 

[[[x,y], x],y] = [[[x,y],y], x]. 

This means that one and the same result can be 
expressed in numerous ways depending on which Lie 
elements are chosen as a basis. 

A problem of special interest occurs when one of the 
generators, say y, is considered as "small," for 
instance, when y is attached to a small parameter. 
Then we may be interested in a commutator expansion 

Z = z(O) + z(1) + ... + z(n) + ... , 
where the terms are of increasing degree with respect 
to y. For this situation we have obtained a recurrence 
relation connecting z(n) with a certain part of z(n-I) • 

The starting point leading to the results above is a 
study of the structure of higher-order commutator 
products. In Sec. II we prove various properties of 
these products, particularly that the so called "curly 
bracket operator" is essentially idempotent when 
applied to a homogeneous function of the generators. 
This idempotency has been proved earlier (and 
independently of each other) by Dynkin,B Specht,9 and 
Wever,IO using methods which differ somewhat from 
the one employed here. 

8 E. B. Dynkin, Dok\. Akad. Nauk. SS-SRI 57,323 (1947). 
9 W. Specht, Math. Z. 51, 367 (1949). 

10 F. Wever, Math. Ann. 120, 563 (1947-49). 
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II. COMMUTATOR-IDENTITIES AND 
LIE ELEMENTS 

A. Definition of Curly Bracket Operator and 
Left-Ordered Commutator Product 

Let/and g be elements in the ring generated by the 
operators Xl' X2, ..• , X N' and let Ci be an element 
in the field of coefficients. Following Magnusl we 
define a curly bracket operator { } with the properties, 

{Ci} = 0, (Ia) 

{Xi} = X" (lb) 

{Xi' •• XjXk } = [{Xi' .. Xi}' Xk]' (I c) 

{cJ + C~} = cl{f} + c2{g}. (Id) 

The following consequences are obvious: 

{XiX;} = [Xi' Xi] = -{X;Xi} (ANTISYMMETRY), (2) 

{XiXiXk } + {X;X~i} + {X~iX;} = 0 

(JACOBI IDENTITY), (3) 

{XiX;' .. X~l} = [[ ... [Xi' X;], ... ,xk ], Xl]' (4) 

A repeated commutator product of the last type, 
with all brackets [ standing to the left, will be called a 
left-ordered commutator product (German: links 
normiert). The transformation from a left-ordered to 
a right-ordered product is trivial: 

[[ ... [Xl' X2], ... , Xn- l ], Xn] 

= (_l)n-I[Xn' [Xn- l , ... , [X2' Xl] .. 'J]. 

The above definition of the curly bracket operator 
is unique, provided we know which elements are 
considered as basic arguments in the commutator 
operation (the elements Xl' X2,' .. ,XN above). In 
the following we need to introduce various sets of 
arguments with respect to which the curly bracket 
operator is defined. In order to avoid clumsy notation 
we take the risk of introducing the following conven­
tion: A curly bracket without index means that the 
arguments of the commutator operation are a certain 
specified set of generators (Xl, X2, ... , X N in the rest 
of the present section). If the curly bracket is equipped 
with one or more indices, say u and v, then u and v 
appear explicitly as arguments in the function and 
are considered as basic and independent arguments in 
the commutator operation. 

An example will make the point clear. Let u and v 
be the elements u = X I X 2 , V = X 3X I • Then we have 

{uv} = [[[Xl' X2], X3], Xl], 

{uv}u = [[XIX2, X3 ], Xl], 

{UV}II,t> = [XIX2' X3XI]. 

B. Properties of the Curly Bracket Operator 

Let /, g, and h be elements in the free associative 
ring generated by Xl' X2, ... , X N, and let F, G, and 
Gn be the elements 

F = {f}, G = {g}, Gn = {gn}, 

where gn is the nth-degree part of g. Then, if the 
zeroth-degree part of/is zero, the following identities 
are true: 

{f g} = {F g}F, 

{f G} = [F, G], 

{f G h} = {f G h}a, 

{Gn h} = n{G .. h}a . .. 
For proof see the Appendix. 

For h = 1, the last equation reads 

{Gn } = nGn , 

{{gn}} = n{gn}' 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Thus the curly bracket operation on a homogenous 
function is an essentially idempotent operation. 

From the idempotency property we deduce the 
following statement: 

Let r.. be a homogenous function of nth degree. 
Then {r n} = 0 if and only if there exists a function g .. 
such that 

(II) 

Proof' If (11) is true, we have {r n} = {g n} -
(I/n){{gn}} = O. If {r n} = 0, we put gn = r n' and 
(II) is true. 

Some examples of vanishing curly brackets for the 
case of two generators are given below. In order to 
be in agreement with the notation in the Baker­
Hausdorff formula, the generators are denoted by X 

andy: 

{xn} = 0, n = 2, 3,4, ... , 

{xy + yx} = 0, 

{xy(xy - yx)} = 0, 

{XyX(X2y - 2xyx + yx2)} = 0, 

{xy(3xyxy - 3yxyx + y2x2 - x2y2)} = O. 

C. Application to Lie Elements 

(12a) 

(12b) 

(12c) 

(12d) 

(12e) 

The Lie elements (or Lie functions) with respect to a 
set of generators Xl, X2, ... , X N are defined recur­
sively as follows. The commutator product [u, vlofthe 
Lie elements U and v is a Lie element. Any linear 
combination (finite or infinite) of Lie elements is a 
Lie element. The generators are Lie elements (of 
degree one). 
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The following theorem is of importance in connec­
tion with the Baker-Hausdorff formula. 

Theorem: An element L is a Lie element if and only 
if there exists an element I such that 

L = {I}. (13) 

Proof: If L is a Lie element of first or second 
degree, the existence of the element I is obvious, since 
Xi = {Xi} and [Xi' Xj] = {xiXj}' According to Eq. (6), 
the commutator product of two curly bracket expres­
sions is a curly bracket expression. Hence, from the 
recursive definition of Lie elements, it follows that 
any Lie element may be written as a curly bracket 
expression. The reverse. statement, that Eq. (13) 
implies that L is a Lie element, is an obvious conse­
quence of the definitions of the curly bracket operator 
and of the Lie element. 

We can now formulate the following characteriza­
tion of a homogenous Lie element: 

A homogenous element Ln of nth degree is a Lie 
element if and only if 

{Ln} = nLn. (14) 

Proof" If Ln is a Lie element, then by Eq. (13) there 
exists an element In such that Ln = {In}. Hence, 
{Ln} = {{In}} = n{ln} = nLn· Conversely, if Eq. (14) 
is true, Ln can be expressed as Ln = (IJn){Ln}, which 
by Eq. (13) implies that Ln is a Lie element. 

Consider a Lie function L which is written as a 
sum of terms of increasing degree, 

(15) 

Then, by means of Eq. (14), 
00 

{L}=InLn. (16) 
n=1 

III. THE BAKER-HAUSDORFF FORMULA 

A. Some Symmetry Properties 

Henceforth, the generators are X and y. They are 
arguments in the curly bracket operation when 
nothing else is denoted. 

As is well known,1,4,5 the function z defined by 

e" = e"'e'll, z = f(x,y) (17) 

is a Lie function of X and y. By means of the inverted 
equation exp (-z) = exp (-y) exp (-x), we obtain 
the symmetry property 

z = f(x, y) = -f( -y, -x). (18) 

If we make the decomposition 

z = S + A, S ODD DEGREE, A EVEN DEGREE, (19) 

the symmetry property (I8) tells us that the odd part 
is symmetric (with respect to permutation of the 
arguments), while the even part is antisymmetric: 

z =f(x,y) = S + A, f(Y, x) = S - A. (20) 

Next consider the equation 

el('II,,,,) = e'lleX = e-"'e"e'" = exp (e-"'ze"') 

from which we extract 

(21) 

By means of a well-known commutator expansion, 
we get in our notation 

f(Y, x) = {ze"'}., (22) 
That is, 

S - A = {Se"'}s + {Ae"'},4, 

{A(e'" + l)}A = {S(I - eX)}s. (23) 

This equation can be solved with respect to A by 
multiplication from the right by (e'" + 1)-1, followed 
by curly bracket operation 

A = -{S tanh (xJ2)}s. (24a) 

By permutation of x and y, 

A = {Stanh(yJ2)}s. (24b) 

These are useful relations, by which A can easily be 
obtained to one degree higher than S. They exhibit a 
peculiar property, viz., that A can always be expressed 
in such a way that (say) y is to the right in the curly 
bracket. 

Combining the last two equations, we get the 
interesting relation 

{S(tanh (xJ2) + tanh (y/2»}s = O. (25) 

The author has not been able to utilize this relation 
to obtain a recursive solution for S. 

B. Expansion of z = log (e"'eY ) in a Commutator 
Series 

The idea of the present method is to utilize the 
properties of Lie functions with respect to the curly 
bracket operation. If the Lie function z is known as an 
expansion in terms of basic ring elements (monomials), 

00 

z=Izn (Zn' TERMS OF DEGREE n), (26) 
n=l 

then, by Eq. (14), z can be expressed as an explicit 
commutator series, 

'" z = I {lJn){Zn}. (27) 
n=1 

An expansion of the first type was, in fact, found by 
Goldberg,1 who attacked the problem from a combi­
natorial point of view. The present derivation of 
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Goldberg's result is based on an integral representa­
tion, and. is presented here because of its simplicity 
and to exhibit some intermediate results. 

If we imagine that z is written as a sum of mono­
mials, it is obvious that we can make a unique 
decomposition, 

z = x$(x,y) + Y'l}(x,y), (28) 

into terms x~(x, y) beginning with a power of x, and 
terms Y'l}(x,y) beginning with a power of y. From 
Eq. (18), we get the symmetry transform 'I}(x, y) = 
~(-y, -x) by which z can be expressed by one of the 
parts, say 

z = x~(x,y) + y~( -y, -x). (29) 

The result of curly bracket operation is 
00 

{z} = !nzn = {x~(x,y)} + {y~(-y, -x)}. (30) 
n=l 

Hence, if ~(x, y) is known as a power series in x and 
y, Zn may easily be expressed as a sum of repeated 
commutator products. 

Our starting point is the identity 

z = fg(Z, p) dp. (31) 

The function 

g(z,p) = [(eZ - 1)-1 + 1 - p]-l (32) 

is of fundamental importance in the present paper, as 
well as in Goldberg's. Making use of the notation 

a = eX - 1, b = ell - 1, fJ = 1 - e-'V, 

and introducing eZ = eXe?l in the integral (31), we 
obtain 

z = (eXe?l - 1) f[1 + (exe'V - 1)(1 - p)]-l dp 

= (e'" - e-lI) f[e-'V + (e'" - e-II)(1 - p)]-l dp 

= (a + fJ) II [1 - a(p - 1) - fJp]-l dp. (33) 

From this result we select terms beginning with a 
power of x: 

x~(x, y) = a f [1 - a(p - 1) - fJp]-t dp (34) 

= a fdP %}a(p - 1) + fJp]n 

= !oldP ! (p - ly-lpaas'fJs2as3 . .. (a V fJ)'m, 

(35) 

T = Sl + Sa + .. " a = S2 + S4 + .... 
The symbol a V fJ means a if m is odd, and fJ if m is 
even. The sum is taken over all positive integer values 

of m and s; , such that the possible terms in the sum are 

as" a"fJss, a"fJS2a's, ... 

with the exponents running independently over all 
positive integers. 

From Eq. (35) we could proceed by first performing 
the integration. This would result in an expansion in 
powers of a and fJ: 

x~(x, y) = ! (-1)T-lBCr, (J + l)as'fJs2ass . .. (a Y fJ)'m. 

(36) 
The function B is the Beta function: 

B(u, v) = B(v, u) = f pU-l(1 - py-l dp 

= r(u)r(v);r(u + v). 

This and other expansions can be made by starting 
from Eq. (34) or Eq. (35). However, we shall proceed 
along the following lines. In Eq. (35) we sum over 
Sl, S2, ••• , Sm' keeping m constant. Then, by the 
symmetry property 

g( -y, 1 - p) = -g(y,p), (37) 

the result can be presented as 

x~(x, y) = il !oldP pm'(p - 1)m"g(x, p)g(y, p) 

X g(x, p) ... [g(x, p) V g(y, p)], (38) 

where m' = [mI2] and mil = [em - 1)/2]. The number 
of g functions is m. 

For the sake of completeness we also give the 
formula 

Y'l}(x, y) = il fdP pm"(p - 1)m'g(y, p)g(x, p) 

x g(y, p) ... [g(y, p) V g(x, p)], (39) 

which is obtained from Eq. (38) by a symmetry 
transform. 

Following Goldberg,7 to whom we refer for further 
details, we introduce the polynomials Gn(P) , n = 
1, 2, ... , defined by the generating function 

co 

g(x, p) = ! GnCp)xn. (40) 
n=l 

Then, from (38) and (39) we obtain Goldberg's 
result: 

x~(x,y) =! Cx(Sl' S2,'" , sm)xS'yS2xS3 '" (x V y)Sm, 

(41) 

y'l}(x, y) = ! Cy(Sl' S2' ... , sm)yS'x'2y'3 ... (y V x)"m, 

(42) 
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C",(Sl' S2'" " Sm) 

= (_l),,+ICll(Sl, S2, ••• , Sm) 

= fdP pm'(p - l)m"G.i (p)G.ip)'" G ... (p) , 

n = SI + S2 + ... + Sm' (43) 

The summation is over all positive integer values of m 
and Si' 

Now, the sum of (41) and (42) has the extremely 
well-hidden property of being a Lie function, the 
property which can be made explicit by the curly 
bracket operator: 

<Xl 

{z} = I nz" = {x~(x, y)} + {Y1](X, y)}. 
,,=1 

From the definition of the curly bracket operator it is 
obvious that terms like {x"iy'" .. }, SI > 1, are zero. 
Thus, from Eq. (41) 

{x~(x, y)} = x + I c",(1, S2" ", Sm) 
m>l 

x {xy S2X· 8 • •• (x v y)"m}. 

By means of the symmetry property (29), our result 
may be expressed as 

z = x + y + {xq?(x,y)} + {yq?(-y, -x)}, (44) 

q?(x, y) = I b(rl' r2, ... , r m)y"l x T2 
••• (y V x),"', 

(45) 
where the coefficients are given by 

b(rl' r2 ,"', rm) = (1 +i~rirlCil' rl , r2 ,"', rm) 

(46) 

and the sum is taken over all positive integer values of 
m and riO 

It should be emphasized that an expansion in terms 
of commutators may be expressed in an infinite number 
of ways. This is due to the linear dependence of the 
commutators, see Eqs. (12, a-e). For instance, we 
know from Eqs. (24) that the antisymmetric part 
A of z can always be expressed as the curly bracket of 
a function whose last factor is x (or y). The expansion 
whic'h is given above has a supernumerary number of 
higher-order commutators. It seems rather difficult to 
obtain an explicit expansion such that Zn is expressed as 
a curly bracket operating on the fewest possible number 
of basic ring elements. To sixth order we have obtained 
the results: 
Zl = x + y, Z2 = !{xy}, 

Z3 = (fi){xy(y - x)}, z, = -(lh-){xyxy}, 

Z5 = (7~O){xy(r - 2x2y + 6xyx - 6yxy 

+ 2y2x - y)}, 

Z6 = (14140){xy(r - 2x2y + 6xyx - xy2 + 2y2X)Y}. 
(47) 

C. A Recursive Solution 

Various recursive solutions may be written down. 
The following one is relatively simple, and well 
adapted for practical use. 

We start with the identity 

(ell + e-"')z = (ell - r"')z coth (z/2), (48) 

which is easily shown to be true by multiplication 
with e'" from the left. As usual we consider x and y as 
arguments and z as a function of them. The curly 
bracket operation gives the result 

{(2 + y - x)z} = {(x + y)z coth (z/2)), 

which is true due to the fact that terms starting with 
xn or y", n > 1, are annihilated by the curly bracket 
operator. With the notation u = x + y, v = x - y, 
the result reads 

{z} = !{vz} + {u(z/2) coth (z/2)}. (49) 

That is, we have a recursive solution, 

Zl = u, nZn = 1{vzn_ 1} + {u[(z/2) coth (z/2)]n_l}' 

(50) 

The index n - 1 denotes the (n - l)th-degree part 
of the term. We can take advantage of Eq. (7), by 
which any of the Lie functions Zi may be considered 
as an independent argument in the curly bracket 
operation. For instance, 

{vzn_ l} = {vzn- l}Zn_i = [v, Zn-l]' 

In the usual commutator notation the first recurrence 
relations read: 

ZI = U, 

2Z2 = i[v, ZI], 
3z3 = i[v, Z2], 

4Z4 = i[v, zs] + h.!2-)[[U, Z2], ZI], 

5zo = i[v, Z4] + (2)[[U, Z2], Z2] + (2)[[U, za], ZI]' 
(51) 

D. Expansion in Powers of y 

We shall derive a recurrence relation which gives 
Z as a commutator series 

Z = Z(o) + Z(1) + ... + Z(n) + . . . (52) 

of increasing degree (n) with respect to y. The function 
z(n) is obviously a Lie function for all n, and Z(o) is the 
element x. By the symmetry property, Z =f(x,y) = 
-f( -y, -x), the expansion above can easily be 
translated into one of increasing powers of x. 

If we let the parameter t be attached to the generator 
y, Z becomes a function of t, 

(53) 



                                                                                                                                    

COMMUTATOR PRODUCTS AND THE BAKER-HAUSDORFF FORMULA 795 

and Eq. (52) becomes an expansion in powers of t. 
We shall obtain an expression for the derivative i 
with respect to t. 

In general one has the expansion 

ew+AW = eW + eW{~w(eW - l)/whw.w 

+ TERMS OF HIGHER DEGREE, 

which gives the formula 

dew/dt = eW{w(eW - l)/wLiJw' (54) 

We take the derivative of Eg. (53) with respect to t, 
and multiply from the left by e-Z

• The result is the 
equation 

{i{eZ 
- I)/z}z,z = Y, 

which may be solved with respect to i: 

i = {yz(eZ 
- I)-I}. = {yz(e' - I)-I}. 

We put t = 1 and get 

00 

~ nZ(n) = {yz(e' - 1)-1}. (55) 
,,=1 ' 

The expression z(e' - 1)-1 is related in a simple way 
to the function ~(x, Y) [and to the function n(x, y)l 
defined by Eq. (29). If we write z in the form 

z = (e"'ell - l)(eZ 
- 1)-lz 

= (eX - l)ell(eZ - 1)-lz + (ell - l)(eZ - 1)-1z, 

we find the relation 

(e' - 1)-lz = rllx(e"' - l)-I~(x, y). (56) 

That is 

Hence, 

x~(x, Y)(ll = {yx(eX 
- I)-I} - yx(eX 

- 1)-1, (61) 
00 n 

;(x, Y)(1) = - ~ ~(Bn/n!){yxn-k}xk-t, (62) 
n=lk=l 

(63) 

We shall not proceed any further with the iteration 
process. It should be pointed out that Eg. (57) can be 
solved by one of the previous results, for instance, 
by Eq. (34), 

x(e<ll - 1)-l;(X, y) = fdP[l - a(p - 1) _ Pp]-1 

(a = eX - 1, P = 1 - e-II). 
This gives the equation 

~lnz(n) = fdP{Y[l - a(p - 1) - Pp]-l} (64) 

from which Z" may be obtained by the expansion 
technique which we have previously used. The result 
is essentially of the same type as previous results in 
the present paper. 

APPENDIX: PROOF OF THE IDENTITIES (5)-(8) 

Because of the linearity property (Id) in the defini­
tion of the curly bracket operator, it is sufficient to 
prove the identities for the case that f, g, and hare 
monomials. Further, we note that the identities are 
trivially true when g is of degree zero, i.e., G = 
{g} = O. Thus we letf, g, and h be the monomials: 

f = XaXb ... Xc (DEGREE> 0), 

g = XiX! ... Xk (DEGREE > 0), 

h = XpXq •.. X,. (DEGREE> 0), 
00 

~ nZ(n) = {yx(e<ll - l)-I~(X, y)}, (57) or h = ho (DEGREE ZERO). ,,=1 

which gives a recurrence relation of formally simple 
structure, 

nZ(n) = {yx(e"' - l)-l~(x'Y)(n_l)}. (58) 

The main difficulty in application is, of course, to 
select the term HX'Y)("-l) from Z(n-l)' 

The first step goes as follows: 

Z(O) = x, i.e., ~(Ol = 1, 
00 

z(1) = {yx(eX 
- 1)-I} = Y + ~ (Bn/n !){yx12} (59) 

12=1 

(B" BERNOULLI NUMBER). 

For the next step, consider a term like {yx"}, n > O. 
The term starting with y is yx", and the term starting 
with a power of x is 

n 

{yx"} - yx12 = -lx{yxn-k}xk-l. (60) 
k=1 

1. Proof of Eq. (5): {fg} = {Fg}F: From Eq. (4), 
we have (as a matter of notation) 

{fg} = {XaXb' .• XcXiXj ... xk} 

= [ ... [F, Xi], ••• , Xk] 

= {Fx • ... Xk}F = {Fg}F' 

2. Proof of Eq. (6): {fG}= [F, GJ: The equation is 
true when G is of first degree, that is when G = 
{Xi} = Xi' In that case we have from Eq. (5) 

{fx.} = [F, Xi] = {FX';}F' 
The general proof goes by induction, assuming the 
equation to be true when G is of nth degree. We put 
Gn+1 = [G", xm] and get 

{fG"+l} = {fGnxm} - {fxmGn} 

= {fGn}xm - xm{fGn } - [{fxm}, G,,] 

= [F, Gn]xm - xm[F, G12 ] - [[F, xmJ, G,,] 

= [F, [G", xmJ] = [F, G"+1J. Q.E.D. 
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3. Proof of Eq. (7): {fGh} = {fGh}a: From Eqs. (6) 
and (Ic), 

{fG} = [F, G] = [if}, GJ = {jG}a. 

Thus, Eq. (7) is true when h is of degree zero. Now, 
let h be a monomial of positive degree. Then, from 
the last equation, we get by repeated commutator 
multiplication with the factors in h, 

[ ••• [[{fG}, X:/J], Xq], ... , Xr] 

= [ ... [[{jG}a, x:/J]' XqJ, ... ,xrJ· 
That is 

{fGh} = {fGh}a· Q.E.D. 

4. Proof of Eq. (8): {Gnh} = n{Gnh}an: We first 

JOURNAL OF MATHEMATICAL PHYSICS 

prove the equation {Gn} = nGn , which is obviously 
true for n = 1. The proof is carried out by induction. 
We assume the equation to be true for Gn , and express 
Gn+1 as the commutator Gn+! = [Gn , xm]. The result 
is 

{Gn+!} = {Gnxm} - {xmGn} 

= {Gn}xm - xm{Gn} - {xmGn}a" 

= nGnxm - xmnGn - xmGn + Gnxm 

= (n + l)[Gn, xm] = (n + l)Gn~!' 
Thus, Eq. (8) is true when h is of degree zero. The 
generalization to the case that h is a monomial of 
positive degree is obvious in light of the technique 
used in the proof of Eq. (7) above. 
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The Coulomb Tmatrix is examined in a two-body and a three-body Hilbert space. The purpose is to 
demonstrate how this function may be used to construct the Faddeev three-body kernel. In the process 
the apparent paradox of the indefiniteness of the Coulomb T matrix on the energy shell is resolved. 
The question of off-shell unitarity is discussed. 

I. INTRODUCTION 

Recent work! on the three-particle problem has 
used the off-energy-shell scattering amplitudes of the 
two-body subsystems in the construction of the 
resolvent for the three-particle system. It is reasonable, 
therefore, to expect that the Coulomb Green's 
function can supply the necessary two-body informa­
tion for the solution of atomic three-body problems. 

It is easy to obtain the Coulomb scattering ampli­
tude from the Coulomb Green's function in all the 
necessary generality. Unfortunately, the Coulomb 
scattering amplitude is not a very simple function in a 
two-body Hilbert space, with the result that applica­
tion in a three-body Hilbert space involves some 
mathematical difficulty. The primary problem associ­
ated with the off-energy-shell Coulomb T matrix is 
that, in the momentum representation, it has a 
regular singularity of imaginary exponent lying 

* This research was sponsored by the Office of Naval Research, 
Contract No. Nonr-624(l6). 

t Present address: Royal Military College, Kingston, Ontario. 
1 For example, L. D. Faddeev, Zh. Ehsp. Teor. Phys.39, 1459 

(1960) [Sov. Phys.-JETP 12,1014 (1961)]. 

squarely on the energy shell, thus making it impossible 
to define for "physical" scattering.2 

We can illustrate these comments by solving 

GoT = GV 

for the Coulomb T matrix, where Go is the free­
particle Green's function, T the desired T matrix, G 
is the Coulomb Green's function, and V the Coulomb 
potential.3 For an attractive potential the result is 

(k21 T(k2
) Ik!) 

e2 1 

(1) 

where 

e = 2mE, 

E is the energy appearing in the Green's function. 

• w. F. Ford, Phys. Rev. 133, B1616 (1964); J. Math. Phys. 7, 
626 (1966). 

3 L. Hostler, J. Math. Phys. 5, 591 (1964); J. Schwinger, J. Math. 
Phys. 5, 1606 (1964). 
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t plane 

Co 

t 

FIG. 1. Analytic configuration of the integrand in Eq. (1). 

The integration contour Co starts at I = 1, slightly 
above the real axis. It moves to the origin and around 
the origin once in the positive sense. It finally moves 
to I = 1, slightly below the real axis. Co can be de­
formed as shown in Fig. 1, into the unit circle ex­
cluding the one pole of the integrand lying within 
the unit circle. 

The integrand in Eq. (1) can be factored into two 
simple poles, one lying inside the unit circle and the 
other outside: 

x 1 - - dt , (2) [ 
4iv 1 1 t-

iV
] 

e2uv - 1 E Co (t - t+)(t - C) 

where 1+ = 1=1 = [(1 - E)! - 1]/[(1 + E)! + 1]. 
If we take t+ to lie on the principal sheet with 

arg 1+ = e, C lies on the lower sheet with arg C = - e. 
If we denote by C1 the contour taken around the unit 
circle in the positive sense, and by C2 the contour 
about 1+ in the negative sense, we have by Cauchy's 
theorem 

dt - dt - dt = O. (3) (1 I 1) t-iV 

Co C1 c. (t - I+)(t - C) 

The energy-shell condition is given by 

(4) 

for which E and therefore t+ vanishes. The energy 
shell can be approached in two ways. If 1+ lies on the 
principal sheet in the t plane, the value of the Coulomb 
T matrix approaches the value at the energy shell 
discontinuously as 1+ squeezes out of the contour C2 

and moves to the branch point. If, on the other hand, 

t+ does not lie on the principal sheet, there is no 
contribution at all from C2 and the value at the energy 
shell is approached continuously. On shell, then, we 
take only contributions from C1 • 

For small E the integrand in Eq. (1) can be expanded 
in a series, uniformly convergent on the unit circle. 
Thus the term in the square bracket in Eq. (1) becomes 

1 + dt -- 1 - ~-~ 4iv I t-iv- 1 [ E(l - t)2]-1 

e27rV 
- 1 C1 4 4t 

x [1 + tE(1 - 2 + I-I) + O(E2)] 

= lE(1 + V
2
)-1 + O(E2). (5) 

We have the result that the value of the Coulomb 
T matrix in the momentum representation is zero on 
the energy shell. This result is quite useful in the three­
particle Hilbert space but should not be interpreted 
as a physical result in the two-particle Hilbert space. 
This apparent paradox is resolved by observing that 
momentum eigenstates are not acceptable asymptotic 
scattering states for the Coulomb potential. A brief 
look at time-dependent scattering theory will make 
this clear. 

In the remainder of this paper we shall show how 
the physical scattering amplitude is obtained from 
formal scattering theory using the momentum 
representative of T given by Eq. (1). This will be 
followed by a derivation of the off-shell unitarity 
condition for T. Finally, we shall examine the series 
for the amplitude for elastic scattering of a particle 
by a bound two-particle system developed in terms 
of the Faddeev three-body kernel. Taking a repre­
sentative term of this series we use the results of the 
off-shell unitarity condition to express this term in the 
proper asymptotic representation. 

II. COULOMB SCATTERING 

According to formal scattering theory, the physical 
scattering amplitude is obtained by letting the energy 
variable in the T matrix approach the real axis from 
above. In our case, where the T matrix is given by 
Eq. (1), this would correspond to giving k 2 a vanish­
ingly small imaginary part. From this point of view 
we should be able to obtain the physical scattering 
amplitude from Eq. (1) by expanding (k11 T(k 2) Ik2) 

about the energy shell and taking the limit as k~ and 
k~ approach k 2 continuously. 

Unfortunately, this approach is not possible in the 
case of the Coulomb T matrix because as we have 
seen, it does not approach its value on the energy 
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shell continuously. For E, small but not zero, we find 
that the path of integration over the parameter t along 
Co can be deformed into an integral along the con­
tours C1 and C2 • The contribution from C2 is just the 
residue at t = t+. For E sufficiently small we have 

(6) 
and 

(k21 T(k2
) Ik1) 

e2 1 E 1 e2 1 
= -- ----v---

27T21k2 - k l l2 21 + v2 7T Ikl - k212 

X 1 [(k
2 

- ki)(k
2 

- ki)]-iV + O( E2) (7) 
e21fV - 1 4k21k1 - k212 . 

Clearly, the second term in this equation approaches 
no limit continuously as k~ and k~ are made to ap­
proach k 2 for v rea1.2 

This difficulty can be easily straightened out by 
taking a look at time-dependent scattering theory. 
We will not develop all the results quoted below but 
we will refer the reader to a standard treatment of 
time-dependent scattering theory whenever the result 
is not obvious. 

The amplitude for scattering of a particle from 
an asymptotic c5-function-normalized initial state to an 
asymptotic c5-function-normalized final state is given by 

Sri = lim (<I>rI U(t, O)U(O, -t) 1<1>1)' (8) 
t ... 00 

where the asymptotic state vectors are time-independ­
ent, and U(t, 0) and U(O, -t) are unitary operators 
which in the limit approach the (not' necessarily 
unitary) Meller operators. If we express the asymp­
totic state as a wave packet composed of momentum 
components clustering about the value k1 •2, 

1<I>i.f) = J dk (k I <l>i.r) Ik), (9) 

we can usually replace the asymptotic states l<I>i) and 
l<I>r) by momentum eigenstates. The physical scattering 
amplitude is then accurately given by 

S"2'''1 = lim (k21 U(t, O)U(O, -t) Ik1). (10) 
t ... 00 

In order that Eq. (10) may be substituted for Eq. 
(8) we require that (k I <l>i.r) be (1) sharply peaked 
about the values kl and k2' respectively, and (2) 
(k I <l>i r) be well-behaved.4 The requirement that 
(k <l>i:r) be well-behaved arises from the requirement 
that if (10) is to replace (8) it is necessary that terms 

4 See S. S. Schweber, An Introduction to Relativistic Quantum 
Field Theory (Row, Peterson, Evanston, Illinois, 1961), especially 
Sec. 11c. 

like 

lim fdk exp [± i(Eb - Ek)t](tpb I k)(k 1<1> .. ,,), 
t ... 00 

Eb - Ek < 0 (11) 
vanish by the Riemann-Lebesgue lemma. The states 
Itpb) are bound eigenstates of the system. There are 
similar terms arising from the continuum states which 
must also vanish but it is sufficient for the purpose of 
this argument to consider only the terms like (11). 

If we are considering a Coulomb-scattering problem 
we surely may expect to find asymptotic states which 
are strongly peaked about some momentum eigen­
state. On the other hand, the momentum representa­
tive of the asymptotic Coulomb state is not at all 
well-behaved. 

A glance at the asymptotic Coulomb modified 
plane-wave states will make this clear. These states are 
obtained from a result of Guth and Mullin5 which 
gives the momentum representation of the Coulomb 
scattering state: 

(k' I tpk)t 

= (27Tr3 J dr e-i"'.re,,,·r, Fl(~ iv, 1, i(kr - k • r» 

= lim c5(k' - k)(1 + iv){[k,2 + (1J - ik)2]/1J2}iV 
,,"'0 
- (27T2)-1{[k,2 + (1J - ik)2]l--iV}-1 

X {2vk/[1J2 + (k' - k)2]1+iV}. (12) 

The last term is easily interpreted as a diverging 
spherical wave times the physical Coulomb scattering 
amplitude. The first term is the desired Coulomb 
modified plane wave for which the asymptotic region 
is defined by k' ~ k. Approaching no definite limit 
asymptotically and with an infinite phase, the asymp­
totic Coulomb state does not qualify as a test function 
which would allow (11) to vanish by the Riemann­
Lebesgue lemma. 

In order for these asymptotic Coulomb states to be 
suitable for use in Eq. (8), they must have c5-function 
normalization. The normalization constants are easily 
determined to within a phase factor by 

N N* J dk' c5(k' - k1)c5(k' - k2)(1 + iv)(1 - iv) 

X {[k,2 + (1J - ikl)2]/1J2}iV{[k'2 + (1J - ik2)]/1J2}-iV 

= c5(kl - k2), (13) 
for which a possible solution is 

N = (1 + iV)-l. (14) 

Thus, the asymptotic Coulomb-scattering states 
appearing in Eq. (8) are 

(k;I<I>"l)+ = c5(k~ - kl){[k~2 + (1J - ikl)2]/1J2}iV, 

(k~ 1<1>".)- = c5(k2 - k~){[k;2 + (1J - ik2)2]/1J2}-iV. (15) 

5 E. Guth and C. J. Mullin, Phys. Rev. 83, 667 (1951). 



                                                                                                                                    

TWO· AND THREE·PARTICLE COULOMB SYSTEMS 799 

The ± superscripts are to signify that these states 
correspond respectively to a diverging or converging 
spherical part in the total scattering eigenstate. 

We now take the momentum representative of the 
Coulomb-scattering amplitude in the region of the 
energy shell and allow it to approach the unitary axis 
from above. From Eq. (7), 

(k~1 U(~, O)U(O, - ~) Ik;) 

(
k'2 k'2) ( e

2
) 1 

= -217i6 2~ - 2~ - 217 Ik; _ k~12 

X [(k~2 + (fJ - ik)2)(ki2 + (fJ - ik)2)]-iV 
4k21ki - k212 

X e-1fV Ir(1 + iv)1 2 + O(e). (16) 

Thus, from Eqs. (8), (15), and (16), 

Sk •• kl = f dk~ dk2 (<l>k.1 k2) 

X (k~1 U(~, O)U(O, - ~) IkD(ki I <l>k) 

= -217i~(:l- :!){ -2~21kl _ ~212+2iv} 
X e2iVln2k/q2Ir(1 + iv)12 e-11V

• (17) 

The term in the curly brackets can be compared 
with the Coulomb-scattering amplitude by multiplying 
by -4172m and we get exact agreement. The infinite 
logarithmic phase factor can be thought of as belong.., 
ing to the normalization of the asymptotic Coulomb 
states; hence it should be absorbed in N. The re­
maining factors are recognized as arising from the 
normalization of the complete Coulomb-scattering 
states. If Eq. (12) had the conventional normalization 
they would not appear. 

By displacing the energy from the real axis with a 
positive imaginl:\ry part, and taking the Coulomb T 
matrix in the proper asymptotic representation, we 
have shown that the Coulomb T matrix yields the 
correct Coulomb-scattering amplitude. 

III. UNITARITY 

The Coulomb T matrix given by Eq. (1) can be 
derived from the following familiar equations 

T(E) = V + VGo(E)T(E) 

= V + VG(E)V. 

G(E), the Coulomb Green's function, satisfies 

(18) 

Using Eqs. (18) and (19) we can derive an off-shell 
unitarity condition for T(E): 

T(E + ifJ) - T(E - ifJ) 

= V(G(E + ifJ) - G(E - ifJ»V 

= 2ifJ V(1 + G(E + ifJ»Go(E + ifJ) 

x Go(E - ifJ)(1 + VG(E - ifJ»V 

= T(E + i1])(Go(E + ifJ) - Go(E - ifJ})T(E - ifJ), 

(20) 

where 

(k'l Go{E + i1]) - Go{E - ifJ) Ik") 

= -217i<5[E - (k'2j2m)]~(k' - k"). (21) 

The limit implied by E ± i1] means that arg k = 0 or 
17, respectively. Combining Eqs. (20) and (21), and 
taking matrix elements we have the result: 

(k21 T(k2
) Ikl) - (k21 T« _k)2) Ikl) 

= -217i f dk' (k21 T(k2) Ik') ~[(k2j2m) - (k,2j2m)] 

x (k'i T« _k)2) Ikl). (22) 

If we substitute Eq. (1) for (k21 T(k2) Ikl), we see that 
the <5 function on the right-hand side of Eq. (22) 
requires that 

Under these conditions we find that 

so that the right-hand side of Eq. (22) vanishes identi­
cally. Thus, from the form of the off-shell scattering 
amplitude in Eq. (2), 

(k21 T(k2
) Ikl) - (k21 T« _k)2) Ikl ) 

_ .1.... 1 4iv 1 1 d -iv 1 
- 2 22 II 

217 Ikl - k21 e fTV - 1 e Co (t - t+)(t - C) 

+ 4iv ! r dt tiv • 1 = O. (25) 
e-2fTv 

- 1 e Jco (t - t+)(t - C) 

Co can now be deformed into the two contours Cl and 
C2 • The contribution to the t integral from Cl can be 
evaluated by expanding the integrand in a series 

G(E) = Go(E) + Go (E) VG(E) 

= Go(E) + G(E) VGo(E). (19) uniformly convergent within the unit circle as long as 
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x + 1+-+- t+-
[ 

t-iv-1 t
iv

-
1 

] [ t ( 1) 
e21TV _ 1 e-21rv 

- 1 t! + 1 t 

+ ... + (~)n(t + .!)n + ... J. 
t! + 1 t 

In any term of the series, say, the one with (t + t-I)n, 
there is a symmetry between the positive and negative 
powers of t. That is, for every power t m there occurs a 
power t-m with the same coefficient. For every term 
proportional to 

IV dt t-iv-1+m = IVl 4' ie01rl 

4' 
e2rrv 

_ 1 eiD - iv + m ' 

there occurs one proportional to 
• e9.1T'l • 

41v i dt tiv- 1- m = ~ 
e-2rrv _ 1 eiD iv - m 

for m, a positive or a negative integer. Thus the con­
tribution from the contour CI cancels term by term. 
We are left with the result 

e
2 

1 [4iV 1 L t-
iv 

2 2 2 - dt------
27T Ik1 - k21 e 1TV - 1 E C. (t - t+)(t - C) 

+ 4iv 1 r dt t
iv 

] = O. (26) 
e-21TV 

- 1 E Jc. (t - t+)(t - C) 

Equation (25) tells us that there is no discontinuity in 
the momentum representative of the off-energy-shell 
Coulomb T matrix along the unitary axis. In particu­
lar, Eq. (26) shows that there is no discontinuity 
arising from that contribution coming from the 
contour C2 • 

It is difficult to see how Eq. (26) can be satisfied 
identically for all points along the unitary axis unless 
the contribution from C2 vanishes identically. This 
occurs if in some way we can continuously deform 
the contour Co into the contour CI without passing 
over a pole lying inside the unit circle and on the 
principal sheet. If k 2 approaches the unitary axis in 
such a way that the pole inside the unit circle moves 
off the principal sheet, then Co can be deformed into 
C1 • We shall see an example of this in the next section. 

IV. THREE-PARTICLE SYSTEMS 

For a three-particle system, the amplitude for the 
elastic scattering of particle 2 by a bound subsystem 
composed of particles 1 and 3 can be iterated in 

terms of the Faddeev kernel as follows6 : 

T = TI + Ts + T1GoTS + TsGoTI + .. '. Q,7) 

Go is the free-particle Green's function operator for 
three particles, and TI is the two particle T matrix for 
scattering of particles 2 and 3, etc. If these particles 
interact via the Coulomb potential, the momentum 
representative of Eq. (27) can be written down, to 
any order of iteration, in terms of Eq. (1). Consider, 
for example, the first term: 

(klk2kSI Tllk~k~k~> = (k2S I T1(ki) Ik~a> d(pi - pi). 
(28) 

The notation is explained as follows: the vector k i is 
the momentum of particle i; k2S is the relative 
momentum of particles 2 and 3; PI is the momentum 
of particle 1 relative to the center of mass of particles 
2 and 3; k~ is not kl • kl but rather 21l2aE - (1l2S/IlI)P~, 

1l2a = m2rnS/(Jn2 + rna), 

III = ml(rn2 + ma)/(ml + rn2 + ma), (29) 
and E is the energy of the three-particle system. 

When dealing with three particles we have two 
additional manifolds which describe the system just 
as well as (k2a , PI)' They are obtained by permutation 
of the particles. We shall signify them by the obvious 
notation (k12' Ps) and (k31' P2)' 

Unfortunately, the momentum representative of 
Eq. (28) is not very useful. Again we must take inner 
products of Eq. (IS) with the correct asymptotic 
scattering states in order to obtain a physically 
interesting three-body scattering amplitude. If we 
assume that the (l, 3) system is bound in the Bohr 
energy level with 1 for the principal quantum number 
in both the initial and final states, the asymptotic 
wavefunctions are 

(ka1P~ I P2VJ100> = (SA,5)lb(P2 - p~)/7T(k~l + A,2)2, 

(30) 
where A,2 = ftlae2 is the reciprocal Bohr radius. 

For the first term in the three-particle elastic-scat­
tering amplitude we are lead to the integral 

SA
5f dk31 f dk~l 

7T2 (k~l + A,2)2 (k~i + A,2)2 

X b(Pl - pD (k231 T1(k~) Ik;3), (31) 

the trivial integrals over P2 and p~ having been carried 
out. The integral over k;l also becomes trivial if we 
use the identity 

PI - p{ = ka1 - k~l - [m1!(ma + ml )](P2 - p~). 

(32) 

• H. Ekstein. Phys. Rev. 101, 880 (1956); C. Lovelace, Phys. 
Rev. 135, B1225 (1964). 
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The next step is to express the Coulomb T matrix 
given by Eq. (1) in terms of the three-body variables, 
and in particular, the variables in the (k31' P2) mani­
fold. We have the identity 

k23 - k;3 = -P2 + P~ - [m2/(m2 + ma)](Pl - p{) 

= -P2 + p~, (33) 

the last equality resulting from the b function in (31). 
Thus, 

(k23 I T1(k~) Ik~3) = - 2
e22 

I 1 '12 
TT P2 - P2 

E = -(),2/2flaJ + (p~/2fl2)' (36) 

and where we have used the identity 

PI = ka1 - [m1/(ma + m1)]P2 

in the equation for k~ . 
€l is given by 

(ki - k~a)( ki - k~i) 
€l = 

k~ Ip2 - p~1 

= (fl2a)2 (k~l + ), 2)( k~i + ),2) 
2 2· (37) 

fla1 k1 Ip2 - p~1 

In the second equality we have used the identity 

E - (2fllrlpi - (2fl2arlk~a 

= E - (2fl2rlp: - (2flalrlk~1 
= -(2fl31)-I(),2 + k~l). (38) 

The integral (31) can now be put in the form 

e2 8),5f dka1 1 
2TT2 TT2 (k~l + ),2)2(k~i + ),2)2 Ip2 _ p~12 

x 1 - WI dt (39) [ 
4· I t-

iVl 
] 

e2UV1 - 1 Co €1(1 - t)2 - 4t ' 

where k~l -- kal + [m1/(ma + ml)](P2 - p~). 
As shown in the Appendix, the integral over ka1 

can be made into a contour integral by extending the 
range of integration from ° < k31 < 00 to - 00 < 
k31 < 00. By this device we convert the integral along 
the positive real axis into an integral around the 
various singularities of the integrand lying in the 
upper half-plane. 

The singularities contributing to the integral are of 
the following possible types: (1) poles occurring in 
the asymptotic wavefunctions at ka1 = i), and k~l = 
i),; (2) if the potential in T1 is attractive, poles arise 
from each of the possible bound states of particles 
2 and 3. 

In case a branch point should occur at kl = 0, we 
would have to include an integral of the discontinuity 
along the cut. We saw that the unitarity 'condition 
gave us zero for this discontinuity. It is instructive, 
however, to see just how the integral representation 
of Eq. (2) eliminates the contribution to the T matrix 
arising from the contour C2 when kl lies on the 
unitary axis. 

The pole in the t integrand, from which we get the 
contour C2 , we have called t+: 

t+ = C l = [(1 + €1)~ - 1]/[(1 + €l)~ + 1]. (40) 

Thus, 

It I = {[(I + €l)~ - 1][(1 + €}* - 1]}~ 
+ [(1 + €l)~ + 1][(1 + €l)~* + 1] 

= [1(1 + €1)~12 + 1 - 2 Re (1 + €1)~J! (41) 
1(1 + €1)~12 + 1 + 2 Re (1 + €l)~ 

so that It+1 < 1 for Re (1 + €l)~ > ° and 

arg t+ 

= arg [(1 + €1)~ - 1] - arg [(1 + €1)~ + 1] 

. -1 1m (1 + €1)! =sm 
({Re [(1 + €lY! - lW + [1m (1 + €1)~]2)! 

. -1 1m (1 + €1)! -sm 
({Re [(1 + €l)! + lW + [lm(1 + €1)~]2)!· 

(42) 
Clearly, 

arg t+ > 0, 

rm (1 + €l)! > ° and Re (1 + €l)! > ° (43a) 
if 

1m (1 + €l)! < ° and Re (1 + €l)! < 0, (43b) 

arg t+ < 0, 

rm (1 + €l)! > ° and Re (1 + €l)~ < ° (43c) 
if 

1m (1 + €l)! < ° and Re (1 + €1)! > 0. (43d) 

We shall assume that when E has an infihitesimal 
positive imaginary part, t+ lies on the principal sheet 
of the t Riemann surface. As ka1 moves to + 00, we 
find that k1 and therefore €1 become infinite. arg kl 
then equals iTT - b, where b is an infinitesimal positive 
angle. Under the condition that ka1 is infinite, Eq. (37) 
shows us that (1 + €1)! is proportional to k 1 • If we 
call the position k31 = + 00 point 1, we see that 
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CD 

FIG. 2. Trajectory of t+ as k31 is continued into the upper half-plane. 
The trajectory of L is obtained from L = t-:/. 

conditions (43a) are met and point 1 maps into the 
point shown in Fig. 2. 

As k31 moves from point 1 along a semicircle in 
the upper half-plane, arg k1 quickly increases past 
117, with the result that condition (43a) goes over into 
condition (43c). At this point t+ and C change places. 
We now have t+ lying outside the unit circle and 
C inside the unit circle. We denote this point by 2. 
As we move along the semicircle in the upper ka1 plane 
we come to a point at which arg k1 = 17 + £5, which 
we call point 3. At point 3 we obtain conditions (43b) 
where C moves once more onto the lower sheet but 
remains within the unit circle. As we move down the 
cut, around the branch point and up the other side 
of the cut, C remains inside the unit circle without 
once crossing the contour C1 • We have taken the 
discontinuity across the unitary cut to be the difference 
between the T matrix evaluated at a point on the 
physical sheet with arg kl = £5, and the T matrix 
evaluated at a point just below on the unphysical 
sheet with arg kl = 17 + £5. This demonstrates how 
we are able to eliminate the contribution from C2 

when k: lies on the unitary axis in accordance with 
Eq. (26). 

Turning to the pole singularities in the upper k31 
plane, we consider first those coming from k31 = iA 
and k~1 = 0 .. From Eq. (37) we see that we are now 
interested in the region around E1 = O. Using Eq. (5) 
in (39) we get 

e2 
8,,5 fl!.23)2 I 

4172 17
2 \.u31 Ip2 _ p~14 

f dk31 1 
X (k~l + ,,2)(k3~ + ,,2) k~ + ,,2' (44) 

Equations (32) and (35) allow us to integrate this 
expression by the Feynman method. One must be 
careful to take only the residues at k~l + ,,2 = 0 and 
k~~ + ,,2 = 0, but avoid the poles at k~ + A2 = O. 
The latter belong to-the set of poles coming from the 
Coulomb bound states. 

The poles at the bound states occur whenever iv is 
a positive integer, say n. In this case the branch point 
in the t integrand becomes a pole of order n. We 
deform the contour Co continuously into a small circle 
about the origin. Thus, we have the simple result for 
the t integration: 

r dtt-n 1 
)00 (t - t+)(t - C) 

217i (a)n-1 1 I 
= (n - I)! at (t - t+)(t - L) 1=0 

2 . t~ - t~ = 17r---. 
t+ - L 

(45) 

If, in addition, we use the representation 

1 = e-
lTV1

(_ ~ + I(-l)n~) (46) 
e21TVl 

- 1 217i iVl n=l v~ + n2 ' 

the contribution to (39) coming from the bound­
state poles is 

~ 8,,5 ~ fdo r dk k;1 
4172 172n~1 31)0.. 31 (k;l + A2)\k~~ + ,,2)3 

k2 8(iv1)2( -lfe-.-v1 t-: - t~ 
X 1 2 2 

VI + n t+ - L 

- 16,,5e2 I fdo r dk ki1 
- 174 n=l 31)0.. 31 (ki1 + ,,2)3(k~~ + ,,2l 

,,4 1 t n _ t n 
x - + - (47) 

n4 k~ + (,,2jn2) t+ - L . 

Cn is taken to be a small circle in the ka1 plane 
enclosing the pole at k: + ,,21n2 = O. 

By taking the sum of (44) and (47) we are able to 
express (31) in terms of more or less elementary 
integrals. It does not appear to be practical to try to 
evaluate these integrals in general. However, they have 
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been done for particular systems where simplifying 
approximations can be made. The same methods can 
be used to simplify the higher-order terms in the 
iteration series (27); the extension is fairly obvious. 

Coulomb effects in three-body systems have been 
studied by Schulman7 where two of the particles 
interact via a Coulomb potential, but the remaining 
pair of interactions are of short range. This approach 
does not seem to allow itself to be generalized to 
systems of three charged particles. 

It is these systems of three charged particles that 
we hope to be able to handle through the results of 
this paper. In particular we have studied systems 
such as electron-hydrogen scattering and positron­
hydrogen scattering. In either case we can assign 
ml and m2 the values of the electron mass, and ma 
the proton mass. In expressions such as Eqs. (32), 
(33), and (35) we can neglect terms of order ml/ma 
and m2/ma to a high degree of accuracy. The resulting 
integrals can be easily evaluated and can be expected to 
realistically represent the scattering amplitude within 
the limitations imposed by truncating the series (27). 

Because the evaluation of the integrals (44) and 
(47) is most easily done when they are restricted to 
particular physical systems, we will reserve a discussion 
of these results for a more appropriate journal. 

v. CONCLUSION 

In spite of the mathematical complexity of the 
momentum representation of the off-shell Coulomb 
T matrix, we have shown how it is useful in calculating 
physical scattering amplitudes. For two~body scat­
tering we obtain the physical amplitude by using the 
correct representation of the scattering states. The 
well-known on-shell singularities of the momentum 
representation do not arise. Again in the case of 
three-body scattering amplitudes, the proper asymp­
totic states and the unitarity condition allows a 
simplification of the off-shell two-body T matrix. 
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APPENDIX 

Consider an integral of the following form: 

= dcp d(cos 0) k2 dkf(k2 + a2 - 2ka cos 0). 1217 II 100 

o -1 0 

(Ai) 

We change the variables of integration k, cos 0, to 
new variables k' and cos 0': 

k = -k', cos 0 = -cos 0' (A2) 

Thus, 

f dkf(\k - a\2) = fIT dcp L-1

d(COS 0') 

x So-OO k,2 dk' f(k,2 + a2 - 2k' a cos 0') 

1
2
" fl = dcp d(cos 0') 

o -1 

x foo k,2 dk' f(k,2 + a2 - 2k' a cos 0'). (A3) 

Averaging Eqs. (AI) and CA2), and dropping the 
primes on the dummy variables k' and cos 0' we get 

J dkfC\k - a\2) 

=! [2"d4>fl d(cos O)f
oo 

k 2 dkf(\k - aI 2
). (A4) 

2 Jo -1 -00 

This result can be generalized to integrands in­
volving more than one vector. For example, the range 
of integration of integrands of the form 

gC\k - a\2; \k - W) 

can be expanded from 0 < k < CX). to - r:IJ < k < r:IJ 

in a way similar to the method just given. In addition 
to the changes of variable CA2) we must change the 
azimuthal angle as follows: cp = 4>' + rr, where both 
cp and cp' have the range 0 to 2rr 
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Nonexistence of Finite-Energy Stationary Quantum States 
in Nonlinear Field Theories * 

GERALD ROSEN 
Drexel Institute of Technology, Philadelphia, Pennsylvania 

(Received 29 June 1967) 

A simple proof is given which precludes the existence of any finite-energy stationary quantum-state 
solution to the Schrodinger equation for a physically interesting Lorentz-covariant self-interacting 
scalar theory. 

Supplemented with suitably smooth prescribed ini­
tial data, the nonlinear c-number field equation 

(j - \l2() + m2() + igp IW-2
() = 0 (1) 

for a scalar function () = ()(x, t) (either complex 
valued or real valued and C2 for x and all t > 0) has 
a global solution if 2 < p < 6 with m2 and g non­
negative constant parameters. l However, it has been 
shown that the classical field equation (1) has no 
global solutions which are localized in space and 
periodic in time with g ~ 0 and p ~ 2.2 Does the 
nonexistence oflocalized periodic solutions to Eq. (1) 
evince a corresponding nonexistence in the quantum 
field theory? That is, are stationary quantum states 
of finite energy generally precluded in self-interacting 
scalar field theories based on a Lagrangian density 

C = 1012 - IV()1 2 
- m21()12 - g I()I" (2) 

of the form associated with Eq. (1)? Our purpose is 
to report a proof which shows that no finite-energy 
stationary quantum states exist for model theories 
based on a Lagrangian density of the form (2) with 
g ~ 0 and p ~ 2; hence, the vacuum and all other 
stationary states have an energy which is patently 
infinite. 

To prove the nonexistence of any finite-energy 
stationary quantum state for a theory based on (2) 
with g ~ 0 and p ~ 2, let the () (boson) field be 
diagonaIized for all values of x at a fixed instant of 
time and consider the energy functionality3 

E = E{'P'} == J 'P'*H'P''D«() / fl'P'12 'D«() (3) 

associated with a state functional'P' = 'P'[()], where 

H = f (7T* 7T + V 0* • V 0 + m20*O + g( O*O),,/2)d3x, 

[7T*=-i~/i~ 7T=_iN/i.E... (4) 
2 ~O*' 2 ~O ' 

N - {1 for 0 real ] 
- 2 for 0 complex 

• Work supported by a National Science Foundation grant. 
1 K. Jorgens, Z. Math. 77, 295 (1961). 
2 G. Rosen, J. Math. Phys. 7, 2066 (1966). 
3 G. Rosen, Phys. Rev. Letters 16, 704 (1966). 

is the Hamiltonian operator derived from (2) and 
'D( 0) is a (real nonnegative displacement-invariant) 
measure for the functional integrations over all fields 
o = O(x). Both 'P' and 'D(O) are defined to within 
normalization factors independent of (); it is assumed 
that the numerator and denominator in (3) exist as 
finite quantities, E being finite for the 'P"s under 
consideration here. The energy functionality (3) is 
stationary with respect to variations in 'P' about a 
physical state functional, by virtue of the SchrOdinger 
equation. In particular, for a variation in'P' induced 
by a transformation of the field 0 ~ 9, 

we have 

'P' = 'P'[O] ~ 0/ = 0/[0], 

~'[9] == 'P'[O], 
(5) 

E{o/} = f 0/[0]* Ho/[O]'D(O) / f Io/[OW 'D(O) 

= f 0/[9]* Ho/[9]'D(6) / f 10/[6W 'D(6) 

= f 'P'* H'P''D(O) / f 1'P'12 'D«(), (6) 

provided that 'D«() and 'D(6) only differ in normaliza­
tion and where H is the Hamiltonian operator (4) 
expressed in terms of 9 and the associated ft. It 
follows that 

E{o/} - E{'P'} = f 'P'*(H - H)'Y'D(O) / fl'Y12 'D(O) 

== (H - H) (7) 
vanishes to first order with respect to transformations 
of the field 0 _ (J, provided that 'D(O) and 'D(8) only 
differ in normalization. Two such transformations 
of the field are of special importance.4 

1. Dilatation induced: (J(x) == O(AX), -iT(x) = A37T(AX), 
A real and positive. 

We find 

H = f (A37T*7T + 2-1VO* • VO 

+ 2-3m20*O + 2-3g(O*O):P/2)d3x (8) 

• Such transformations have also been considered by H. Schiff, 
Proc. Roy. Soc. (London) A269, 277 (1962). 
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by changing the dummy integration variable (Ax) ---+ x. 
Hence, since (7) vanishes to first order about A = 1, 

(O(H)/OA);.=l = f (37T*7T - V()* • V() 

- 3m2()*() - 3g«()*())1J/2)d3x = O. (9) 

2. Scale induced: B(x) == ~()(x), 1T(x) = ~-l7T(X), ~ 
real and positive. 

We find 

fl = f (~-27T*7T + eV()* • V() 

+ ~2m2()*() + ~1Jg«()*())1J/2)d3X, (10) 
and hence 

(o(fl)/O~)s=l = f (- 27T*7T + 2V()* • V() + 2m2
()*() 

+ pg«()*()y/2)d3x = O. (11) 

JOURNAL OF MATHEMATICAL PHYSICS 

Now by adding! of Eq. (9) to Eq. (11), we obtain 

f (tV() * . V() + (p - 2)g«()*()y/2)d3x = 0, (12) 

a relation which implies the necessary condition p < 2 
for existence of a finite-energy stationary state with 
g > o. Therefore, all stationary states have an 
infinite energy in a quantum field theory with g ~ 0 
and p ~ 2. Conditions for a local essentially nonlinear 
scalar field theory [based on a Lorentz-invariant 
Lagrangian density more general in form than (2)] 
to admit stationary quantum states have been reported 
elsewhere. 5 

5 G. Rosen, Phys. Rev. 160, 1278 (1967); 165, 1934 (1968); 167, 
1395 (1968). 
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Improved Method for Quantum-Mechanical Three-Body Problem. III. 
Use of Sturmian Functions 
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(Received 11 August 1967) 

We extend previous work on the ground state of the symmetric three-body problem by expanding the 
two-body orbitals rp(k, k) or rp(k, x) (one and three dimensions, respectively) in a set of Sturmian func­
tions. This retains the advantages of the previous expansions, and gains several new ones as well. Among 
these are a simplification of the equations and a transparent way of estimating convergence. The one­
dimensional problem is reduced to an infinite set of coupled integral equations in one variable and the 
three-dimensional one to a doubly infinite set. As an application and a test of convergence we have solved 
the one-dimensional equations numerically in successive truncations. We find that keeping only the 
first term of the set yields results typically accurate to a fraction of a percent. 

I. INTRODUCTION 

In previous papers by one of US,1-4 we have treated 
the quantum-mechanical problem of three identical 
particles bound by identical interparticle potentials. 
In the first of these we pointed out the advantages of 
writing the wavefunction in a special way, as a sum of 
three parts or, as we called them, "two-body orbitals," 
one part for each interparticle distance. This idea 
proved fruitful for the bound-state problem and it 
was also applied by Mitra,5 Fadeev, 6 and others to 

* Part of this research was in partial fulfillment of the requirement 
for the Ph.D. degree in physics at Northeastern University. 

1 L. Eyges, Ann. phys. 2, 101 (1957). 
• L. Eyges, Phys. Rev. 115, 1643 (1959). 
3 L. Eyges, Phys. Rev. 121, 1744 (1961). 
4 L. Eyges, J. Math. Phys. 6, 1320 (1965). 
5 A. N. Mitra, Nuc!. Phys. 32, 529 (1962). 
• L. D. Fadeev, Zh. Eksp. Teor. Fiz. 39,1459 (1960) [Sov. Phys.­

JETP 12, 1014 (1961»); Dok!. Akad. Nauk SSSR 138, 561 (1961); 
145,301 (1962) [Sov. Phys.-Dok!. 6, 384 (1961); 7, 600 (1963)]. 

three-body scattering problems. Now these two-body 
orbitals derived their name from the fact that they 
satisfied an equation that resembled a two-body 
equation, and this observation made it natural to try 
to expand them in a complete set of two-body func­
tions. This was done in Ref. 4. As we emphasized 
there, the most advantageous two-body set to use was 
not that generated by the interparticle potential that 
entered the three-body equation, but rather that for a 
potential of the same shape, but with enhanced 
strength. Even so there remained one problem. This 
(or any other ordinary two-body set) has both a 
discrete spectrum of eigenvalues and a continuous 
one, and with it one is faced in principle with the 
nasty problem of treating the continuous eigenfunc­
tions. In this joint paper then, we get around this final 
difficulty by expanding the two-body orbitals in a set 
of two-body Sturmian functions. This is a set which 
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by changing the dummy integration variable (Ax) ---+ x. 
Hence, since (7) vanishes to first order about A = 1, 

(O(H)/OA);.=l = f (37T*7T - V()* • V() 

- 3m2()*() - 3g«()*())1J/2)d3x = O. (9) 

2. Scale induced: B(x) == ~()(x), 1T(x) = ~-l7T(X), ~ 
real and positive. 

We find 

fl = f (~-27T*7T + eV()* • V() 

+ ~2m2()*() + ~1Jg«()*())1J/2)d3X, (10) 
and hence 

(o(fl)/O~)s=l = f (- 27T*7T + 2V()* • V() + 2m2
()*() 

+ pg«()*()y/2)d3x = O. (11) 
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Now by adding! of Eq. (9) to Eq. (11), we obtain 

f (tV() * . V() + (p - 2)g«()*()y/2)d3x = 0, (12) 

a relation which implies the necessary condition p < 2 
for existence of a finite-energy stationary state with 
g > o. Therefore, all stationary states have an 
infinite energy in a quantum field theory with g ~ 0 
and p ~ 2. Conditions for a local essentially nonlinear 
scalar field theory [based on a Lorentz-invariant 
Lagrangian density more general in form than (2)] 
to admit stationary quantum states have been reported 
elsewhere. 5 

5 G. Rosen, Phys. Rev. 160, 1278 (1967); 165, 1934 (1968); 167, 
1395 (1968). 
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We extend previous work on the ground state of the symmetric three-body problem by expanding the 
two-body orbitals rp(k, k) or rp(k, x) (one and three dimensions, respectively) in a set of Sturmian func­
tions. This retains the advantages of the previous expansions, and gains several new ones as well. Among 
these are a simplification of the equations and a transparent way of estimating convergence. The one­
dimensional problem is reduced to an infinite set of coupled integral equations in one variable and the 
three-dimensional one to a doubly infinite set. As an application and a test of convergence we have solved 
the one-dimensional equations numerically in successive truncations. We find that keeping only the 
first term of the set yields results typically accurate to a fraction of a percent. 

I. INTRODUCTION 

In previous papers by one of US,1-4 we have treated 
the quantum-mechanical problem of three identical 
particles bound by identical interparticle potentials. 
In the first of these we pointed out the advantages of 
writing the wavefunction in a special way, as a sum of 
three parts or, as we called them, "two-body orbitals," 
one part for each interparticle distance. This idea 
proved fruitful for the bound-state problem and it 
was also applied by Mitra,5 Fadeev, 6 and others to 

* Part of this research was in partial fulfillment of the requirement 
for the Ph.D. degree in physics at Northeastern University. 

1 L. Eyges, Ann. phys. 2, 101 (1957). 
• L. Eyges, Phys. Rev. 115, 1643 (1959). 
3 L. Eyges, Phys. Rev. 121, 1744 (1961). 
4 L. Eyges, J. Math. Phys. 6, 1320 (1965). 
5 A. N. Mitra, Nuc!. Phys. 32, 529 (1962). 
• L. D. Fadeev, Zh. Eksp. Teor. Fiz. 39,1459 (1960) [Sov. Phys.­

JETP 12, 1014 (1961»); Dok!. Akad. Nauk SSSR 138, 561 (1961); 
145,301 (1962) [Sov. Phys.-Dok!. 6, 384 (1961); 7, 600 (1963)]. 

three-body scattering problems. Now these two-body 
orbitals derived their name from the fact that they 
satisfied an equation that resembled a two-body 
equation, and this observation made it natural to try 
to expand them in a complete set of two-body func­
tions. This was done in Ref. 4. As we emphasized 
there, the most advantageous two-body set to use was 
not that generated by the interparticle potential that 
entered the three-body equation, but rather that for a 
potential of the same shape, but with enhanced 
strength. Even so there remained one problem. This 
(or any other ordinary two-body set) has both a 
discrete spectrum of eigenvalues and a continuous 
one, and with it one is faced in principle with the 
nasty problem of treating the continuous eigenfunc­
tions. In this joint paper then, we get around this final 
difficulty by expanding the two-body orbitals in a set 
of two-body Sturmian functions. This is a set which 
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is complete, but which has no continuum. It has 
been exploited by Rotenberg7 for three-body scattering 
problems, and is discussed below. In addition to 
doing away with the continuum, the Sturmian set has 
several other advantages that will appear later. 

The method works for particles in any number of 
dimensions. It is then convenient to start with three 
bodies in one dimension, since the equations contain 
the essence of the method without the somewhat 
superfluous complications that three dimensions 
brings. 

n. GENERAL THEORY 

The basic equation for the one-dimensional three­
body problem is Eq. (3) of Ref. 4 for rp(k, K), the 
Fourier transform of the two-body orbital. This 
can he written 

rp(k, K) = - [27T(k2 + tK2 + K 2)]-IJJ V(x){ rp(k', K) 

X eiz<k'-k) + rp(~ ,k' - 2K) 

x [eiZ<k'-k-ilC) + eiZ<-k'-k+ilC )]} dk' dx. (1) 

It is convenient now to make a minor change in 
notation, and show explicitly both that the inter­
particle potential vex) is negative and that it has a 
length a associated with it; instead of Eq. (4) of 
Ref. 4, we write 

vex) = -vou(x/a). 

Then Eq. (1) becomes, with x/a = z, 

rp(k, K) = 27T(k2 + ~K2 + (2) ff u(z){ rp(k', K) 

x eiz<k'-k) + rp(~ , k' - 2K) 

x [eiZ<k'-k-ilC) + eiz<-k'-k+!IC)l} dk' dz. (2) 

Now k and K are dimensionless, as are the energy 
parameter p2 and potential-strength parameter w: 

p2 = m lEI a2/1i2, w = mVoa2/1i2. 

Our problem now is to extract p2 from Eq. (2) as a 
function of w for the ground state. Consider then 
rp(k, K) as a function of k. Much as we have done 
before,. we want to expand this dependence in a 
complete set of functions; as we have remarked we 
shall take this to be a Sturmian set corresponding to a 
two-body potential. This set is described in detail 
in the Appendix: suffice it here to say in general how 

• M. Rotenberg, Ann. Phys. 19,262 (1962). 

it arises. If we consider a two-body problem involving 
a potentialS wu(z) and corresponding energy parameter 
p, then one ordinarily considers the spectrum of 
eigenvalues PI' P2' Ps ... for a fixed W. We can turn 
this around however, and imagine P fixed, and then 
ask for the set of eigenvalues WI and corresponding 
eigenfunctions. This set is the Sturmian set. 

For the ground state of the three-body problem for 
which rp is an even function of k, we need the even 
functions of this set in momentum space; we caII 
them T,(k). 9 From the Appendix we take two basic 
properties of these functions. First, they satisfy the 
SchrOdinger equation in momentum space for P 
fixed and WI considered as an eigenvalue: 

T,(k) = WI f'" f'" u(z)T(k')eiZ<k'-k) dz dk" 
I 27T(k2 + P2) _'" -co I , 

(3) 
second, they satisfy the orthogonality relation 

L: (k2 + P2)T~(k)TnCk) dk = wlbnl • (4) 

With these functions then we expand rp(k, K) 
co 

rp(k, K) = 2 Tz(k)NK), (5) 
1=1 

and put this into (2) to get 

(
k2 + 3K2 + (2) I Tz(k)NK) 

4 1=1 

= ~ fIu(z){eiZ<k'-k) I Tz(k')fz(K) 
21T 1=1 

+ [eiZ<k'-k-3IC/2) + eiz<-k'-k+SIC/2)1 

x I T!(k')f!(k' - 2K)} dk' dz. (6) 
!=1 2 

We multiply through by T:(k) and integrate with 
respect to k to obtain 

f[ T:(k)(k2 + tK2 + (2) ~ Tz(k)NK)] dk 

= ;1T Iff U(Z)T:(k)eiZ<k'-k){~?!(k')f!(K)} dk' dz dk 

+ 2: fJf u(z)T:(k)[eiZ<k'-k-3IC/2) + eiz<-k'-k+31C/2)] 

X {!Tz(~)Nk' - 2K)} dk' dz dk. (7) 

We can then simplify this equation considerably as 
foIIows. For the left-hand side we define constants 

8 As before, we shall generally use the tilde (~) to distinguish a 
quantity that pertains to the two-body problem from its three-body 
counterpart. . 

• We label the first member of this set with I = I, not 1=0. 
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Cn! = I T:(k)T!(k) dk, 

dn! = I T:(k)T!(k)k2 dk, 

whereupon it becomes 

(S) 

(9) 

which is the left-hand side of Eq. (7). The first triple 
integral on the right-hand side reduces immediately 
on using Eq. (AS) of the Appendix, and is 

Wln(K) , 

the first term on the right-hand side of Eq. (7). 
For the remaining term on the right-hand side, we 
use a slight variant of (3), viz., 

If u(z)T:(k)e-iZ(k-s) dk dz = 27T(e +W~2)T:(~) , 

and the second triple integral on the right-hand side 
reduces to 

;n f[ (k' - 3;r + p2] 

X [T:(k' - 3
2
K) + T:( -k' + 3

2
K)] 

x (~1 Tz(~)Nk' - 2K») dk', 

which is the second term on the right-hand side of 
Eq. (7). We put all this together now, recognize 
that Tn(k) = Tn( -k) and change the variable of 
integration in the last expression from k' to y = k' -
2K. We get 

!~f!(K>[ C:2 
+ p2)Cn! + dn!] - Wfn(K) 

= ~ f[ (Y + ~r + p2] T! (Y + ~) 
X (~1TI(~ + K)fl(Y») dy. (10) 

There is one further simplification we can make. 
From Eq. (A9) we have 

(11) 

Now the parameter iJ that enters the two-body 
equation is still at our disposal. We have already 
indicated3 •4 on physical grounds the desirability of 
choosing it to equal p, the three-body binding energy. 
Now we see a mathematical reason as well, for if we 

do this Eq. (11) becomes 

(12) 

and this can be used to simplify the left-hand side of 
Eq. (10) so that it becomes 

00 

fn(K)(Wn - w) + !K2 L NK)Cn! 
!=1 

= ~ L:dY[(Y + tK)2 + P2JT:(Y + !K) 

x [~/!(Y)Tz(!Y + K)]. (13) 

This then is the final set of integral equations in the 
functions In(K). 

With this at hand we can discuss the three-dimen­
sional problem; its general outline is very similar to 
the one-dimensional one, except that vector variables 
replace scalar ones. As in one dimension we write a 
typical interparticle potential VCr) as 

VCr) = - Vou(r/a) , 

and use the same definition for the energy parameter 
p2 and potential strength parameter w. Then the basic 
equation for the two-body orbital qy(k, x), Eq. (2) 
of Ref. 4, becomes 

c/>(k, x) = (27T)3(k2 : !K2 + P2) II u(r){ c/>(k', x) 

X eir'(k'-k) + c/>(tk', k' - 2x) 

X [eir.(k'-k-!)() + eirO(-"'-k+!)()J} dk'dr. (14) 

We shall again expand qy as a function of k, in a 
complete set of Sturmian functions. These are defined 
as the eigenfunctions of the relative two-body problem 
for a potential - Vou(r/a) with the energy parameter 
iJ2 = 2m IEI/1i2 fixed and the potential strength 
parameter W = 2m VO/1i2 as eigenvalue. They are 
discussed in detail in the Appendix. As in one 
dimension, and for the same reasons, we shall choose 
the energy parameter iJ to be equal to p. 

We shall be concerned mainly with the three­
dimensional Sturmian functions in momentum space; 
we call them T.(k). The vector index s stands for the 
multiple quantum numbers that are appropriate to the 
three dimensions; we shall specify them more closely 
later. But writing them in the present form for the 
moment we retain a very useful similarity with the 
one-dimension case. Thus we expand qy(k, x) much 
as in Eq. (5), 

qy(k, x) = L T.(k)F.(x), (15) 
• 
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and inserting this in (14) can use essentially the same 
algebra and subsidiary equations as before. We 
therefore omit the details, and simply record the 
basic set of equations, the analogs of Eqs. (13), 
for the functions FlK). These are 

~ 3K2 
F.(x)(ws - w) + - ! FtCx)Cst 4 t 

= ~ f[(Y + x/2)2 + P2] 
w. 
x {T:(y + x/2) + T:( -y - x/2)} 

x ! Fp(y)TP(y/2 + x) dy, (16) 

where 
p 

Cst = f T:(k)~(k) dk. (17) 

Now the form (15) for lP(k, x) is really too general 
if we are interested in the ground state, which pre­
sumably corresponds to zero angular momentum. 
For we have shown previously that the most general 
form for this case is 

00 

lP(k, x) = ! 1P!(k, K)P1(cos y), (18) 
1=0 

where y is the angle between k and x. This limits the 
form of the functions F.(x), as we show now. As we 
discuss in the Appendix the vector index s that labels 
the functions Ts(k) can be taken to stand for the three 
conventional quantum numbers nlm, with T.Ck) of the 
form 

Ts(k) -+ Tn!(k) Yzm(Ok)' 

Thus the expansion (15) can be writteh 

lP(k, x) = ! Tn1(k) Y;m(Ok)F nzm(x). 
nlm 

If we compare this to (18), in which we imagine 
Pz(cos y) expanded by the addition theorem, we 
conclude that Fntm(x) is of the form 

F "lmCX) -+ F nz{K)Y:;"COK)' (19) 

If then we put (19) into (16) we get 

FntCK)Y~m(O,,)(wnz- w) 

3K2 * + - ! F n'l'(K)Yl'm,(OK)Cnlmn'l'm' 
4 "'l'm' 

= ~ f[CY + X/2)2 + ,82](1 + C - )Z) 
WnZ 

X T:lly + xj2I)Y7mCOY+K/2) 

x L~,Fn"'(Y)Y~m,(OI/)Tn'I'(IY/2 + xl) 

x Y;'m,(OI//2+K)}l dy dOI/' (20) 

This equation can now be simplified in several ways. 
First, for the summation over m' under the integral 
sign we can write 

! Y;~m,(OI/)Y;'m.(OI//2+K) = [(21' + 1)/41T]P,,(cos,u), 
m' 

where,u is the angle between y andy/2 + x. Moreover, 
since Eq. (20) holds for arbitrary m we can conven­
iently set m = 0, whereupon 

Yro(OK) -+ [(21 + 1)/41T]lp,(cos OK) 

where OK is the angle between x and the z axis. If 
we then multiply by sin OK and integrate over OK we get 

_ 3K2 
F nl(K)(Wnz - w) + -! F n'z(K)Cn/o,n'w 

4 n' 

= ~ (21 + ·1)f[(y + x/2)2 + ,82](1 + (-),) 
WnZ 81T 

X Tnz(ly + x/2j)P,(cos 01l+K/2)P,(COS OK) 

x {,tPl' + I)Fn'l.(y)Tn",(ly/2 + XI)Pz.(COS,u)} 

x l sin OK dy dOli dO". (21) 

Then this is the final set of equations. 

Ill. APPLICATIONS 

As an example we apply Eqs. (13) to a square-well 
interparticle potentiapo which is defined by 

{
l' Iz\ < 1 

u(z) = 
0, Izl > 1. 

The two-body functions Tn(k), which are discussed in 
the Appendix, are then 

T k _ 2 (C~2 + cx!) 
n( ) - (21T)~Tl + (sm 2cx,,/2cxn)]! (~2 + k2)(CX" + k) 

x [CX" s~ (~n ;: k) + cos CXn sin k]}. (22) 

The relation between the energy parameter P and well 
strength W" is given by 

with 

(23) 

(24) 

With these results, we are now ready to discuss the 
numerical solutions of Eqs, (13). Since this is an 
infinite set of equations, we must of course truncate it. 
We shall begin by truncating it as severely as possible, 

10 In Ref. 7 Rotenberg has remarked that the Sturmian set is not 
complete in regions of space where the potential is zero; however, 
this seems to cause no difficulty in the present problem. 
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i.e., by assuming only 11 is different from zero; 
later we discuss the error that this involves. 

With this assumption Eqs. (13) reduce to the single 
one 

f,(-) = w, (w, _ :w+ ~ ell) f[(y + ~)' + P' ] 

x Ti (Y + ~) T1(y/2 + K)J;.(y) dy. (25) 

According to the prescription above in which fJ is 
taken to be equal to fJ, the parameter "\ is determined 
according to (24) from 

(WI - fJ2)! tan (WI - fJ2)! = fJ. 
If then we consider that this equation is to be satisfied 
by fixing fJ and then solving for W, we can consider fJ 
as known. The functions T1(y + K/2) and T1(y/2 + 
K) that enter (13), and that are defined by Eq. (22), 
are then well-determined. If we put them into (25) 
explicitly we get the basic equation 

f (K) = 4W(fJ2 + IX.D2 

1 7TW1(W I - W + !K2cn)[1 + (sin 2IX.I /2IX.I)] 

x 100 

2 fl(Y) 

-00 {fJ2 + [~ + K] }[ 1X.1 + Y + ~] [1X.1 + ~ + K] 

x I 1 +cosIX.1 sin(y/2+K) 
{

IX. sin (IX. - y/2 - K) } 
(1X.1 - y/2 - K) 

x {exl sin (IX.I - Y - K/2) + cos IX.I sin (y + (K/2)]} dy. 
(1X.1 - Y - K/2) 

(26) 

To solve this equation we have approximated the 
integral by a sum, and thereby converted it to a set of 
linear equations whose vanishing determinant gives 
the relation between fJ and w that we seek. To check 
the approximation made in truncating the set of 
Eqs. (13) we have also similarly solved the analogous 
pair and triad of equations that are obtained by 
truncating less severely, i.e., when 11 and hare 
assumed nonzero, and likewise for 11' 12, and f3. 
The results are given in Table J. 

We see that there is a very small difference in the 
numerical values for the three different cases we con­
sider. The approximation of keeping only f1 is thus a 
very good one. We see this from another point of 
view if we look at the functions 11' f2' and fa which are 
plotted in Fig. 1. The small differences among the 
numerical values in Table I are reflected in the fact 
that 12 and fa are indeed small compared with 11 . 

Although these results are quite satisfactory, 

TABLE I. The binding-energy parameter pI = m lEI ai/hi vs 
the potential strength parameter w = mVgal/ha, for one­
dimensional, three-body problem with square-well interparticle 
potentials of strength Vo and width 2a. The last three columns 
give the results obtained by truncating Eqs. (13) successively, 
i.e., by first keeping only /1' then /1 and /1' and finally /1 and /a 
and/s. 

pi 

With With With 
w /1 /1 and/, /,,/a. and/s 

0.5 0.57920 0.57920 0.57895 
1.0 1.6210 1.6210 1.6231 
1.5 2.8204 2.8217 2.8214 
2.0 4.0958 4.0998 4.0997 

considerable computing capacity is needed to solve 
the equations when 11' 12' and 13 are included. Since 
12 and fa are indeed small, it is then natural to see if 
they can be obtained to sufficient accuracy from 11 
itself, in an iterative way. This is, if possible, clearly 
desirable, since it reduces the problem from that of 
solving several coupled integral equations to that of 
solving a single one with some kind of subsequent 
integration. 

To show that this is indeed possible, we do it. In 
(13) then we set n = 2, restrict the sum on the left­
hand side to I = 1 and I = 2, and keep only the 
presumed dominant term corresponding to I = 1 
under the integral sign. Then our approximate 
expression for 12 is 

f2(K) ~ _ 3K2C2d1(K) 

4[W2 - w + 3:2 
C22 ] 

2w 
+ 2 

- [_ 3K] w2 w2 - W + "4 C22 

x L:[ (y + ~)2 + fJ2]Tt(y +~) 

x T1(~ + K )Uy) dy. (27) 

We have calculated h(K) numerically from this 
equation for the case w = 2; the results are presented 
in Fig. 2 and compared with the "exact" result for 

12 obtained as described above. The agreement is 
quite good. 

It is instructive to look at the qualitative reasons 
that 12 is everywhere small, since very similar reasons 
will apply for the three-dimensional case. Part of the 
reason is the fact that w2 is fairly large, usually an 
order of magnitude larger than WI. For example, 
for w = 1, }V2 = 13.3; for w = 2, w2 = 14.4. With 
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FIG. 1. The functions r1(K), r.(K), I.(K) as calculated numerically 
from the truncated set of Eqs. (13); w = 1. 

this in mind we see that the first term on the right-hand 
side of Eq. (19) is small on two accounts; first, there 
is the factor W2 in the denominator; second, since 
/l(K) peaks at the origin (and is in fact normalized to 
unity there), K2 is large when /1 is small and vice 
versa, and their product turns out always to be small. 
The term on the right-hand side that contains the 
integral is small because the integral is of order unity, 
but the factor that multiplies it is of order wlw~. 
The higher functions/s, etc., can be estimated in much 
the same way, and they are still smaller for similar 
but stronger reasons. 

The solution of Eqs. (21) for the three-dimensional 
case is begun along the same lines; it is of course 
more complicated in that a double truncation, in the 
two indices n and I are involved. One would expect, 
a priori, almost as good convergence as for the one­
dimensional case since we have already founds.4 

that the truncation in I causes small error, and the 
truncation as a function of 1'1 is very similar to that in 
one dimension. We have made a preliminary investi­
gation of this in that we have solved numerically the 
truncated Eq. (21) keeping only FlO' The answers 
we get do not, however, agree with those due to 
Kalosll ; we have still to resolve this. It may be that 
Kalos' results are in error, although this seems 
unlikely, or that the truncation we have been forced 
to make is much worse than in one dimension,12 
or even that there may be some difficulty due to the 
fact that the Sturmian functions for a cutoff potential 
do not form a complete set for expansion outside the 
cutoff region. But these matters demand more 
discussion than is appropriate for the present paper, 

11 M. H. Kalos, Phys. Rev. 128, 1791 (1962). 
12 L. Eyges, J. Math. Phys. 7, 938 (1966). 
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+.010 

FIG. 2. The function I. calculated approximately from Eq. (19) 
and the zeroth-order expression for 11' compared with the same as 
calculated as for Fig. 1. 

and we shall leave them in abeyance for the moment, 
contenting ourselves with the one-dimensional results 
and with the fact that a generalization of this method 
has proved itself elsewhere13 for the He atom, i.e., 
for Coulomb interparticle potentials. 

IV. DISCUSSION 

The present method has now been expounded in 
several papers; it seems worthwhile at this point to 
summarize it, and highlight its basic features, so that 
the essentials stand out. Moreover, Fadeev6 has 
discussed the scattering problem with a method that 
has some resemblance to this one, and it is worth 
pointing out both the similarities and the differences. 

The first feature is the splitting of the wavefunction 
into three parts, as in Eq. (12) of Ref. 2. The motiva­
tion for this is described at some length in the earlier 
papers, and we shall not repeat it. We note, however, 
that a similar technique was later applied by Fadeev, 
who in the scattering problem split the t matrix 
analogously into three parts. This splitting has by 
now been proven advantageous in several ways; it 
turns out that these "partial wavefunctions" generally 
satisfy simpler equations than the total wavefunctions. 
For example, the scattering problem for separable 
potentials can be solved with it,5 as can the problem 
of the three repulsive t5 functions in a box,12 and with 
it, as one of us has shownp even the problem of the 
He atom becomes tractable. 

The next point of the method, which is conceptually 
independent of the previous one, is the expansion of 
the partial wavefunctions or "two-body orbitals" in a 
complete set of two-body functions. These are most 
naturally taken to be the eigenfunctions that corre­
spond to the interparticle potential acting between any 
pair. Analogously, in the scattering problem Fadeev 

13 J. Jasperse, thesis, Northeastern University (1966); J. Jasperse 
and M. Friedman, Phys. Rev. 159,·6CJ (1967). 
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expresses the three-body t matrix in terms of all 
possible two-body t matrices. The advantage of this 
procedure in the present case is that it reduces the 
equations for the orbitals to fairly simple and trans­
parent form, since one can use equations like (A8) to 
simplify what would otherwise be complicated inte­
grals. Thus, the expansion in a two-body set removes 
any explicit appearance of the potentials from the 
three-body equations. 

The third feature of the method is essentially the 
observation that the two-body expansion basis we have 
just discussed may be the most natural, but it is not 
necessarily the most advantageous. As we have shown, 
we can expand in eigenfunctions of not only the true 
interparticle potential, but also of one with the same 
shape and enhanced strength. This gives an extra 
parameter, which can be exploited to considerable 
advantage. As we have seen if we adopt the pre­
scriptions given in the text for this parameter, we 
simplify the form of the equations and insure the 
correctness of the asymptotic form of the two-body 
orbitals. 

The fourth step in the method, and this is the innova­
tion of the present paper, is of course, to choose not 
an ordinary set of two-body functions, but the Stur­
mian set. One then retains all the previous advantages, 
and also does away with continuum problems 
Moreover, the problem of truncating the equations 
becomes relatively transparent, as we have seen, in 
that estimates of the higher-order functions are given in 
terms of the Sturmian eigenvalues, for example, as 
in Eq. (27). 
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APPENDIX: STURMIAN FUNCTIONS 

We first treat one dimension for which the Schro­
dinger equation14 for the potential 

Vex) = - Vou(x/a) 

and binding energy E = - lEI is 

(AI) 

/i2 d2 1p 
- - - - Vou(x/a}lp = -lEI 'IjJ. (A2) 

m dx 2 

It will be general enough for us to assume that the 
potential u(xja) is symmetric about the origin. Then 
the eigenfunctions of 'IjJ split up into two groups: the 

14 Note the factor m instead of the usual 2m in the denominator of 
this equation. This comes in because x is really a relative variable 
and m is really the reduced mass. 

symmetric ones which we call S! , and the antisymmet­
ric ones, which we do not need to consider. Now we 
set 

the tildes ("-') over the parameters fJ and wemphasize 
that they refer to a two-body problem. We also put a 
subscript on w to emphasize that it is now one of a 
set of eigenvalues, and rewrite Eq .. (A2) for the 
specifically symmetric function S!, 

d2S 1 -2\ 
-2 - (w1u(z) + fJ ,SI = O. 
dz 

The Fourier transform of Sl is Tl(k), 

) 1 foo -ikz Tr(k = --! Sb)e dz, 
(27T) -00 

and it satisfies 

(A4) 

(AS) 

Tr(k) = ~I 2 fOO Joo u(z)Tr(k')eiZ(k'-k)dz dk'. 
27T(k + jJ) -C» -<Yj 

(A6) 

The orthogonality relation for the S!, obtained from 
(A4) by multiplying it by S!, integrating, etc., is not 
quite the standard one but reads 

L: S~(z)SzCz)uCz) dz = r5ml • (A7) 

This equation becomes, in terms of r:;. and Tl , 

2~ f f f T~(k)Tlk')eiZ(k'-k)u(z) dk dk' dz = 15m !, 

CA8) 

This last equation, used in conjunction with (A6) , 
gives the further useful relation 

L: (k2 + jJ2)T!(k)T!(k) dk = r5 m!wm · (A9) 

For the one-dimensional application in the text 
we need the symmetric Sturmian set for the potential 

(
l, Izi < 1 

u(z) = 
0, Izl> 1. 

This is elementary to calculate; the functions are 

Sn(z) = _ 
{
Nn cos r:t..nZ' Izi < 1, 

N n cos r:t..n exp [,8(1 - Izl)]' Izi > 1, 
where 

r:t..n = (wn - jJ2)!, 

The normalization constant N n is 
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and the relation between the energy parameter fJ 
and the strength parameter wn obtained by matching 
solutions at /z/ = I is 

atn tan atn = fJ. 
The Fourier transform Tn{k) turns out to be 

Tn{k) = 2Nn { fJ2 + at! [atn sin (atn - k) 
(21T)t (fJ2 + k2)(atn + k) atn - k 

+ cos atn sin k}]. (A10) 

Now we turn to the three-dimensional case, which 
is closely analogous to the one-dimensional one, 
except that scalar variables become vector ones. 
Thus, consider the Schrodinger equation for the 
relative motion of two particles with interparticle 
distance r', and interparticle potential VCr'). With 

VCr') = - Vou{r'/a), 
we have with 

r = r'/a 

and the same definitions as in Eq. (A3) for fJ and W, 

\12tp -- (wu(r) + fJ2)tp = 0. (All) 

The set of solutions of this equation with fJ fixed and 
W considered as eigenvalues are the Sturmian functions, 
which we call S(r). They are labeled by the multiple 
quantum numbers of three-dimensions, which we can 
represent by a vector subscript I. Thus as a function 
of r they satisfy the relabeled Eq. (All), 

\12S1 - (wlu(r) + fJ2)SI = 0. (AI2) 

We call the Fourier transform 1J.(k), 

With this vector notation the properties of the SI(r) 
and TI(k) are very close to those of their one-dimen­
sional counterparts. Thus the normalization condition 
analogous to (A7) reads 

f S: (r)S.(r)u(r) dr = t5n1 • (A14) 

Similarly, the analogs of (A6) and (A9) are 

T.(k) = WI fju(r) T.(k')eir • (k'-k) dr dk' 
I (21T)3(k2 + fJ2) I , 

and 

f (k2 + fJ2)T':(k)1i(k) dk = "mlWm' 

For practical applications we must of course specify 
the functions 1J.(k) more concretely. If then we 
consider the vector subscript 1 to stand for the three 
conventional quantum numbers nlm of three dimen­
sions we can think of the functions TI(k) as products 
of a function of k and a spherical harmonic 

TI(k) -* Tnl(k) Y1m(Qk)' 
Similarly, 

SI(r)-*Snl(r)Y1m(Qr) and w.-*wnl . 

Now we consider specifically the Sturmian set for 
the square well 

r
o' 0< r < 1 

u(r) = 
1, r> 1. 

We shall be particularly interested in the case 1= ° 
for which the functions Sno are readily found to be, 
with IXn = (wno - fJ2)t, IXn cot atn = -fJ, 

{ 

N no sin IXnr/r, r<1 
SnO = CAlS) 

Nno sin IXn exp fJ(l - r)/r, r > 1. 

The normalization constant N",o is determined from 
the relation (AI4) which reads 

fISno(r)12 r2 dr = 1, (A16) 

and from which we find 

Nno = [2/(1 - (sin 2IXn/2IXn»]t (AI7) 

From the result (AIS) we also find the expression 
for Tno(k), 

T (k) = 2(fJ2 + IX;) 

nO J;(1 _ sin 2IXn)\(lXn + k)(fJ2 + k2) 
2ex", 

{
IX sin (IXn - k). k} 

X - SIn IX" cos . 
(ex", - k) 
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