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A new method is presented for the calculation of thermodynamic properties from equilibrium statisti-
cal mechanics. Starting from the high-temperature expansion coefficients for the canonical partition
function, error bounds are obtained, which are both rigorous and optimal.

I. INTRODUCTION

The high-temperature expansion method is one of
the most widely used techniques in statistical mechan-
ics. It has been used to study the thermodynamic
properties of crystalline solids,! binary alloys,?
magnetic properties,® pure fluids,* fluid mixtures,®
and condensation from gases.® The chief advantage
of the method is its wide applicability. The main
difficulties of the method are twofold: (1) The series
of approximations converges rather slowly, and in
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some cases the series does not converge at all at low
temperatures. (2) The results are of unknown accuracy,
when the series are extrapolated.’

The purpose of this paper is to develop a new
method of high-temperature expansion which helps
both of these difficulties. Starting from the coeffi-
cients in the usual (truncated) high-temperature
series, we derive a new sequence of approximations,
which (1) converges much more rapidly than the
usual high-temperature expansion, and (2) gives
precise upper and lower bounds for the partition
function (and some other thermodynamic properties),
at each order of approximation. These bounds are
optimal in the sense that they are the most precise
bounds possible, given the coefficients in the usual
high-temperature series.

II. STATEMENT OF PROBLEM: ASSUMPTIONS

We consider closed equilibrium classical or quantum-
statistical systems which are described by canonical
distribution law over energy E which we write as

e "% dy(E), ™

where f§ is the reciprocal temperature, and dy(E) is a
density of states. We always assume that y(E) is a
nondecreasing function of E. We choose the (arbitrary)
zero of energy to be the energy of the ground state of
the system. Thus dy(E) vanishes for E < 0.

The problem we pose is to find upper and lower
bounds for the canonical partition function defined
by the Stieltjes integral

0(p) = f "o dy(E), %)

when we are given values for the first 2 moments
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I, of the distribution function, defined by
msﬁmww

forn=0,1,2,---,2M.

In order for these moments to exist and be finite in
a classical mechanical system, it is important to
separate out the kinetic energy, and treat (2) as the
configurational integral, and the moments u, as
averages of powers of the potential energy only:

B =£ V" dy(V).

The integrals then are just configuration-space
averages of powers of the potential energy. Having a
potential-energy function of bounded variation is
then sufficient to guarantee their existence.

In quantum-mechanical spin systems (such as the
Heisenberg model of ferromagnetism) the energy E
in (3) may be taken to be the full spin Hamiltonian H.
The moments may then be evaluated from the
quantum-mechanical trace formula

p, = Tr [H"]. )
The power of this method is that one may calculate
the trace in any convenient basis.

The usual form of the high-temperature expansion
is now readily obtained by expanding the exponential
in (2) in its power series and assuming that one can
interchange the order of summation and integration,

mm=§p¢wwm. ©)

By truncating this sum at successively higher (finite)
numbers of terms, one obtains a sequence of approxi-
mations to the partition function. The higher the
temperature, the smaller f, and hence the series
converges most rapidly at high temperatures. Un-
fortunately, the convergence is often slow at tem-
peratures of interest.

Since the terms in the series (6) alternate in sign,
successive partial sums give crude upper and lower
bounds to the infinite sum. However, these bounds
are not too useful in practice, because for sufficiently
low temperatures the lower bounds become negative;
hence they furnish no new information, since we
knew anyway that the partition function cannot be
negative. Similarly, these upper bounds become
larger than Q(0), for low temperatures. But we knew
already that Q(f) < Q(0), so these upper bounds
also fail to yield any information at low temperatures.
Even when the temperature is high enough so that
these bounds furnish some information, the magni-
tudes of the error limits are so large (for reasonable

3
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n ~ 10), that one might be lead to the hasty con-
clusion that a small finite number of terms in the
high-temperature expansion tells one little about the
partition function.

We hope to demonstrate in the following sections
of this paper that such a conclusion is unduly pessi-
mistic. We will construct a new set of error bounds,
based on precisely that information contained in the
coeflicients of the usual high-temperature series. Our
new error bounds are far more precise, by more than
a factor of a million in an example given in Sec. V.

III. GENERAL THEORY

We make use of mathematical results from the
theories of continued fractions,® quasi-orthogonal
polynomials and the moment problem,® matrix
algebra,!® and Gaussian-type integration®; reference
should be made to these works tor further mathe-
matical background. Where possible, we follow the
definitions, terminology and notation of Shohat and
Tamarkin® (to be referred to as ST in the following).

Consider''* the function I(z) defined by the Stieltjes

integral
I(z) = f “duE)
0

z+ E M

over the nondecreasing distribution dy(E). The inte-
grand may be expanded according to a finite geometric
series, with remainder term

ey (=B (—E) _
z" 2"z + E)

®
Inserting this series into the integrand in (7) gives

I(z) = i L " du(E) — 21—2 L “E dy(E)

+5 [ Ea® -+ LMo anm
zZ Jo z 0
L (" (=E) dy(E)
el B O

The coeflicients of the inverse powers of z, are
recognized to be just the moments y, defined by (3).

8 H. S. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrand, Inc., New York, 1948).

? J. A. Shohat and J. D. Tamarkin, *“The Problem of Moments,”
Mathematical Surveys 1 (American Mathematical Society, Prov-
idence, R.1., 1950) 2nd ed.

10 3. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford
University Press, London, 1965).

Ua T, J, Stieltjes, Recherches sur les fractions continues, Annales dé
la Faculté des Sciences de Toulouse 8, 1 (1894); 9, 5 (1895).
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Thus the formal expansion of the integral (7) has
the form

z zZ z
1 [*(—E)"dy(E)
e — | ——~. (10
+ +zn+1 o Z+E ( )

As long as the remainder term is kept, this is just an
identity. However, if we let n — oo, (10) becomes a
formal expansion of the integral in inverse powers of z:
I(Z)N@_/il_+/_‘§_/_‘§+...

z

(1D
z‘l 23 z4

This is ordinarily an asymptotic, but not convergent,
series. In order to form a more useful expression, we
replace this series by its “corresponding continued
fraction”

%

C(z) =

Zto
Ttog
Z + oy
T4, (12)

The coefficients «, appearing in this expansion are
determined from the moments u,, , by the requirement
that a formal expansion of C(z) in powers of (1/z) have
just the same coefficients as those appearing in (11).
Values of the first few «, may be derived directly from
this definition by equating coefficients of (1/z)" in
these expansions:

o = W (13a)
ap = f1ftos (13b)
2
ay = e = 1), (13¢)
oty
2
% = (45 U3)Mo (13d)

palapto — )’
g = hatttalla — Pifiaths — ot — Jifts 45 + Dtaftifiatte)
Pttty — p2)(ottz —~ )

(13€)

Obviously this direct matching method cannot be
practically applied to higher orders. Explicit general
expressions for the «, in terms of the u, can be
written down,® but they involve determinants of high

(z + a9)x, —(ta%a)tx, +0x,3 +0x,
—(@0)bx; (2 + o5 + a)x, —(ay05)bxy +0x,
0x, — (o405)x, +(z + a5 + agdxs  —(oear)bx,
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order, and are not useful in practice. A convenient
recursive method for evaluating the «, is given in
Appendix A. In applications, we have always used
this recursive method, which we will refer to as the
product-difference (PD) algorithm. It follows from
the general theory®!! that «, > 0, provided that y(E)
is a nondecreasing function which vanishes for E < 0.

An infinite continued fraction such as (12) has a
mathematical meaning only as a limit. If we consider
a sequence of ‘“‘approximants” C,(z), which are the
finite, truncated fractions obtained by setting «,, =

Unpe =+ 0, then C(2) is defined to be
C(z) = lim C,(2). (14)

Infinite subsets of C,(z) may also be considered in
this limit. In particular, the subsequence of the even
approximants C,,(z) and the odd approximants
C,,_1(z) will play an important role in finding our
error bounds.

First we consider the even approximants C,,(z).
We claim that the following continued fraction
A°(z) has its approximants of order n exactly equal
to the even approximants C,,(z):

A(z) = %
Z + oy — olgig
Z 4 oy 4 oy — K05
z+oc5+oc6—"-.
(15)
The equality A4°(z) = C,,(z2) may be verified by
truncating (12) and (15) at appropriate points and
rearranging the rational functions thus obtained.
[Definition: A continued fraction whose approximants
match a subset of the approximants of another
continued fraction, is called a contraction of that other
fraction. Thus A4°(z) is a contraction of C(z). In this
particular case the contraction A°(z) has the special
name, ‘“the associated continued fraction of even
order, of the corresponding continued fraction C(z).”]
We now claim that an exactly equivalent, but more
useful, expression for 4¢(z) is the following:

A(2) = xy,,

where x; is the first component of the solution to the
following set of # simultaneous linear equations:

=°‘1

+0xn_y —(Can_z0on1)¥Xny

+(Z + ®yp_y + “2ﬂ)xn =0.
(16)
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The equivalence of these two rather different looking
expressions for A%(z) is demonstrated in Appendix
B.llb

The linear equations (16) are more conveniently
examined in matrix notation:

where | is the n X # unit matrix, e, is the unit vector

Gy - (“z“a)* 0
- (“2“3)} (23 4+ o)) — (0‘4‘7‘5)i
M= 0

The formal solution to these linear equations is

x = o, (zl + M), (20)

If we now transform to the basis in which the matrix
M is diagonal, with eigenvalues &7, , and transforma-
tion matrix U,

&, = (UTMU),,, (21)
we have
x = o, UU-1(zt + M)~1UU e, 22)
or
X, = z ay(z + £5,)7 U, U 23)
J

Since the transformation U is orthogonal (M is
real symmetric), we have U;; = U;' and

X =& 2 (z+ E;n)_l Ufi (24)
7
or
n 2
An(z) =y —Ui_ s
i=1 (Z + E;ﬂ)
=5 £l (25)
i=1 (Z + E;n)
where we have set
pi(i) = U3, (26)
Thus we obtain the relation
f dy(E) = lim A4;(2),
o Z <+ n— 0
—lim 3 —£:0) @7)

nw i1 (z + £2,)

11b An equivalent result is given by Wall, Ref. 8, p. 226.
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(18)

o
K;
i

©C 00 O =

with » rows, and Mis an n X n symmetric tridiagonal
matrix

0 0
0
_(“4“5)% (o5 + o) "(0‘8""7)i 0

0
(19

_(“27.-—2“2"»-1)* (a1 + 2,)

This is an integration formula for the function
(z + E)™! with respect to the weight function dy(E).
The obvious generalization of (27) to a function

S(E)is

L “f(B) dp(E) = Tim 3 f(EIG).  (28)

n—w j=1

Equation (28) is valid whenever the integral converges,
provided f(E) is analytic in a region including the
positive real axis. In the integration formula (28),
the weights p2(j) are obviously positive, from their
definition (26), in which Uj; is a real element of an
orthogonal transformation matrix, and «, is positive
from (13a), (3) and the positive definiteness of the
distribution dy(E). It is shown in the general theory
of the moment problem (ST, p. 109) that all the
&,, are distinct and positive.

The correspondence between continued fractions
and matrix theory which we have just exploited,
makes it clear why inverse functions play such an
important role. The inverse of a tridiagonal matrix
can be calculated directly as a continued fraction,
allowing one to evaluate integrals of the Sticltjes
transform type (27). General integrals of the type (28)
can be calculated only after finding the eigenvalues
and eigenvectors of the matrix in (19), whereas for
finding its inverse, the eigenvalue calculation is not
needed.

What we have done here is to recast the theory of
Gaussian-type integration with respect to an arbitrary
weight function, into a form in which the positions
and weights are determined by the solution to an
eigenvalue problem for a real symmetric tridiagonal
matrix. The usual form of this integration theory
requires one to find roots of high-order polynomials.®
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The numerical problem of finding roots of high-order
polynomials is notoriously ill-conditioned.* In con-
trast, our solution is obtained in terms of the well-
conditioned?? eigenvalue problem of a real symmetric
tridiagonal matrix, which can be solved accurately by
a variety of procedures, without the catastrophic loss
of accuracy associated with the corresponding
polynomial problem.

The integration formula (28) was based on the
even approximants C,,(z) to the corresponding
continued fraction C(z). A second integration formula
of this type can be found, starting from the odd
approximants C,, ,(z). The derivation follows steps
analogous to those which have taken us from the
even contraction 4°(z) [Eq. (15)] to the even integra-
tion formula (28). The only difference is that in Eqs.
(16) and (19), the coefficient «,, is omitted. This of
course changes the numerical values of the eigenvalues
and the weights (in fact one of the eigenvalues now
lies at E = 0), but the rest of the formal development
remains unchanged, giving the odd integration
formula

[ @ awe = tim 3 pire). @)

If we now apply these general results to integrating
the particular function
f(E) = %, (30)

we obtain two expressions for the canonical partition
function (2),

0(p) = f "6 E di(E),

=lim Sp()esp(~pE) QD)
from (28), and
0p) =tim 3piexp(—pE)  (2)

n-ow j=1

from (29).
IV. ERROR BOUNDS

In actual applications of interest in statistical
mechanics, one has available only a finite number of
moments y,,, say forn =0,1,2,---, 2M. Thus the
infinite limiting processes called for in Eqs. (28) and
(29) must be stopped at a finite value » = M. Thus
we must add “‘remainder” terms to the truncated
integration formulas. Expressions for these remainder
terms are derived (ST, p. 119), which can be put into
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the form

© ¥ ¢ ;4 e g ar0% ar 4 1.f (2M)(X)
J; f(E)dW(E)':ElPM(])f(SiM)'*' )]

(33)
and

@© M
| f(E) dy(E) = gleu(f)f (§5a)

a3 a0 pr—of T (x)
M — 1)!

+ , (34)

where ol are the continued fraction coefficients for
the moment problem in which u, , replaces u,; and
where x is somewhere in the interval [0, c0]. Since
the a, coefficients are all positive (or zero), the re-
mainder terms for the even or odd approximations
take the same signs, respectively, as the even or odd
derivatives of f(E).

Applying these results to f(E) = exp (—fE), we
see that the even derivatives in this case are positive,
and the odd derivatives negative, uniformly on the
whole range of integration. Thus we have the following
two results, which supply our error bounds: (1) The
even approximations to the partition function,

M
03(6) = 3 P exp (~BEia)  (39)

furnish a nondecreasing sequence of lower bounds to

the partition function. (2) The odd approximations
to the partition function,

M
Qu(p) = gl p3r(J) exp (—B&ap), (36)

furnish a nonincreasing sequence of upper bounds
to the partition function.!*

Thus the possible error ¢ in the approximate
partition function 0 ,,(B) is

e < 3@ — Q) 37
where the Mth approximation to Q(f) is
Om(B) = HQ% + Q) (38)

11 The referee points out that error bounds for integrating
functions, all of whose derivatives alternate in sign, have recently
been obtained independently by G. A. Baker [Phys. Rev. 161, 434
(1967)), by a completely different method. Our bounds (33) and
(34) are considerably more specific, in that the sign of the error is
determined by the sign of a single derivative, whereas Baker requires
all of the derivatives to alternate in sign. Our results can thus be
applied to many other cases, such as functions, some of whose
derivatives have a definite sign on the positive real axis, or are
bounded there, etc.
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Before presenting quantitative examples of these
results in Sec. V, we can sketch here the qualitative
behavior of these error bounds as a function of
temperature T. For the even approximations, all of
the eigenvalues &, are positive, since they must lie
within the range of integration™(ST, p. 108), which is
here the positive real axis. Thus the lower bounds (35)
approach zero as T — 0. However, for finite T, they
always remain positive, and never give the useless
negative values produced by the usual truncated
high-temperature expansion (6), at low temperatures.

For the odd approximations, one may show that
there is always one and only one eigenvalue (£7,,)
at the ground-state energy E = 0. Thus the upper
bounds tend, as T— 0, to a finite positive value
(between 0 and 1) equal to the weight p9,(1). This
finite value Q% (00) is the maximum possible fraction
of the energy spectrum which can be degenerate
with the ground state, and still be consistent with the
known (first 2M) moments of the spectrum.

We may remark finally that it can be shown by
combining some theorems from the theory of the
moment problem,® that the bounds we have obtained
are in fact the most precise which are possible, based
on a given finite number of terms in the high tem-
perature expansion. In particular, we can explicitly
construct distributions y(E) which have precisely the
same high-temperature expansion, through 2M terms,
but whose exact partition functions lie at any point
we may choose within the error bounds, including
the upper and lower bounds themselves. These lower
bounds are attained for the distribution

M
dy(E) =21P3|4(j)5(E — &)

and the upper bounds are attained by taking

M
dy(E) = ;P‘iu(j)é(E ~ &im)-

Each of these positive distributions has the correct
values of the known moments, and thus each is a
counterexample against having more precise error
bounds from the given information.

V. TWO EXAMPLES

In this section we apply these results to two ex-
amples for which exact results are known. The first
example is a classical particle in a V-shaped potential
well:

Ix] <1

X,
V(x) = {oo, x| > 1.

ROY G. GORDON

TasLE 1. Fractional error in configurational integral
for a V-well oscillator, using pq, fty, * *, tha.

T* (¢) This work  (¢) Kramer’s series
0.02 1.9 x 101

0.03 4.2 x 102

0.04 1.0 X 102

0.05 2.6 x 1073

0.06 7.6 X 104

0.08 8.2 X 105

0.10 1.2 x 10-°

0.12 2.2 X 10°¢

0.15 24 x 10~7 see
0.20 1.2 x 108 9.9 x 102
0.30 1.3 x 10~ 52 x 10—
0.40 4.7 x 1012 1.3 x 10-8
0.50 3.5 x 1018 7.6 x 1077
0.60 4.0 x 1014 7.6 x 1078

The configurational density of states in this case is
simply ,
av, 0<r<1

W=l 1<v¥

This case thus corresponds to integration with
respect to a constant weight over a finite interval, and
hence the abscissas &2, and weights p¢(j) are just
those of Gaussian quadrature. We have checked a
number of the &2, and p¢(j) generated by our method,
with those tabulated!? for Gaussian quadrature, and
obtain agreement to 13 of the 14 figures carried in
the calculation (which was carried out on a CDC 6400
computer). This not only checks the method, but
also verifies the expected numerical stability of the
matrix formulation. The diagonalization was carried
out using the Q-R algorithm.3

The moments in this case are given by

= =1/ +1).

From these moments the approximate configurational
integrals @, (38) were constructed, along with the
error bounds ¢ in (37).

The exact configuration integral for this V-well
model is

o) =

In all cases tried the Q, converged nicely to this
exact function, and every stage stayed within the
error bounds. The error bounds decreased smoothly
and rapidly as the number of moments was increased,

[1 — exp (—A)/B.

12 Handbook of Mathematical Functions, National Bureau of
Standards Applied Mathematics Series 55 (U.S. Government
Printing Office, 1964), p. 916.

13 J, G. F. Francis, Computer J. 4, 265, 332 (1961); V. N. Kub-
lanovskaya, Zh. Vych. Mat. 1, 555 (1961).
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TasLE II. Number of moments required to obtain
an accuracy of better than 1% in the configura-
tional integral, for a V-well oscillator.

T* This work Kramer’s series
0.04 12 68
0.05 11 55
0.06 10 46
0.08 9 35
0.10 8 28
0.12 7 24
0.15 6 19
0.20 6 15
0.30 5 10
0.40 4 8

until the fractional error reached about 10~*4, after
which it was lost in the round-off error of the 14
figure calculation.
The usual high-temperature series (6) for this model
is
op =3 =P
n=0(n + 1)!

In Table I our error bounds are compared to those
given by this usual high-temperature series, for a
typical case of a 12-term series. Our method produces
error bounds which are more than a million times
smaller than the usual series, for the same number of
terms. Furthermore, the relative advantage of our
method increases as the number of terms kept in
both series increases.

If one asks for results of a given accuracy (say 1 %),
Table II compares the number of terms which are
required to obtain that accuracy, for a V-well
oscillator. Considering the enormously increasing
difficulty of evaluating higher terms in expansions
for realistic statistical problems, the smaller number
of terms required for a given accuracy is a great
advantage for our method.

The second example we consider is the two-
dimensional Ising model, for which we can compare
our results with the famous exact solution of Onsager.!*
Of particular interest is the partition function for this
model, when the number of sites N becomes infinite.
In order to obtain finite moments as N — oo, we may
consider the high-temperature expansion of the
partition function per site, which is defined by

Q = lim (@0,
N-w

where Qy is the partition function for a model with
N sites. The high-temperature expansion for Q is

14 .. Onsager, Phys. Rev. 65, 117 (1944).
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independent of N, and can be obtained by rearranging
the hyperbolic tangent expansion of Kramers and
Wannier3 and Onsager.!* In general, the Nth root of a
partition function need not be expressible as a Laplace
integral (2) with a nondecreasing distribution function.
Such a nondecreasing distribution does appear to
exist for the two-dimensional Ising model in zero
field, since the coefficients (23,%2,.1) turn out to be
positive (at least through n = 8). These are necessary
conditions for a nondecreasing distribution, and
sufficient conditions if true for all n. However, the
distribution of states corresponding to this expansion
is symmetric about £ = 0 and extends to 4 oo, rather
than starting at 0 as we assumed in deriving the error
bounds. Because of this extension to — o0, the error
term in (34) is no longer applicable, and hence no
upper bound (36) is furnished in this case. This failure
of the upper bound might be expected in this case,
since the model exhibits a phase transition at which
the heat capacity becomes infinite,* so that one
could hardly expect to find upper bounds to thermo-
dynamic properties in this case. Nevertheless, the
even error term (33) continues to be valid, and yields
lower bounds which are remarkably accurate. In Fig.
1 we have plotted the error in these lower bounds, as
a function of the number of moments (2M) used, for
the partition function at the critical temperature T, of
the infinite two-dimensional Ising model. For com-
parison, we have also plotted the error of the high-
temperature (hyperbolic tangent) series of Kramers
and Wannier,? as a function of the number of terms.
The greatly improved accuracy and rate of convergence

010 T T T T T — m

Kramers — Wannier Series

00005 -

000021~ .

0.0001 L L L L 1 L
2 4 6 8 10 11 LE
2M —-

F1G. 1. Fraction error in various approximations to partition
function of the 2-dimensional Ising model on a quadratic lattice, at
the critical temperature, as a function of the number (2M) of
moments used in constructing the approximation.
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TasLE III. Product-difference table for the corresponding continued fraction, including all those terms
which can be calculated using uo, i1, #s, ts, and .

1 2 3 4 5 6
1 1 Ho H (potts — ) po(tesity — p) (udpapispts — Pofipty — pophrpts — poptd + 2piopitatts)
2 0 —H — U —(uotts — piaphy) Holthapts — fafte)
3 0 Hg M (Hotta — papis)
4 0 —Us —Ha
5 0 2
6 0

of our method is apparent. It is important to em-
phasize that precisely the same combinational
information is required to construct our 2Mth-order
approximation, as is required to find 2M terms in the
usual high-temperature series.
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APPENDIX A: CONSTRUCTION OF THE
CORRESPONDING CONTINUED FRACTION

The basic data we use are the moments x,,, from
which we want to construct the coefficients of the
corresponding continued fraction (15). We set out
the moments as the second column of Table III. The
first column is initialized to zero, except for the (1,1)
element P,, which is taken as unity. The table is then
filled up by columns, proceeding to the right from
column 3, according to a “product-difference” (PD)
recursion relation

Py =Py ;1 Piprja—Pyso Puysa. (A

Within each column one starts at the top and works
downward. When a triangular portion of the table

byxy - (az)&x s +0x, +0x, 0
- (a2)*x1 +byx, — (aa)'}xg +0x, 0
0X1 - (aa)é.xé + bsXa - (ad)%xx 0

is complete, then the «, are given by
X, = Pl,n+1/(Pl,n ) Pl,n—l.)' (AZ)

This scheme has many points in common with
Rutishauser’s quotient-difference (QD) algorithm,'®
which starts from moment ratios, rather than the
moments themselves, and produces the «, by alter-
nating quotients and differences. Essentially the same
results are obtained by the PD and QD algorithms.
The main advantage of the PD method is that it
saves all divisions until the end, whereas the QD
algorithm may break down during iteration because
of trying to divide by zero or a very small number.

Both the PD and QD algorithms are rather sensi-
tive to round-off error, and must be carried out with
double precision arithmetic. In this respect, the PD
algorithm has an additional advantage, in that the
entire recursion (A1) can be carried out in the field of
exact integer arithmetic, completely avoiding the
round-off error.

The standard formal mathematical method of
constructing the «, is through the Hankel deter-
minants.? Since the evaluation of the determinants
needed requires ~n! multiplications and additions,
compared to the ~n? operations required to construct
the PD table, it is clear that the recursion schemes
are more suitable for calculation.

APPENDIX B: PROOF OF EQ. (16)

We wish to show that the first component x, of the
solution to the set of linear equations

—(a)¥x, =0
+b,x, =0

+bnxn—1

- (an)%x n—1

- (an—l)%x n—2

0x n—2

15 1, Rutishauser, Der Quotienten-Differenzen-Algorithmus (Birkhduser, Basel/Stuttgart, 1957); P. Henrici, Proc. Symp. Appl. Math. 15,

159 (1963).



ERROR BOUNDS IN EQUILIBRIUM STATISTICAL MECHANICS

is equivalent to the value of the fraction

f= bl — Qg
b, — as
by — -
—Gp
a,
b”l—l - 'b'; .

We solve the linear equations by Gaussian elimination,
starting at the bottom. From the last equation, we have

- (an)éxn = (—au/b)x, ;.

Substituting this into the second-to-last equation
and solving gives

- (a n—l)éx n~1=

Similarly substitution of this into the third equation
from the bottom gives
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3 —8y2
— (@) Xy = a Xp-3 -
n—1
bn—2 - a
n
bn—l -7
b,

It is by now clear that each of the factors in parenthesis
represent larger and larger portions of the bottom of
the fraction f. At the last stage,

(N — G
(a)’xy = by — a,
b; — ‘;4 Xy.
y—
_a"
b,

Substituting this into the first linear equation, and
solving finally for x,, gives the desired result

X = —
b, — a,
b, — a5
b3_...
—a,
b,
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explicit matrix representations of the group generators;
Clebsch~Gordan coefficients for reducing products of
representations are also often needed. To calculate
these in a simple form, polynomial bases for the
irreducible representations are a useful tool.

In this paper we derive polynomial bases for O(5);
the generator matrix elements appear as part of the
derivation. The Clebsch-Gordan coefficients we
leave for the future.

2. COMMUTATION RULES AND PHASE
CONVENTIONS

The ten (Hermitian) generators of O(5), the group
of rotations in five dimensions, may be taken as
Jy=—Jy; i#j; i, j=1,---, 5. J;; generates
rotations in the i plane.

The commutation rules for the J’s are

[Jm sz] = i(6,,,J,, + 5:'1-]11: - 6it‘;jk - ;ik']it)-
We define

Sy = ¥(Jgs + Jug),
Sy = §(J12 + Jgo),
I, = %(J:n has 124),
U:i: = .115 :h i]25,

@.1)

Sy = §(Jn + J2d)s
Ty = $(Jss — J1a),
Ty = (V12 — J30),
Vi =Jss & ifys.
Then §, T are two commuting spins which generate
O(4) transformations.® We give the nonzero commu-
tators of the generators S, T, U,, V., omitting the
well-known rules for S, S; (and 7., T,) with each
other; S,, T, mean §; + iS,, Ty + iTy:
[Ss, Uyl = £3U,, [T5, Uyl = +1U,,
[S5, Vil = £4V,, [T, Vi) = FiV,,
[Si9U:F]=:EVi’ [Tﬁ:aU-T—']=:L'.V=Fa
[S¢’ Vil = FU,, [Ty, Vil = FU,,
U, Vil =F28,, [Ug, Vel = F27,.
All but the last two relations are summarized by the

remark that U,, V, under O(4) form a (3 ) quartet
of operators Uffa’}a with

2.2)

2.3)

13 3
Ui = U, U%;% =V, 2.4
vi,=v, v =v.

We use states in which Ss, T are diagonal. If
S;, Ty are plotted as Cartesian coordinates, the
other generators move states as shown in the “root
diagram,” Fig. 1.

A systematic derivation of the root diagram and the
corresponding generators is described by BDFL; our
generators are related to theirs by S, = (6)}E.,

5 p. Roman, Theory of Elementary Particles (North-Holland Publ.
Co., Amsterdam, 1964).

R. T. SHARP AND S. C. PIEPER

Ty
{ AT
V.. '/ZJ- Ut
S. S
—- + >
Y b 8y
Vi
U-
T.

F1G. 1. The 10 generators of O(5); the arrows show the amount by
which the eight nondiagonal generators S+, T+, U4, ¥+ move
the point (S, Ty) whose coordinates are the eigenvalues of the
two diagonal generators.

T,= (6)’}Ei3, U, = '_2(3)%13:1:2,
Sy = 203 H,, T, = 2(3)}H,.

O(5) representations may be labeled by two non-
negative integers (p,q); they are the (4,,4) of
BDFL, or the (2u,, u; — po) of Hamermesh.®
According to BDFL, p. 8, we need 3(r — 3/) =2
quantum numbers to label states besides the eigen-
values of Sy, T,; here r = 10 is the number of
generators and / = 2 is the largest number of mutually
commuting generators. We choose to use the pair
S, T which label O(4) representations. Thus our
general state is |pg; ST; S,T3); where there is no
ambiguity we may suppress the pq labels.

We adopt the Condon-Shortley phase convention
for the S and T spin states in each O(4) basis. To
define the relative phases of different O(4) bases we
invoke the O(4) Wigner-Eckart theorem:

(S'T"; S3T51 By, |ST; 85Ty
= (S'T"|| B [ST)XSSys53 | S"Sa}T Tytts | T'T5)
x [28' + DET' + DI 29)

we use the double bar notation throughout to denote
0(4) reduced matrix elements. We now ask that the
reduced matrix element (7’| U | ST) be positive
when AS =}, AT =}, when AS =}, AT = —14,
when AS = ~4, AT = } and negative when AS =
~—3%, AT = —%. Here AS, AT=5" -8, T'—T.
It then turns out that all matrix elements of U, V,
are positive except those of U, with AS = §, AT = §,
of U_ with AS = —4, AT = —4, of V, with AS =
—3%, AT =%, and of V_ with AS =}, AT = —~4,
which are negative.

Vd: = 2(3)%E:F4 4

¢ M. Hamermesh, Group Theory (Addison-Wesley Publ. Co.,
Reading, Mass., 1962).
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3. THE REPRESENTATIONS (p, 0) AND (0, 9)

The basic (1, 0) representation contains two O(4)
representations (3 0) and (0 }). The basis states
«a=340;30), =130, =3 0), y=10301),
6 =104; 0 —}) are shown in Fig. 2(a). It can be
verified that we reproduce the correct commutation
rules if we represent the generators by the differential
operators

S3 = %(“a, - ﬂap)a Ty= %()’ay — 00y),

S, = ad,, S_=40,,

T, = y3,, T =00, G.)
U, =y0 + ad;, U_=po,+ 690,
V,=0ad,— 00, V_=7yd, — 0.

The representation (p, g) has dimension
3+DE@+DE+9+2)p+2+3)
according to BDFL. Forg = 0 this is just the number

of monomials of degree p in four variables. In fact
we see that

[pO; ST; S;Ty)
as—f—SsﬂS—Say T+T36 T-Ts

(S + S!S = SHUT + TU(T — Tyt

For these (p 0) states S and T are not independent but

T=14%p—S. (3.3
Hence we may without ambiguity suppress T in the
state label. S takes integer and half-integer values in
the range 0 < S < p/2.

The (0,1) representation contains two O(4)
representations (%, 3) and (0,0). The basis states
n=135+d, =1 -5 D, 0=14% 4 -,
{=14% —%—%),24=100,00) are shown in Fig.
2(b). It can be verified that the commutation rules
are reproduced if we write

Sy = %(7}3., + 939 - Eag - gag),
Ty = ¥(n9, + £0; — 60, — {0)),
S+ = 7]35 + eaC’ S_ = ‘fan + Cao’ (3 4)
T, = 79, + £9,, T =00, + {0,
Uy = D20, — 10, U_ = ()}, — 19,),
Ve = @400, + 19y, V.= D23, + £0,).
Now 5n{ — &6 + }A% is an O(5) scalar so to avoid
duplication of representations we must discard
states proportional to powers of it. The number of
monomials of degree ¢ in five variables is
salg + (g + 2)(q + 3)(g + 4.
The number of discarded states is the same, with ¢
replaced by g — 2; the remaining number is just the
required dimension of the representation (0, ¢).

For (0, g) states, it turns out that S = T, so again
we may suppress T from the state label; S takes

3.2)

665
T3 T3
& o7
92 * Y L] ~
B a A .
— —& Y
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a b

FiG. 2. The two basic representations of O(5); (a) shows the four
states of the (10) representation; (b) shows the five states of the (Q1)
representation.
integer- and half-integer values in the range 0 <
S < ¢g/2. We find

0 g;S; SS)
—28-2z — x
— Nsnms z A (56 7]&)
z 2°x1(q =28 —=2x)! (x + 2S + 1)!
with

Ng = {[(2S + 1)(g — 28)!(q + 2S + 2)!
X (q + 1)127%5))2q + D, (3.6)

To derive Eq. (3.5) we first assume |0 ¢; S; SS) =
n®F(A, n{ — £&0); since A and %l — éu are the
only O(4) scalars, this is the most general form with
the correct O(4) behavior. Fis a polynomial of degree
g — 2§ in n£6{A and may be determined to within a
multiplicative constant by the condition

(0,0, — 8,95 + 30)7°°F = 0. 3.7
The operator in Eq. (3.7) obviously gives zero on the
perimeter state 77/(¢!)}; and since it is an O(5) scalar
and commutes with all the generators, it must give
zero on every state.

The normalization constant (3.6) is fixed by demand-
ing the equality of the matrix elements

S+ 45S+31S+ 3 U IS;SS)

(3.5)

and
(S;SSIU_IS+ 55+ 35S+ ).

In calculating these matrix elements with the states
(3.5), one operates with U, on the right-hand state and
identifies the coeflicient of the left-hand state; one
does not calculate scalar products. In this way all sums
are avoided; the calculation is further facilitated by
retaining only the 12725 term on both sides. From the
equality of the matrix elements, together with the
phase conventions, the ratio Ng/Ng.; and the matrix
element

(S;SS|U_IS +4:; S+ 43S+ D
= [(25 + 1)(q — 25)(q + 25 + 37}
= ] (3.8)
2AS+1)

are determined.
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The other states of the (SS) representation of 0(4)
are easily constructed from the corner state (3.5) by
repeated use of the generators S_, 7. They are
given [apart from an O(4) scalar factor] by Eq. (2.2)
of a paper by one of us.”

The states (0 q) are closely related to the five-
dimensional hyperspherical harmonics. In fact, the
harmonics are obtained from the states (0 ¢), apart
from a numerical factor, by the replacement of
né0LA by the corresponding first-degree hyper-
spherical harmonics.

4. THE GENERAL REPRESENTATION (p, ¢)

The O(4) content of the general representation is
indicated in Fig. 3. The ST which appear are those in
or on the rectangle whose corners are (3p, 0), (3p +
%qa %q)’ (%‘I, %P + %q)a (O’ %P)7 and for which Z(S -
T)) has the same parity as p. Representations with odd
p are spinor representations in the sense that the
component of angular momentum in any plane in the
five-dimensional space (i.e., eigenvalue of any J,;)
is half-odd; representations with even p have integer
angular momentum.

We wish to construct the representation (p, ¢) as a
product of the representations (p, 0) and (0, ¢):

|pq; ST; SaTy) =S§"lpq; S'S"; ST; S3Ts) Agr(S'S").

4.1)
We have adopted the abbreviation

Ipg; S'S"; ST; S5Ty)
= Y [p0;S;8T3)|09;5"; Sy — S3Ts — T3
8y Ty
X (§'S:S"Ss — S3 | SSHT'T,T" Ty — T:;] TT,).
4.2)
Here T’ = }p — S’ according to Eq. (3.3) and 7" =
S”. The coefficients 4(S’S”) in Eq. (4.1) are special
stretched O(4) scalar factors, i.e., special O(5)
Clebsch-Gordan coefficients with the O(4) Clebsch~
Gordan coefficients removed. The generators are
now the sums of those in Eqgs. (3.1) and (3.4).
According to BDFL Table V we can form an O(5)
(1, 0) quartet from (1, 0) and (0, 1). In terms of our
states it is

o = [ad + (S — W)}/ (5},
B = [B1 + }EE — yDN (G,
Y = [—yi + aE = )/ (S)E,
8 = [—6A + 2}l — BO)/(5)E.
We are concerned with these states because |pg; ST;

S,T5) must be orthogonal to any state which contains
powers of them; such states would belong to rep-

4.3)

7 R. T. Sharp, J. Math. & Phys. (to be published).

R. T. SHARP AND S. C. PIEPER
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Wptha | o
® | J
o . .
I,zp ] ™ °
[ [ ]
) hp+hoa S

Fi1G. 3. The O(4) content of the O(5) representation (pg) all 0(4)
representations (ST) are included (shown by dots) for which the
point (ST) lies in or on the rectangle 4p < S+ T < g+ 4p,
0<|S—T| < 3p and for which 2(S + T) has the parity of p;
the::l case illustrated is p = 2, ¢ = 3; the scale is § that of Figs. 1
and 2.

resentations lower than (pg) in the product of
(p0)and (09).

Corresponding to the states (4.3) we construct a
(1, 0) quartet of operators 9,. For example,

3 = 8,9, + Q¥3,0, — 9,9)

is the (30) member. We probe by induction that
0. |x) = 0 where |x) is any state of the representation
(pg). Assume the statement true for |x), and let G
be a generator of O(5). Then

0;G Ix) = Go; |x) + [9;, G]|x) =0

since [0}, G] is a linear combination of d;. The state-
ment is true for the heaviest state a?7%/(p! g)? so it is
true for all since they can all be reached by repeated
application of generators.

We could determine the relative values of the
A(S’S”) in the state (4.1) by applying 9; and 0, to it
and asking that the results vanish. But rather than
apply them directly, we notice that (d;, d,) is a (3, 0)
doublet 9" under O(4). In fact it is the sum of two
composite doublets, one (9,0;) formed from a (3 0)
doublet in the p variables and a (0 0) singlet in the ¢
variables; the other (0,0, — 0,0,) formed from a
(0 3) doublet in p and a (} }) quartet in g. The reduced
matrix elements can be calculated using the O(4)
generalization of Edmonds’® Eq. (7.1.5),

(S.T7; S3Ty; S'T’|| X* ||S,T,; S, T,,; ST)
X (S;T.\ A% ||S, TS, T B** |IS,T,)
x [(2S + D2S' + DRT + 1)
x 2T + D)(@2s + )2t + DI
Sq Sa sa| |Ta Ta 1
x XS, S, s|X|T, T 6,
s S sl Ll T ¢t

8 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957).

(4.4)

4.5)
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involving X coefficients or 9j symbols. We omit Edmonds’ y’s since in our case the ST, etc., labels are sufficient
to identify the states. X in Eq. (4.5) is a composite O(4) tensor:

Xst

33t

2, £,
= > Al BE® i X (84838, 85 — 83| S S)talityts — 13| L 1),
33'ty’

The condition
0=(p—1q—1;5S";S £ 4T|® |pg; ST)
=2 (p—1q—1;5S";S £ 4T| 3 |pg; S"S™; ST)A(S", S"),
s"s"

which holds for all $’S” and for S + 4, leads to two independent relations connecting A(S” + %, S”), A(S", S -
), A(S’, 8" + ). Solving these gives

(@ =28)T+T" =T + INT =T" + T'NS" + 1)2
QS"+1)(g+28"+3)ES"—=S+S+1D)S"+85 +S+2)
and a second equation in which the roles of S and T are interchanged. Iterating these equations gives

e T+T" =TH(S+ 85" =-5HNA2S"+1) b
AST(S ’ S ) = NST " ] " " ’ ’ 1" ’ "
(@—2SV(T+T —TH(S" +8 —S)I(S+ 8 + 5 + DI(S + 8 — 5!

x{{(T+T'+T"+DOI(T"+T" —T)!(g+ 25+ 2)!]_1}'}, (4.7)
where Ngy is a phase-normalization factor to be determined. The S’S” in the sum (4.1) are restricted to those
for which 0 < 8" < p/2, 0 £ §” < ¢/2 and for which the arguments of the factorials in Eq. (4.7) are non-
negative integers, i.e., for which 2(S* 4+ S”) have the parity of S and satisfy the inequalities max (}p — T, S) <
S+ 8" <Ip+T,-S<S -8 <min (S, $p — 1)

From the phase conventions and the equality of the matrix elements
S+IT+HESHESHHULIST; ST) =(ST; STIU_|S+4S+ 5T+ 4T+ %), (4.8)
the ratio Ngp/Ng,yp,, and the matrix elements in question are determined. Again we avoid summations in
calculating the matrix elements (4.8) by operating in each case with U, on the right-hand state and picking out
the coefficient of the left state, not by taking scalar products. The work is facilitated by working with the term
I+ 38" + 5SS+ 3T+ 4 S+3T+4) in the state [S+ 3T+ 4, S+ 3T + 4), where §" = §(S —
T)+ tp, " = #(S + T) — ip; in this term the § and 7 spins from the p and g spaces are stretched.
By iteration Ng, can be expressed in terms of its value for a boundary state S + T = g + }p. Its value is

N =[(q+%p—S—T)!(q+%~p+S+T+2)!(%p+S+T+1)!]*
- Qe+p+DIS+T -3+ q+D(q+1)!

X[@+3p—S+T+DIg+4p+S—T+DIGp—S+ DGp+ S —DQq + 2L (49)

For the reduced matrix elements of the UV generators we find
S+ET+HUISD=[@+3p+S+T+3)0@p+S+T+2@q+p—-S—TNS+T—p+ D},
S—3T—HUISD=—[q+p+S+T+2)Ep+S+T+D@+ip—S~T+ DS+ T -,
S+IT-HUIS) =[g+4p+T—-S+D@+S—T+ip+20p+T—-90p+S5—T+ DL,
S—3T+HUIST)=[g+3p+S—T+D@+ip—S+T+20p+ S~ D(p — S+ T+ I

(4.10)

This completes our results. The basis states are given by Eq. (4.1) with the coefficients 4(S’S") given by Egq.
(4.7) and the normalization factor Ngy by Eq. (4.9). The matrix element of the generators (other than the
trivial ones S, T) are given by Eqgs. (2.4) and (2.5) in terms of the reduced matrix elements (4.10).

Instead of working with basic (1,0) and (0,1) representations one might use two independent (1,0)’s; then
(0 1) would appear as a composite state. In this way one would need eight independent variables instead of nine.
Although we have not pursued this alternative course, we may note an analogy with SU(3) where states may be
built from two independent quark (1,0) representations or from a quark and an antiquark (0,1) representation;
the second course, to which this paper closely corresponds, involves a simpler isospin structure and leads to

simpler formulas when the bases are used, for example, to compute Clebsch-Gordan coefficients,? an important
consideration in view of the large number of internal summations which arise.

!
AS' + 3.8+ 1) = [ ] A(S> 57 (4.6)

9 C. K. Chew and R. T. Sharp, Nucl. Phys. B2, 697 (1967).
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It is shown that the motion ot a Brownian particle in the Smoluchowski approximation may be de-
scribed by a Schrodinger-like equation defining a complex probability amplitude whose norm is the
same as the stochastic probability density. Furthermore, the quantum dynamical operators have a physical
meaning which arises in a natural way, from the stochastic nature of the process. These operators satisfy
the usual commutation relations and thus the uncertainty principle. Here the constant 4 is replaced by
a parameter depending on the characteristics of the system. In particular, the potential-energy operator
for a Brownian particle subject to no external forces can be interpreted as a Rayleigh dissipative function.

I. INTRODUCTION

The idea of giving an alternative interpretation to
the quantum theory by essentially assuming, first,
that to each of the fundamental particles one may
associate a field ¢ which is a solution to the ordinary
Schrodinger’s equation, second, that this field is an
average over random fluctuations originating in a
subquantum level, and third, that this field exerts a
“quantum-mechanical” force on the particle which
begins to manifest itself strongly on the atomic level,
originated 40 years ago in the work of de Broglie!
and Madelung? and was continued by Bohm et al,,
about 30 years later.® Although some progress has
been achieved in clarifying the physical concepts lying
behind such ideas, the solution to the problem is far
from being satisfactory and, furthermore, complete.

In recent years many authors! have revived this
field trying to bring up a relationship between stochas-
tic processes and quantum mechanics and as one of us
has pointed out,? this is feasible in a quite simple way.
Following the ideas. introduced in paper I,* we would
like to set forth in a series of papers a different method
by means of which one can visualize some of the
outstanding features of the general and complex

*Consultant, Comisién Nacional de Energia Nuclear, México.

t Facultad de Ciencias, Universidad de México.

1 L. de Broglie, Compt. Rend. 183, 447 (1926); 184, 273 (1927);
185, 380 (1927).

2 E. Madelung, Z. Physik 40, 332 (1926).

3 D. Bohm, Causality and Chance in Modern Physics (D. Van
Nostrand Co., Inc., Princeton, N.J., 1957), and references there
cited.

4 G. Della Riccia and N. Wiener, J. Math. Phys. 7, 1372 (1966)
and also some other references in Ref. 5.

5 L. de la Pefia-Auerbach, Phys. Letters 24A, 603 (1967). (Here-
after this paper will be referred to as 1.)

8 N. Wax, Ed., Selected Papers on Noise and Stochastic Processes
(Dover Publ., Inc., New York, 1954); see especially papers by S.
Chandrasekhar and by M. C. Wang and G. E. Uhlenbeck.

problem posed in the previous paragraph. This paper,
which is the second one of the series, is devoted to the
study of the possibility of describing the dynamical
properties of a stochastic process defined by a simple
diffusion or Smoluchowski equation using quantum-
mechanical methods. This description is therefore
restricted in the sense of the limitations which are
intrinsic in the derivation of Smoluchowski’s equa-
tion,® namely, that we shall be considering only time
intervals of the particle long compared with its
relaxation time. The more general case in which the
particle is described by means of a Fokker—Planck

“equation will be dealt with in a forthcoming paper.

In Sec. IT we sketch the model for our discussion
and from which stems Schrddinger’s equation de-
scribing the stochastic process. Section III is devoted,
using an adequate language, to a discussion of the
physical interpretation of the “potential function”
appearing in Schrodinger’s equation derived in Sec.
II. The most important physical example which can be
treated within the context of Smoluchowski’s equation,
namely, that of a free particle, is given in Sec. IV, and
finally in Sec. V a discussion of our results is presented.

II. DERIVATION OF SCHRODINGER’S
EQUATION

We describe the motion of a particle in the con-
figuration space through a real single-valued function
p(x, t) where x(f) is a stochastic process and p is the
probability density at x(z). Then, we postulate that this
probability density is conserved, namely

0p/0t + div (vp) = 0, ¢))

p satisfies a continuity equation. Here, v is the
macroscopic or flow velocity of the particle, which in
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general may be written in the following way:

n=a+13 2 b, @
p 7 Ox;

where a;, = K;/f is the ith component of the external

force K, per unit mass, acting on the particle, divided

by the friction coefficient f, and b;; is the diffusion

tensor.® Because p is a real positive single-valued

function, we may now introduce a real function R such

that

p = ek, 3
in terms of which Eq. (1) may be written as follows:
OR/0t = —%divv — v.grad R. é@)

The question here arises if whether we can obtain an
equation of the Schrédinger type defining a field o
such that the probability density yp* = p describes
the same physical situation as Eq. (1). The answer to
this question is dealt with in paper I where it is shown
that if we introduce the function
p= eR+iS’ (5)

where S is a real, single-valued function, then indeed
Eq. (1) may be cast into the form

i(Oy[ot) = —3aViy + Vy,
together with

()

v = « grad S, @

corresponding to an “irrotational” flow in configura-
tion space. This implies, of course, that the external
force is conservative and o« is an undetermined
parameter characteristic of the system.”

Equation (6) is a Schrodinger-like equation with a
potential energy function ¥ which in terms of R and
S is given by

V = —0S/ot + }«[V?R + (grad R)? — (grad S)?],
®

whose physical interpretation, in the quantum-
mechanical sense, is the main subject of this paper,
but at this stage remains unknown. Notice should be
made, however, that the definition of y given by Eq.
(5) satisfies the requirement that p = y*yp is a proba-
bility density. Therefore, Eq. (6) implies that o
satisfies a Schrédinger-type equation with a potential-
energy function defined by Eq. (8) and its modulus
squared gives the probability density for a Markoff
process in the Smoluchowski approximation where the
flow velocity is irrotational.

7 A brief discussion concerning the nature of « is given in paper I.
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III. THE PHYSICAL CONTENT OF
SCHRODINGER’S EQUATION

As was pointed out in the previous section, the
core of our discussion is to provide a physical meaning
for the potential-energy function V appearing in Eq.
(6). To accomplish this task it is convenient to
introduce various definitions whose meaning will
become clearer as we proceed with the argument.

Let  be any operator. We define (f),, the mean
value of f weighted with the probability distribution
p in the usual way, namely,

Fra = f 7o dr,

the integration extending over all the configuration
space.

Also, we define the expectation value (f) of the
operator f by

®

f)= f y*fy dr, (10)

where, in particular, if f is a ¢ function then, trivially,
)= Pav =1

From the results of the previous section, it is seen
that the probability current J associated with our
Brownian particle is given by

J = pv. (11)

On the other hand, if we restrict ourselves, for the
sake of simplicity, to consider an isotropic diffusion
tensor, b;; = —4,;D, then Eqs. (2) and (7) yield

v=a — (D/p)grad p = o grad S. (12)
Let us now define the operator v through the equation
§=a-— Dgrad (13)

so that
Yp = vp. (14)

Finally, in analogy with quantum mechanics the
“momentum” operator will be defined by

p = —ima grad.

(15)
Let us now derive some results concerning the mean
and expectation values of these operators using the
definitions introduced above.

The mean value of the momentum operator p is
readily shown to be equal to zero. In fact, substitution
of Eq. (15) into Eq. (9) and integration by parts, using
the boundary condition that p must vanish at infinity,
yields immediately the result

(Play = 0. (16)

Use of this result in Eq. (13) leads to another
interesting equation, namely, that

(V)ay = 4.

17
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In other words, the mean value of the flow velocity of
the particle is proportional to the mean value of the
external force per unit mass acting on it. We stress
the fact that this result is a consequence of working
with Smoluchowski’s equation.

On the other hand, the expectation value of the
operator P is given by

® = [v*pyar. 18)
Using Eq. (5), Eq. (18) may be rewritten as follows:

P) = —ima f y*(grad R + i grad S)y dr,

and therefore,
() = —imax (grad R) + ma(grad S).

However, from its definition p is a Hermitian operator,
hence
(grad R) = 0,
so that
(Pp) = am(grad S). (19

This result is also quite interesting. Indeed, from Eq.
(7) we see that (grad S) = «~(v), so that Eq. (19)
reads

$) = (mv) = m¥, (20)

or that the expectation value of the ‘“momentum
operator” is equal to the mean value of the flow
momentum associated with the particle. It is indeed
this result which allows one to interpret p as the
“flow momentum” operator associated to the Brownian
particle.

Let us now introduce the corresponding statistical
deviations from the two average values defined at the
beginning of this section. Define two quantities
df and Af through the equations:-

5fEf—— <i>av’
Af=f— (),

the two being equal if f is a ¢ function. Then, the
mean square deviations associated with 8f and Af are

(B ays (), (A, and (AF)?),

the four being equal to each other when f is a ¢ func-
tion. In particular, if we take for ]’ the momentum
operator we see, using Eqs. (16) and (20), that

aﬁ=p“<ﬁ>av=ﬁ
Ap =P — (mv) =P — m(¥),,.

«Ap)z)av = <(6b)2>llv + (m<v>av)2-

(2la)
(1b)

and

Then,
(22a)
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Also,
((AP)®) = (P*) — (m(¥),,)%

Moreover, since dp = p, we see that

(22b)

(80)Day = —alm? f div (grad p) dr,

which vanishes due to the boundary conditions obeyed
by p. Hence,

APy = (M(v), )% (23)

We are now prepared to undertake our task,
namely, to arrive at a physical interpretation for the
potential function V defined through Eq. (8). Let us
then begin by calculating the expectation value of the
square of the momentum operator p. We have

P = — m2a’f P*Vyp dr

= —2m2ajtp*[—i(aap/3t) + Vyldr,

using Eq. (6). The integration is straightforward,
yielding the result that

B*) = 2m*a[(i(9/01)) — (V)] (242)
or

(mai(20t)) = (P¥2m) + (maV).  (24b)

This equation is quite suggestive itself, Indeed if we
define two operators, namely,

E = ima(0/0t) (25a)
and
U = maV, (25b)
then Eq. (24b) takes the form of
(E) = (§%2m) + (U), (26)

which has the conventional form for the relationship
between the expectation values for the total energy
E, the kinetic energy §?/2m, and the potential energy
U. Thus, the operator

A= @)2m) + 0 @7

could be interpreted as the Hamiltonian operator for
the particle. However a certain amount of care has to
be exercised when this analogy is carried up to this
point. In fact, the term §2/2m is not the usual kinetic
energy, but the kinetic energy associated with the
microscopic flow of the particle and thus inherent in
it there is a stochastic contribution, Also, ¥ is not the
external field but a complicated function whose nature
is still unknown, but which of course might contain
terms of a purely stochastic character. It is therefore
necessary, before assigning any physical meaning to
the formal results given by Eqgs. (26) and (27), to
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study more closely Eq. (26). For this purpose let us
retrace our steps to our former equations. From Egs.
(8) and (25b) we see that

U = —ma(0S/0t) + $ma2[VER + (grad R)?

— (grad 5)?] (28)
and let us eliminate the terms containing S, expressing
them in terms of R. Notice first that through Eq. (12)
we get that
(grad S)? = v?/a?

= o%[a% + 4D?*(grad R?) — 4Da - (grad R)],
where use has been made of Eq. (3). Substitution of
this result back into Eq. (28) yields

= —ma(0S/0t) + $mx?{V2R + (4D[«*)a - grad R
— (@%/a® + [1 — (4D?/a?)](grad R)?}.
At this stage it is convenient to emphasize the fact
that « is still an undetermined constant about which
nothing has been said. The above equation shows,
however, that some simplification results if we set
o« = 2D, so that we shall introduce this value for the
constant «. The simpler form of the last equation thus
reads
U = —2mD(0S/t) + 2mD?*[V?R + D'a-grad R

— (a¥/4D%]. (29)
If we now take the gradient of both terms in this
equation and use the fact that

grad (0S/0t) = (2D)20a/dr — grad (dR/d¢), (30)
we get for grad U the expression
grad U = —m(0a/ot)
+ 2mD?grad [V2IR + D~'a-grad R
+ D7 (0R/0t) — (a2/4D?). 31)
Let us now assume that the external force K is time
independent. Then, since a = K/B, da/ot = 0, and
Eq. (31) can be readily integrated to give
U = 2mD[DV?R + a-grad R
+ (9R/0t) — (a*/4D) + @(1)], (32)
where ¢(t) is an arbitrary differentiable function of
time only. Comparison between this equation and Eq.

(29) leads immediately to the following relationship,
namely

—0S/0t = R/t + ¢(t). 33)

This equation already yields some important results.
Indeed, if we calculate the expectation value of the
operator E, we get

(Ey = 2mDI[i(dR[3t) — (2S/dt)).
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But (£), 0R/0t, and 9S/0t are all real quantities® so
that

~(OR\ _
(OR[0t) = \at/w— 0
(Ey = —2mD(3S|ot). (35)

Comparison of Egs. (33) and (35) thus implies that
(E) = 2mDo(1), (36)

meaning that ¢(?) is a function which, multiplied by
the constant 2mD, equals the expectation value of the
total energy operator.

Equation (33) together with Eq. (30) leads also to a
relationship between R and S, namely,

R + 5 = —F() + @D)*4(),

(34)

and therefore,

(37

(38)

that is, consistently to what we assumed, the external
force is given as the gradient of some scalar function
and F is a function whose time rate of change is
proportional to the expectation value of the total
energy operator.

Returning to our problem of disclosing the nature
of U, let us substitute Eq. (36) back into Eq. (32).
This yields

(Ey—0
= —2mD[DV?R + a- grad R 4+ dR/0t — (a%/4D)].
(39)
Making use of Eqs. (3), (4), and (12) to express the

first three terms of this equation in terms of v and a,
leads immediately to the following expression:

(Ey ~ U = —2mD[(2D)(a — v)?
— divv + }diva — (a%/4D)]. (40)

If we now take the expectation value of (£) — U and
use the fact that

{divy) = —Q2v.grad R) = ~DUv-(a — v)),

where
OF[0t = @(t) and grad A(r) = a,

where use has been made of Eq. (34), we finally obtain
that

(E) = (0)
+ (3mv? — dm(v — a)2 + mD div (v — a)). (41)

This equation lends itself to the following inter-
pretation: If we define an effective potential

$er = U — 3m(v — a)2 + mD div (v — a), (42)
then the expectation value of the total energy equals

8 (E) is real because (i9/dr) is Hermitian.



672

the expectation value of the flow kinetic energy plus
the expectation value of ¢ ;. The introduction of this
effective potential is, however, somewhat artificial
because the last two terms of Eq. (33) correspond to a
kinetic energy and not to a potential energy. Indeed
from Eqgs. (24), (28), and (35) we find that

P*2m) = —2mD*(V2R + (grad R)* — (grad S)?).

Furthermore, if we use Eq. (12) together with the fact
that « = 2D to eliminate grad S and the relationship

v=a—2Dgrad R

to eliminate the R-dependent terms from the above
expression, we reach the final result that

P*2m) = dmv: — m(v — a)> + mD div (v — a)),
43)

so that the last two terms are related to the total kinetic
energy of the particle and not to a potential energy.
In this context, Eq. (41) has the conventional signifi-
cance, namely,

(Ey = p*2m) + (0. (44)

The discussion leading to Eq. (44) thus shows that
the operator U can be interpreted as the potential-
energy operator for the quantum analog of the
Brownian particle although we are not giving the set of
rules whereby one can calculate this operator explicitly
as a function of r and ¢, assuming that they exist. A
more thorough discussion of this point will be given in
a later paper.

IV. THE BROWNIAN FREE PARTICLE

In this section we would like to illustrate the results
obtained in the previous sections by applying them to
the free-particle case. By free we mean a Brownian
particle subject to no external forces.

Let us study this case starting from Schrédinger’s
equation given by

idy[0t = —DViy + Vy. 45)

For the potential ¥ we take its value obtained from
U, dividing by ma after we have set the external force,
and therefore a, equal to zero. Hence, from Eq. (28)

V = —0d8/0t + DV?R, (46)
where use has been made of the fact that from Eq. (12)
v= —2Dgrad R=2Dgrad S 47

and hence the two gradients squared are equal.
Then, Eq. (45) reads

idy|ot = — DV + (—dS/dt + DV:R)y
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and using (5) we get
OR[0t = DV2R + 2D(grad R)? (48)

which is a nonlinear partial differential equation for R.
This result has been obtained, noticing from Eq. (47)
that V2R = — V2§,

Equation (48) yields interesting conclusions regard-
ing the spatial dependence of both R and S. In fact,
since (grad R) = (grad R),, = 0 we see that R can only
be an even function in the variable r. But due to the
structure of Eq. (48) the highest exponent of 7 can be
two, so that

R=Ir+n, 49)
where / and n are only functions of time. Hence, both
V2R and V2§ are functions of time only.

From Eq. (47),

divv = —2DV?R
and hence div v is only a function of time.
These results imply that ¥ is a quadratic function
of the velocity. In fact, from Eqs. (4), (32), and (50)
we obtain that
V = ¢(t) + 2DV2R + 2D(grad R)?

and since V2R is a function of ¢ only, we can choose /
in Eq. (49) so that ¢(r) + 2DV2R = 0. Hence, using
Eq. (47),

(50

V =v*2D,

which is the assertion we wanted to prove.

Equation (51) leads us to conclude that even in the
absence of an external force acting on the particle, its
motion in the heat bath is affected by this latter one
and that the interaction is proportional to v2. Hence
V may be interpreted as a Rayleigh dissipation
function, in this simple case.

Having established Eq. (51), we could follow alter-
natively one of two roads to accomplish the solution
of Schrédinger’s equation. First, to solve directly Eq.
(48) to find R and then use Eq. (37) with 4 = O to find
S. The second alternative is to use Eq. (51) directly in
Eq. (45) and follow the same procedure leading to
Eq. (48). This yields a system of two partial differential
equations for R and S which is easily solved.

We choose to follow the first method because we
already have the structure of the solution to Eq. (48).
Also, for simplicity we consider a one-dimensional
motion. Substitution of Eq. (49) into Eq. (48) yields

= —(8D1)7,

(51

n=—%Inct
and hence,

= —x%/8Dt — }In ct. (52)
On the other hand, since 2DV2ZR = — ¢(¢), we have
that

@) = (20)7 (33)
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and therefore,

F®)=4%Inct. (54

From Egs. (52), (54), and the fact that R + S =
—F(t), we get
S = x*8Dt — }Inct. (55)

The constant ¢ appearing in Egs. (52), (54), and (55)
must be fixed through the normalization condition
which p must satisfy, namely,

+o0
f e dx = 1.

—w

Using Eq. (52) we find that

¢ = (4nD)}
and thus,
p = (47Dt exp (—x¥/4Dy). (56)

With the explicit form for the probability density p
we can now calculate all the relevant average values for
the case. Indeed, using Eq. (10) we have the well-
known Einstein relation, namely,

x% = (x%) = 2Dt. (57)
Also, from Eq. (43) and (47) we see that
(p2[2m) = mD/|2t. (58)

These last two equations provide a further interest-
ing analogy with well-known quantum-mechanical
results. Indeed, using Eq. (15) defining p we can
immediately obtain the commutator

[%, Al = xp — px = 2imD (59)
and from Egs. (57) and (58)°
((AxPX(APY*) = (x*Xp?) = 2m?D?,  (60)

which is Heisenberg’s uncertainty principle applied
to the free Brownian particle. Emphasis should be
made on the fact that these results stem out only from
the assumptions concerning the stochastic process
used to describe the problem and thus are not addi-
tional ones put into the theory itself. Also, the results
provide a correct description of the motion only for
times such that ¢ > 1, a limitation inherent in the
approximate nature of Smoluchowski’s equation.®

Finally, it is interesting to mention a possible inter-
pretation of the motion of a force-free Brownian
particle in terms of the Schrddinger-like equation
describing it. Since by Eqs. (47) and (55)

V = x[2t,
we see that the potential energy V is given by

® The first equality in Eq. (60) follows because Ap = p — m(v),
but for the free particle, (v) = 0. Also, () = 0.
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x2(8Dt?1, that is, it corresponds to a harmoniclike
motion in the spatial coordinate x but with a force
constant dying out to zero as t~2 in a way character-
istic of the system. Thus, Eq. (6) reads

idyp[dt = — DI%y[ox® + (x*/8D)y,  (61)

which of course cannot be transformed into an

“eigenvalue equation” Hy = Ey because of the time

dependence of V. The physical meaning of this fact

is that if the particle is initially in a certain state with

a given energy, due to the friction forces between it

and the heat bath it will lose energy continuously.
Notice also that

(0y = (m[4t?)(x%) = mD/2t
and
(T) = (p*2m) = mD|2t
and hence,

(U) =(T) = KE) (62)

which is the virial theorem for the free Brownian
motion.
VY. CONCLUSIONS

Throughout this paper we have shown that a
particle of mass m undergoing a Brownian motion
described in the Smoluchowski (or static) approxima-
tion may be also understood via a Schrodinger-like
equation giving a probability amplitude y whose
norm is equal to the probability density p appearing
in the corresponding stochastic equation. This picture
is valid if the flow velocity v associated with the particle
is irrotational. This restriction merely simplifies our
mathematical machinery and could be easily removed,
but no further assumptions are introduced. Under
these conditions, the following results are obtained:
(a) The usual operators which have to be introduced
explicitly into the quantum mechanics, such as the
momentum of the particle, its energy, etc., appear
here in a natural way together with their corresponding
physical significance. The usual commutation relations
for these operators also follow and are expressed in
terms of a parameter depending only on the system.
(b) To the potential-energy function appearing in
Schrédinger’s equation, an operator U may be asso-
ciated which can be interpreted as the “potential-
energy” operator arising from the external and
frictional forces acting on the particle. However, no
prescription is advanced on how to calculate this
operator in terms of the coordinates and time. (c)
The average kinetic energy of the particle is shown to
consist of the ordinary kinetic energy of flow plus an
additional term which represents the contribution



674

arising from the stochastic nature of the motion. (d)
The Hamiltonian operator H defined as the sum of
the kinetic-energy operator T plus U is such that the
conventional energy equation is satisfied, namely, the
expectation value of A equals the sum of the expecta-
tion values of Tand U. (¢) When the method is applied
to the case of a Brownian particle subject to no
external forces, explicit evaluation of the mean-square
deviation for the displacement and momentum
shows that they satisfy Heisenberg’s uncertainty
relationship in terms of a constant characteristic of the
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system. Furthermore, it is found in this case that the
expectation value of U can be interpreted as a Rayleigh
dissipative function associated with the macroscopic
flow. Thus, no eigenvalue equation for A can be
formulated.

All these conclusions are valid within the approx-
imations inherent in Smoluchowski’s equation,
namely, that we are considering the particle at times
long compared with its relaxation time. The removal of
this limitation, as mentioned in the text, shall be
dealt with in a forthcoming paper of the series.
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1. INTRODUCTION

Newman and Penrose!? have discovered a set of
new constants of the motion. In linear field theories
an infinite number of such constants of the motion
exist, while in the nonlinear theory of general relativity
only a finite number occur. An earlier attempt® to
understand the origin of these constants from the
point of view of an invariant transformation ended in
failure. That investigation started out from the assump-
tion that the field equations were derivable from a
variational principle and hence that Noether’s
theorem! connecting an invariant transformation to
a conserved quantity would be valid. The conclusion
was that the Newman-Penrose (N-P) constants, as
generators of invariant transformations, generate a
zero change in the field variables® §y 4, = 0. This does
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not give any insight into the N-P constants, except to
suggest that they are trivial from the point of view of
transformation theory. Therefore, a further effort has
been made to understand these constants without
relying explicitly on Noether’s theorem. It was hoped
that an alternate approach to invariant transforma-
tions and conservation laws would give additional
insight into these unusual constants of the motion.

The principal characteristic of physically interesting
differential conservation laws is that there exists a set
of quantities #* such that #*, p = 0 whenever a set of
field equations are satisfied, but not otherwise. For
example, Noether’s theorem results in the expression

=Sy Ji=1,, (1.1)

where 8y , is the invariant transformation and L4 = 0
are the field equations for the field variables y .
Clearly, when the field equations are satisfied, i.e.,
L4 = 0, the weak conservation law 7° , = 0 follows.

An alternate approach to obtain an expression
similar to (1.1) is suggested by Green’s theorem.
Green’s theorem may be stated generally as follows:
If L4 = 0 are the field equations to be satisfied by the
variables y 4, the adjoint system of equation L*4 = 0
for variables z 4 is defined by

2 L4(y) — y L4 (2) = C, . (1.2)
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arising from the stochastic nature of the motion. (d)
The Hamiltonian operator H defined as the sum of
the kinetic-energy operator T plus U is such that the
conventional energy equation is satisfied, namely, the
expectation value of A equals the sum of the expecta-
tion values of Tand U. (¢) When the method is applied
to the case of a Brownian particle subject to no
external forces, explicit evaluation of the mean-square
deviation for the displacement and momentum
shows that they satisfy Heisenberg’s uncertainty
relationship in terms of a constant characteristic of the

JOURNAL OF MATHEMATICAL PHYSICS

DE LA PENA-AUERBACH, BRAUN, AND GARCIA COLIN

system. Furthermore, it is found in this case that the
expectation value of U can be interpreted as a Rayleigh
dissipative function associated with the macroscopic
flow. Thus, no eigenvalue equation for A can be
formulated.

All these conclusions are valid within the approx-
imations inherent in Smoluchowski’s equation,
namely, that we are considering the particle at times
long compared with its relaxation time. The removal of
this limitation, as mentioned in the text, shall be
dealt with in a forthcoming paper of the series.

VOLUME 9, NUMBER § MAY 1968

Green’s Theorem and Invariant Transformations*

JosruA N. GOLDBERG
Physics Department, Syracuse University, Syracuse, New York

(Received 6 October 1967)

Conservation laws are derived with the use of Green’s theorem. These are studied specifically for the
wave equation. A trivial class of invariant transformations exists which maps solutions into solutions.
The mapping consists in the addition of a particular solution to all solutions. Because of the linearity of
the wave equation, this sum will again be a solution. It is shown that this class of transformations has the
Newman-Penrose constants among its generators. Calculations are carried out explicitly for the scalar

wave equation and for Maxwell’s equations.

1. INTRODUCTION

Newman and Penrose!? have discovered a set of
new constants of the motion. In linear field theories
an infinite number of such constants of the motion
exist, while in the nonlinear theory of general relativity
only a finite number occur. An earlier attempt® to
understand the origin of these constants from the
point of view of an invariant transformation ended in
failure. That investigation started out from the assump-
tion that the field equations were derivable from a
variational principle and hence that Noether’s
theorem! connecting an invariant transformation to
a conserved quantity would be valid. The conclusion
was that the Newman-Penrose (N-P) constants, as
generators of invariant transformations, generate a
zero change in the field variables® §y 4, = 0. This does

* Research supported in part by the National Science Foundation.

1 E. T. Newman and R. Penrose, Phys. Rev. Letters 15,231 (1965).

2 E. T. Newman and R. Penrose (to be published).

3 J. N. Goldberg, J. Math. Phys. 8, 2161 (1967).

4 A. Trautman, in Gravitation, L. Witten, Ed. (John Wiley & Sons,
Inc., New York, 1962).

5 In this section the field variables are denoted generally by ya,
A ranging from 1-N, the number of variables. Greek indices,
W, v, p, 0, etc. range over 0, 1, 2, 3. The signature for the Minkowski
metric is chosen to be —2. Partial differentiation will be usually
denoted by a comma as 0¢/8x, = ¢,p. Occasionally we denote
partial differentiation as 0,4 = 9¢/0r or Jp¢ = 0¢/dxP. The
context should make clear what is meant.

not give any insight into the N-P constants, except to
suggest that they are trivial from the point of view of
transformation theory. Therefore, a further effort has
been made to understand these constants without
relying explicitly on Noether’s theorem. It was hoped
that an alternate approach to invariant transforma-
tions and conservation laws would give additional
insight into these unusual constants of the motion.

The principal characteristic of physically interesting
differential conservation laws is that there exists a set
of quantities #* such that #*, p = 0 whenever a set of
field equations are satisfied, but not otherwise. For
example, Noether’s theorem results in the expression

=Sy Ji=1,, (1.1)

where 8y , is the invariant transformation and L4 = 0
are the field equations for the field variables y .
Clearly, when the field equations are satisfied, i.e.,
L4 = 0, the weak conservation law 7° , = 0 follows.

An alternate approach to obtain an expression
similar to (1.1) is suggested by Green’s theorem.
Green’s theorem may be stated generally as follows:
If L4 = 0 are the field equations to be satisfied by the
variables y 4, the adjoint system of equation L*4 = 0
for variables z 4 is defined by

2 L4(y) — y L4 (2) = C, . (1.2)



GREEN’S THEOREM AND INVARIANT TRANSFORMATIONS

Suppose z 4 can be chosen such that

yalH(2)=°,.
Then by defining

(1.3)

p def

¥=C’+ Q°, (1.4)
Eq. (1.2) is reduced to an expression of the form of
(1.1). If z , can be identified with —Jy ,, a correspond-
ence with an invariant, transformation results. For
linear equations this identification is possible only if
the system of equations L4 = 0 is self-adjoint, i.e.,
L4 = L*4, For nonlinear equations, the adjoint
equations can be defined if we allow them to depend
on the y , as well as the z ,. However, in that case the
significance is not clear.

In Sec. 2 this approach will be applied to the scalar
field as an illustration. The usual transformations
giving energy-momentum conservation will be shown
and finally a transformation giving the N-P constants
will be written down. In order to illustrate the tech-
nique applicable to spinor equations, Maxwell’s
equations are treated in Sec. 3. All of this work is
carried out in Minkowski space. Section 4 presents a
summing up together with a brief discussion of what
to expect in a curved space-time.

2. THE MASSLESS SCALAR FIELD
A. Invariant Transformations

The massless scalar field ¢(x) satisfies the linear
field equation

77,0 =0,
where the metric tensor is defined by
ds® = n,, dx* dx*
= (dx")? — (dx")* — (dx*)® — (dx*)".
Green’s theorem takes the form
Vb — Iy = (98,7 — $y.0),, . (2.2)

The scalar wave equation is clearly self-adjoint. Com-
parison with (1.2) identifies

def

C'= s’ — ¢y, (2.3)
We can divide our further consideration into two
cases:

D v, =0,
but

(2.1

¢:.pp =0= w:’.’p = 0;
(ii) 9* = 0independent of &.

This implies that an expression of the form (1.1)
results with @ = 0 even when ¢ is not a solution of
the scalar wave equation.
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Case i: Under a Lorentz transformation,
0xf = a’ + wix’, (w,, + ©,, =0),
and (24)
8p = —4,,0x°.

Let y = —J¢; then one easily finds

Y = Qs
0" & §(4,,0x),” — 34,,.70x".  (2.5)
With this choice for y, (2.2) takes the form
_5¢,’7uv¢"‘v _ tv,v; ¢ l}éf t“van + %Mvpcrw (26)

where #,¥ and M are the canonical energy-momen-
tumtensorand angular-momentum tensor, respectively,

tuv déf ¢xu¢,.v - %6;4“7]’”(#4)‘#:0 s

voo 9ef vp 0 va.p
M7 = t¥Px tv7x’.

po >

2.7)

Equations (2.4)-(2.7) show that in this manner
we have recovered the results usually obtained through
Noether’s theorem.

Case ii: Because the scalar wave equation is self-
adjoint, ¢’ = ¢ + p will be a solution of

¢ =0, (2.8)
if and only if ¢ is a solution of (2.1). Thus (2.8) rep-
resents an invariant transformation in that, solutions
are mapped into solutions while the field equations
are unchanged in form. This transformation may
appear to be trivial, but we shall see shortly that it
contains the transformations which generate the N-P
constants,

Consider the elementary solution

p(x) = D(x — x'), (2.9)

where D(x) is the free-field propagator which satisfies
the initial conditions

D()]s= = O, 2.9)

a—a" D()|ate = —(x). (2.9
X

In (2.9) D(x — x') is to be considered as a generalized
function of x while x’ is a parameter which identifies a
particular one of the set of such functions. Thus,

dd(x) = —D(x — x') (2.10)

is an invariant transformation in the sense of Case (ii).
Note that since x’ is merely a parameter

p(x) = D(x — x')f(x), @11

an arbitrary continuous function f(x’) also satisfies
the condition of being an invariant transformation of
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é(x). Similarly

w(x) =fR' D(x — x")f(x") d*x’ (2.12)

is a linear combination of such solutions and therefore
is itself an invariant change in ¢(x). In fact, this clearly
represents the most general transformation of Case (ii).
Therefore, by studying (2.10) we can hope to learn the
significance of these transformations.

B. Newman-Penrose Constants

The generator of an invariant transformation is the
constant of the motion resulting from that transforma-
tion. To determine the generator when y(x) is chosen
as in (2.9), consider a region R, bounded by two
spacelike surfaces o, and o, (Fig. 1) and let x’ lie in
g;. By application of Stokes’ integral theorem one
finds, when ¢ = 0,

fR , d% =J; t’n, do —J;t"n,, do =0, (2.13)

and where 7, is the future-pointing normal to o, and
g, . The constant of the motion

C= f t’n, do
o1
is the generator sought for. Its value can be determined
by evaluating the integral over o,:
C = ¢(x"). (2.15)

This result is precisely what we should have expected,
since from quantum field theory we know

6 = —i[(x), (x)] = D(x — x).
Clearly, choosing y(x) as in (2.11) merely gives us

C = $(x)/(x). (2.16)

The integral (2.14) is not suitable for the study of
N-P constants. In the limit of x'® — 4 c0, the support
of the integrand in Eq. (2.14) moves out to spacelike
infinity. Actually we are interested in integrals taken
in the limit of null infinity. To achieve this result, we

(2.14)

F1G. 1. The region of integration R, is bounded by two spacelike
surfaces extending out to spacelike infinity. The dotted lines indicate
the support for the generalized function of x, D(x — x').
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F1G. 2. The region of integration R, is now bounded by the null
cone and a spacelike surface 6, . The dotted lines again indicate the
support of the generalized function of x, D(x — x’).

distort o, into an outgoing null cone N. The region
R, in (2.13) is then bounded by N’ and o, as in Fig. 2.
We find

H(x") =f.N‘ [2¢,0° + ¢1° ,1D(x — x) dr), (2.17)

where /7 is the future-pointing null vector lying in N.
Now taking the limit x"®— +o0, the support of
D(x — x) on N’ moves out to null infinity.

To complete the discussion of the N-P constants, it
is convenient to introduce spherical coordinates
(r, 0, ) on N such that the equation for S, the inter-
section of the support of D(x — x’) with N, is given
by r =r'. The parameter r is an affine parameter
along the null rays: /* = dx*[dr and [? , = 2/r. Equa-
tion (2.17) then becomes (the prime is now dropped
from r')

AR I | EAFRS Sy g
H(x") —L r[ar é+ rﬂr sin0dfdé (2.18)

which can be recognized as the Kirchhoff integral
theorem.

In discussing the behavior of free fields at null
infinity Newman and Penrose assume?®

41 (ﬁf 1
¢ = z_fﬁ'{-o(r—t:z)

=0r

(2.19)

Now, as x'® — + 0, S — null infinity. Therefore, the
integral in (2.18) ~ 1/r* and

lim $(x) = 0.

However, if we had chosen p(x) as in (2.11) with
(x'92 = f(x"), we would have obtained

lim (x"®)?¢(x") = lim 4J‘ r%0,(ré) sin 6 d6 de.
2’90 roo JS
(2.20)

When this limit exists, it is the first of the N-P
constants for the massless scalar field. From (2.19)
and (2.20) we find

C= —4J‘<;S1 sin 0 d¢.
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Note that the invariant transformation is
5p(x) = —(x"°)*D(x — x),

and in the limit x’® — oo, 8¢ differs from zero only at
null infinity. At every point 8¢ = 0. This result not
only agrees with the earlier calculations,® but explains
it. The fact is that the N-P constants are surface
integrals at infinity not because they come from a
strong conservation law, but because the support of
the invariant change in ¢ is limited to a null cone, in
particular, the retrograde null cone at infinity.

To obtain the remaining N-P constants we require
generalization of the transformations allowed by (2.12).
Consider

p(x) = f(x)* 8, - 0, D(x — x'). (2.21)

We can construct (2n + 1) additional constants for
each n < [ where [ is defined by the summation in Eq.
(2.19). To obtain an infinite number of constants, the
solution would have to be analytic at null infinity.

3. ELECTRICITY AND MAGNETISM

Maxwell’s equations in empty space take the form

F.“vv =0; Fuyn= 0<:>F:“v =0,

*uy 1 uvpa — 0123 ___
F™" = }e"P°F,,, e€go= —e = 1.

(3.1)

The square brackets around indices indicates complete
antisymmetrization of the indices; €' is a tensor
constructed from the permutation symbol. Operating
on the cyclic equations with 0 and then applying the
first of Egs. (3.1), we obtain

F* # =0 (3.2)

To assure that a solution of (3.2) be a solution of (3.1),
itis necessary and sufficient that (3.1) be satisfied on an
initial spacelike hypersurface. Green’s theorem for
(3.2) now reads

PuF" Py = F¥y, Py = (9, F* P~ FPy,, 7).
(3.3)

Just as for the scalar field, there are two cases here.
The first, arising from the Lorentz transformation is
of no further interest to us now. The second follows
from the requirement

Yuy,?p = 0. G4
Choosing 6F,, = —y,, we see that y,, maps solutions
of (3.2) into other solutions of the tensor wave
equation. Thus, even if F,, was originally a solution
of Maxwell’s equations, F** — y** will, in general, not
be a solution. The transformation we are discussing,
then, is not an invariant transformation of Maxwell’s
equations, but of a somewhat more general system of
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equations, the tensor wave equation. Nonetheless, if
the more general system (3.2) possesses N-P constants,
we can also expect the more restrictive class, solutions
of (3.1), to possess them unless the restrictions are such
as to exclude them. Indeed, since the N-P constants
are known to exist for the Maxwell field, we know a
priori that the restrictions of the first-order equations
(3.1) do not exclude them entirely.

Because we are dealing with the Maxwell equations
we can understand the nature of the restrictions
imposed by the first-order equations. The more general
system of equations (3.2) not only does not require
charge conservation, and therefore may have solutions
which exhibit monopole radiation, but each component
separately behaves like a scalar field. Hence there are
six states of polarization possible which, of course,
include monopole radiation. As a result, the solutions
of (3.2) will in general have six sets of N-P constants.
Of all the solutions of (3.2), those which are solutions
of Maxwell’s equations certainly do not permit
monopole radiation (charge is conserved), but even
further, have only two transverse states of polarization.
Therefore, we expect at most two independent sets of
N-P constants.

To see this point we have to follow the argument of
the previous section. Choose

Pu(x) = 827 D(x — x'); (3.5)

860’ = 90’6’ — d2'6¢" as a function of x is to be
considered as a constant tensor of rank 2. The indices
p and ¢’ are labels which are associated with x'.
Therefore, 627" may also be considered a constant
tensor with respect to x’. This identification is rein-
forced by the primes on the relevant indices. When there
is no confusion, the primes will be dropped as on the
left-hand side of Eq. (3.6) below. We find then that

FP7(x") =fxag;ﬂ'{2m,,zﬂ + FP1P AD(x —~ x') drggy,
(3.6)

where /? is the null vector lying in the surface N as in
Eq. (2.17). Thus F*°(x’) is the generator of the
invariant transformation

0F,, =

nv _6z;GID(x - x’),

for the wave equations (3.2).

In order to reduce the integrand in (3.6) to the
independent data for solutions of the Maxwell equa-
tions, it is convenient to introduce a null tetrad and the
corresponding tetrad components of the field. Choose
I and r as in (2.18). Let n* be the corresponding null
vector lying in the retrograde null cone from x'.
Scale n? so that on S, I’n, = 1. Then define n, on N°
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by parallel transport along I: n, ,I” = 0. Introduce
two orthogonal spacelike unit vectors in §: a*a,
b*b, = a*h, — 1 = —1. Define the complex null

vectors
J2Zm* = a* + ib~. (37)
Define m* over N’ by parallel transport: m* I> =

Thus, at each point of N° we have defined a null
tetrad (/%, n*, m*, m*) with the properties

Bl — nfn = mbfm = P = nfm =
llu—nn,,—mm,,_lm,,—nm”-—o

Pn, = ~m*m, = 1. 3:8)
Next we can define the bivectors
VA = *m® — I’'m*,
M? = I'p” — I'n* — m*m® + m*m*, (3.9)

U* = n*m’ — n’rm*,
and the complex-conjugate bivectors. Since the bi-
vectors written explicitly above satisfy the relations

VI = iy,
M™ = —iM*, (3.10)
U = —iuw,
they form a basis on N’ for the expansion of
F(—)uv def %(Fuv + IF*“V)
def (3°11)

= ¢2V‘w - ¢1M“v - ¢0U”v-

Because of the linearity of all of the operations
involved, Eq. (3.6) can be rewritten for F*?, Then
using (3.11) we have

Fwo(yy = fyaz;"'{w“(zqsz,xf‘ + al)

— M Q24 0" + 0%
— U"Q2¢o,, + S0l )}D(x — X') dr¢s.
(3.12)
On N we find from Maxwell’s equations (3.1)

VE Q2o ol + $ol* ) = —2(V*"$y) . — M¥ 1",
M‘w(‘ﬁl.xlx + <ﬁll".x) = _(M}W”—«,quo).x + U,wd’olx.x'
Thus, we finally arrive at
F(‘—)pw(xr)
= [ 25U 2.+ 3B = X) ey,
(3.13)

where we have used the fact that D(x — x') is constant
on §. From (3.13) we see then that specifying one
complex function ¢, on N° (two real functions) a
solution of the homogeneous Maxwell equations is
determined. It is clear that suitable assumptions about
the asymptotic behavior of F#?(x") in the limit of
null infinity will lead to nonvanishing weighted limits
of (3.13). These limits are linear combinations of the
N-P constants.

JOSHUA GOLDBERG

To derive an explicit expression for the N-P
constants it is necessary to define a null tetrad at x’,
L*, N*, and M* which satisfy the same algebraic
conditions as /*, n*, m*, Eq. (3.8). Then defining
Bo(x'), $1(x"), and @y(x’) in terms of this tetrad as in
(3.12), we have

¢0 -LuM v

?51 =

?52 ul MuN v

X U‘w{2¢0.xlx + 3¢01K.K}D(x - x,) dT(S)'

(3.14)

one can choose the origin of polar coordinates on S
so that

LN,
Introducing once again spherical coordinates on N°,

LM,U» = — -}ﬁ._l(o, o),
2
1
LNJUP = = ., ¥,00, 9), (3.15)
2

- , 1
MquU” = : -1 Yl,l(oa ¢)’
2
where the _; Y, ,, are spin-s spherical functions®? of
spin weight —1. Then
Op = lim #5(x"°) by,

29—
= lim »* f YA sin 6 d6dp (3.16)
r> S
which agrees with the definition given by Newman and
Penrose.? The higher-order N-P constants can be
obtained in a similar manner to that outlined in Sec.
2 and indicated in Eq. (2.21).

4. DISCUSSION

The above calculations can be easily extended to
what Penrose® calls basic free fields. These are fields
which can be represented by wholly symmetric spinors
with either dotted or undotted indices, but not both.
Further, the basic free fields satisfy the first-order
field equations )

V4 &y 4pc... = 0. (4.1)
Linearized general relativity is included in these basic
free fields. The conformal tensor C,,,, can be repre-
sented by a completely symmetric rank 4 spinor:
wapop- When the Einstein equations are satisfied,
R,, = 0, the only part of the curvature tensor which
may be different from zero is the conformal tensor.
Then the linearized Bianchi identities take the form of

¢ E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).

7J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich,
and E. C. G. Sudarshan, J. Math. Phys 8, 2155 (1967).

8 R. Penrose, preprint, reproduced in P. G. Bergman’s A.R.L.
Tech. Documentary Report 63-65 (1963).
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Eq. (4.1) which may be taken to be a propagation
equation for the conformal tensor itself. Unfortu-
nately, the extension of these ideas to the nonlinear
gravitational theory has not yet been completed.
However, preliminary results indicate that the ap-
proach given here is essentially correct.

One question which naturally arises is whether one
could find an invariant transformation which maps
solutions of the first-order equations into solutions of
the first-order equations rather than into solutions
of the wave equation. This can be done by using the
Hertz potentials® to construct the fields. The Hertz
potentials always satisfy the wave equation. Therefore,
by the methods of this paper Hertz potentials may be
mapped into Hertz potentials. Fields of spin s are
related to the Hertz potentials by 2s differentiations.
These fields then satisfy the first-order equations (4.1).

The reason we have chosen not to present this
approach in the main body of the paper is that we are
interested in developing a method which may be
applicable in a space-time with curvature. While it is
true that a potential exists for Maxwell’s field, spin
1, even in a curved space-time, it is not true for any

® R. Penrose, Proc. Roy. Soc. (London) 284A, 159 (1965).
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other spin. In particular, it is not true for the gravita-
tional field. Preliminary calculations indicate that the
Green’s theorem approach to the wave equation for
the field itself does show promise of giving an explana-
tion in curved space-time as well as it does in Minkow-
ski space.

Itis fairly clear, however, that for linear equations in
flat space-time these constants of the motion are
trivial. The invariant transformation is simply the fact
that the solutions of the wave equation form a linear
vector space. Therefore, the constants are not related
to an intrinsic property of the field analogous to charge
or energy. The situation may be different in a curved
space-time or for nonlinear equations.
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Vibrational-frequency spectra are calculated analytically for certain harmonic lattice models with weak
long-range interactions, in one and two dimensions. The force constants are chosen to decay, for large
separations n, approximately as exp (—yn), where y is an inverse range parameter. In the limit of infinite
¥, standard nearest-neighbor results are recovered. In the limit of vanishing y, or infinite interaction
range, the frequency spectra have entirely different singularities. In the examples studied here, these can
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INTRODUCTION

In recent years much attention has been given to the
theoretical study of many-body systems with weak
long-range forces. For the most part, this activity
appears to be motivated not by the physical reality of
the models, but rather by interest in the mathematical
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singularities of various properties of such systems, for
example, critical points, etc.

The basis for interest in singularities is the com-
monly held feeling that the singularities of a functionare
“fingerprints” that determine the essential properties
of the function. It is hoped that precise knowledge
about the nature and location of singularities, to-
gether.with a few numerical values to fill in gaps, will
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Eq. (4.1) which may be taken to be a propagation
equation for the conformal tensor itself. Unfortu-
nately, the extension of these ideas to the nonlinear
gravitational theory has not yet been completed.
However, preliminary results indicate that the ap-
proach given here is essentially correct.

One question which naturally arises is whether one
could find an invariant transformation which maps
solutions of the first-order equations into solutions of
the first-order equations rather than into solutions
of the wave equation. This can be done by using the
Hertz potentials® to construct the fields. The Hertz
potentials always satisfy the wave equation. Therefore,
by the methods of this paper Hertz potentials may be
mapped into Hertz potentials. Fields of spin s are
related to the Hertz potentials by 2s differentiations.
These fields then satisfy the first-order equations (4.1).

The reason we have chosen not to present this
approach in the main body of the paper is that we are
interested in developing a method which may be
applicable in a space-time with curvature. While it is
true that a potential exists for Maxwell’s field, spin
1, even in a curved space-time, it is not true for any

® R. Penrose, Proc. Roy. Soc. (London) 284A, 159 (1965).
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other spin. In particular, it is not true for the gravita-
tional field. Preliminary calculations indicate that the
Green’s theorem approach to the wave equation for
the field itself does show promise of giving an explana-
tion in curved space-time as well as it does in Minkow-
ski space.

Itis fairly clear, however, that for linear equations in
flat space-time these constants of the motion are
trivial. The invariant transformation is simply the fact
that the solutions of the wave equation form a linear
vector space. Therefore, the constants are not related
to an intrinsic property of the field analogous to charge
or energy. The situation may be different in a curved
space-time or for nonlinear equations.
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specify the function sufficiently well for practical
purposes.

This may be in fact a valid point of view. It is known
to work very well, for example, in calculating the
vibrational-frequency spectrum of a harmonic lattice
with typical short-range forces.

Whether this point of view is valid with respect to
systems with weak long-range forces seems to be more
doubtful. In this article an example is presented where
knowledge of the precise nature and location of a
singularity is irrelevant and even misleading in a
practical sense. The frequency spectrum of a harmonic
lattice with interactions that are weak and have a long
but finite range is the example presented.

From the work of Van Hove! and others? it is
known that the frequency spectrum of a harmonic
lattice with interactions of finite range has certain
kinds of singularities, depending on dimensionality.
For example, in one dimension the typical singularity
is inverse square root; in two dimensions the typical
singularity is logarithmic.

In the examples to be discussed here, the singulari-
ties predicted by Van Hove’s arguments are the only
ones present in the frequency spectrum and yet the
shape of the spectrum is determined almost completely
(e.g., over many decades in the distribution function)
by a “false” singularity that the spectrum does not
possess.

MOTIVATIONS

The present investigation was suggested by several
observations and an analogy. First we make the
observations.

As is well known, a one-dimensional gas whose
molecules interact with a finite-range potential does
not undergo a phase transition, i.e., its thermodynamic
properties are analytic functions of temperature, etc.
If, however, a weak long-range interaction is added
on, and the appropriate limit to infinite range and
zero strength is taken, then in this limit the gas under-
goes a phase transition of the van der Waals type, and
the thermodynamic functions have singularities in
temperature, etc.®

A three-dimensional gas whose molecules interact
with a finite-range potential is known experimentally
to undergo a phase transition, and some analytic
properties of its thermodynamic functions are known

1L. Van Hove. Phys. Rev. 89, 1189 (1953).

2 The basic reference in this field is A. A. Maradudin, E. W.
Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the
Harmonic Approximation (Academic Press Inc., New York, 1963).
Chapter III contains a comprehensive review and bibliography
on singularities.

3 M. Kac, G. Uhlenbeck, and P. Hemmer, J. Math. Phys. 4,
216, 229 (1963); 5, 60 (1964).
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with moderate precision (e.g., its critical-point
exponents). The corresponding three-dimensional van
der Waals gas has been investigated theoretically?;
in the limit of infinite range and zero strength, the
analytic behavior of thermodynamic functions is
entirely different than observed for finite-range inter-
actions.

In this connection, attention is called to Van
Kampen’s treatment of condensation of a van der
Waals gas.> A remarkable feature of this work is that
dimensionality and the limit of infinite range are not
invoked explicitly. At first glance, the results appear
to be valid for interactions of finite range and strength
and they have the same character as those found in
the limit. Clearly this theory cannot be entirely correct,
because we know that condensation does not occur in
one dimension except in the limit. Van Kampen’s
derivation, however, is so simple and plausible that it
should be taken seriously, i.e., we should not imme-
diately jump to the conclusion that his results are
correct only in the limit of infinite range. They must
have some kind of validity even for finite range.

The observations that have just been made suggest
two conclusions. First, it is clear that thermodynamic
functions are not continuous at the limit of infinite
range and zero strength. Second, it seems likely, in
particular from Van Kampen’s work, that the behavior
found in the limit is representative in some approximate
sense of the behavior before the limit is taken.

We are led to analogous conclusions by our
investigation of the vibrational-frequency spectrum
of a harmonic lattice with weak finite long-range
interactions.

Another related observation comes from work by
Bowers and Rosenstock,® who calculated the frequency
spectrum of a two-dimensional harmonic lattice with
nearest- and next-nearest-neighbor interactions. They
found that the distribution function G(w?) of the
spectrum changes substantially as the relative strength
of next-nearest-neighbor interaction is varied. With
only nearest-neighbor interactions, the function G(w?)
has a logarithmic singularity at w? = $w?2,, . As more
and more next-nearest-neighbor interaction is added
on, the singularity remains logarithmic (as it must),
but it shifts to higher and higher frequencies. When
the nearest- and next-nearest-neighbor-interaction
strengths are equal, the logarithmic peak falls on the
upper limit w2, of the spectrum.

This example shows that striking quantitative
changes in the spectrum can be produced by increasing

4], Lebowitz and O. Penrose, J. Math. Phys. 7, 98 (1966).

5 N. Van Kampen, Phys. Rev. 135, A362 (1964).

& W. A. Bowers and H. B. Rosenstock, J. Chem. Phys. 18, 1056
(1950).
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the range of interaction. However, the qualitative (i.e.,
analytic) behavior is not changed; Van Hove's
theorem still holds.

We bypass substantial literature, reviewed by
Maradudin, Montroll, and Weiss,? concerned with
long-range interactions of ionic type; here, Van
Hove’s arguments do not apply, and all sorts of
singularities are found.

The analogy referred to earlier is concerned with
the dual role of the integral

T
f f d, dO(z — 2 cos 0, — 2cos B)L, (1)
-7
regarded as a function of the complex variable z. This
integral can be evaluated exactly in terms of elliptic
integrals. It has a logarithmic singularity at z = 4.

One place that this integral appears is in the specific
heat of a two-dimensional Ising lattice (square,
isotropic, nearest-neighbor interactions).” In this ex-
ample, z is a function of temperature; the specific
heat has a logarithmic singularity at the temperature
determined by the condition z = 4.

Another place that this integral appears is in the
frequency spectrum of a two-dimensional harmonic
lattice (square, isotropic, nearest-neighbor inter-
actions).® Here, z is a function of frequency. In conse-
quence, the distribution function G(w?) has a
logarithmic singularity at the frequency determined
by the condition z = 4.

We must, however, not take this analogy too seri-
ously. Cases are known where it is false. For example,
the distribution function G(w?) of a three-dimensional
harmonic lattice is determined by an integral having
the same structure as (1)

f f d8, dB, dBy(z — 3 cos 6, — 3 cos B, — 3 cos O,)".

2
This integral has square-root singularities, and so
does G(w?). As far as is known,® the specific heat of
the corresponding three-dimensional Ising lattice has
entirely different singularities, and cannot be ex-
pressed in terms of the same integral.

The validity of this analogy with respect to systems
with weak long-range forces in two dimensions is not
known at all.

If the analogy is good, then investigation of the
frequency spectrum of a two-dimensional lattice with

7 L. Onsager, Phys. Rev. 65, 117 (1944).

8 E. W. Montroll, J. Chem. Phys. 15, 575 (1947).

? The most recently published analysis is by G. A. Baker, Jr., and
D. S. Gaunt, Phys. Rev. 155, 545 (1967).
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weak long-range forces may shed some light on prop-
erties of the corresponding Ising lattice. Even if the
analogy is not good, such investigations still provide
examples of the practical irrelevance of theoretically
relevant singularities.

The preceding observations and analogy were
motivations for the analysis to be described now.

ONE-DIMENSIONAL MODEL

Before proceeding to the more interesting two-
dimensional model, we discuss a simple example in
one dimension which illustrates the main point.

Let u, be the displacement from equilibrium of the
nth atom. Then in the harmonic approximation the
potential energy may be written as

U=3133 A(m — nu,u,. 3)

The force-constant matrix 4(m — n) clearly depends
on only the separation |m — . It should be noted
that, for reasons of translational invariance, the force
constants must obey the condition

2 A(m) =0, C)

or

AQ) = — 3 A(m).

m#0

(5)

In the nearest-neighbor model, the only nonvanish-
ing matrix elements are A(1) = 4(—1) and 4(0) =
—2A(1).

The long-range model to be analyzed here is defined
by the special choice of force constants

A(@m) = aexp —y(Im| —1); m#0;  (6)

and A(0) is given by Eq. (5). The parameter y plays
the role of an inverse length. Note that only nearest-
neighbor interactions remain in the limit of infinite .
On the other hand, small y means that interactions
extend over many neighbors.

Weiss'® has analyzed the frequency spectrum of a
related system. The essential differences which turn
out to be of great importance, are: (1) He treats the
nearest neighbors in a different way than the distant
neighbors, and (2) his force constants alternate in sign,
while ours all have the same sign.

The dispersion relation is given by the standard
expression

)

(Throughout this article we will normalize force
constants and masses to suit our convenience. Here,
for example, we have set the mass equal to unity.)

w*(q) = X A(m) exp (igm).

10 G, H, Weiss, Bull, Res, Council Israel 7F, 165 (1958).
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In the limit of an infinitely large lattice, the sum in
Eq. (7) may be performed explicitly, leading to

cosqg — e’

w¥(q) = —2o/(1 — ) + 2 .
@ / “1 4+ e — 2¢7cos g
®)

It is easy to verify that this reduces to the usual

expression
w?¥(g) = —2a(l — cosgq) ®

in the limit of infinitely large y.
The behavior of w?(g) for small ¢ determines the
sound velocity,

W) =~ —[a(1 + )1 — eV lg" + . (10)
We choose the coefficient « so that the long-wave-
length sound velocity is unity,

a=ay)=~(1 =Pl +e7). (11
Then the dispersion relation is
1 — e )% 2(1 — cos

(1 —e”? 4271 —cosq)
The maximum allowed frequency is w,,,

w,, =2(1 — eM)/(1 + ¢7) = 2tanh (y/2). (13)
Thus the dispersion relation becomes

2(1 — cos g
w*g) = i s
1 4+ (1/wy — 3 - 2(1 — cos )

This form seems most useful for calculating.

The density of states g(w) can be found by differ-
entiation,

(14)

g(w) = dgldw. (15)

Note that in this one-dimensional calculation we use
the distribution g(w) in w, rather than the distribution
G(w?) in w? that is more customary in two and three
dimensions.

On inversion, g can be found as a function of w,

g = 2arcsin (1 + 4/0* — 4/02),  (16)
and the differentiation is elementary. The result is
g(w) = (1 — 0¥ty 1 + o¥4 — o¥ol) . 17)

In the nearest-neighbor limit, y is infinite and
,, = 2. Then (17) reproduces the standard result:
an inverse square-root singularity at the maximum
frequency.

In fact this is the only singularity possible. By a
simple rearrangement, (17) is transformed into

g(w) = _Lz_(__4_2 - 9;)-1(1 - Z)’——:)_i. (18)

4 —wp\d—w, o, m
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For any finite y, the maximum frequency w,, is always
smaller than 2, and so

4)(4 — wp) > 1. (19)
The inverse first-power singularity in the distribution

function clearly always lies outside the allowed range
of frequency

ool < 1. (20)
Nevertheless, when y is very small, and w,, is also
very small, the distribution function can be repre-

sented to a very good approximation by an inverse
three-halves power singularity,

@)= (1 — o)t ()
This approximation is good for frequencies of the
order of

0 < 0ol <1 — w?/4. (22)

Once the frequency becomes larger than the upper
limit in the inequality (22), then the inverse square-
root singularity takes over, and from then on the
distribution function is approximately

g(w) = 4w’ (1 — oty (23)

As an illustration of orders of magnitude, let us
suppose that y = 0.01. Then the approximate (21),
with the inverse three-halves power singularity, is
numerically good for the frequency domain

0 < w¥w? < 0.999, (24)

and fails only when w?|w? becomes greater than
0.999. From a practical point of view, almost all of
the spectrum is described by a “false” singularity,
lying outside the physically allowed frequency domain.

The distribution function g(w) in the limit of
vanishing y is

lim g(w) = (1 — w¥w?) L. (25)
y—0

In the limit, the inverse square-root singularity
disappears entirely. This illustrates the lack of con-
tinuity at the point y = 0 which seems to be character-
istic of systems with long-range interactions.

[It may be noticed that the maximum frequency
itself vanishes in the limit. This is a consequence of
imposing the requirement that the long-wavelength
sound velocity remain fixed as the limit is taken. By
making a different choice of the coefficient a(y), then
w,, can be kept different from zero in the limit.]

The limiting form (25) is identical with the approxi-
mation (21), which is known, for long but finite-range
interaction, to be a good approximation over a wide
range of frequency. The limiting form (25) fails to



HARMONIC LATTICES WITH LONG-RANGE INTERACTIONS

represent the correct distribution for long but finite-
range interaction only over a very small range of
frequency near the true singularity.

TWO-DIMENSIONAL MODEL

Two-dimensional models are perhaps more inter-
esting because of the possible analogy with Ising
lattice problems. However, they show essentially the
same qualitative features as the one-dimensional
model just discussed.

What little is known about G(w?) for two-dimen-
sional lattices with long-range forces is summarized
in Ref. 2. Attention has been given mainly to inter-
actions of ionic character, where the singularities are
entirely different from those found in lattices with finite
range interactions.

The procedure used to get the distribution function
g(w) in one dimension, based on Eq. (15), does not
work in two or three dimensions, and another approach
is needed. Our procedure is simply to express the
distribution function for the system of interest in
terms of the known distribution function for the
square lattice with isotropic nearest-neighbor inter-
actions. This idea has been used before, by Mazur,!
to relate properties of diatomic lattices to those of the
corresponding monatomic lattices.

Even this procedure is difficult to follow in general;
so we work backwards. That is, we guess at a dis-
persion relation, chosen so that the actual distribution
function can be related to the nearest-neighbor
distribution function, and then we verify that the
guessed dispersion relation arises from long-range
interactions. It will be seen that this inverse method
works nicely.

The starting point for our calculation is the ex-
pression

G(o) = (0l0* — (g1, g)lay  (26)

for the distribution function G(w?*. The average,
denoted by angular brackets, means an average over
all angles

1
= —— | |dq, dq,. 27
( Dav (2m)? ff q1 492 (27)
In a square lattice with isotropic nearest-neighbor
interactions, the dispersion relation is given by

®3(qy,qs) =4 —2cosq, — 2cos q,.  (28)

This particular spectrum is indicated by the subscript
zero. For convenience, we normalize units so that the

11 P, Mazur, thesis, University of Maryland, 1956 (unpublished);
see also, A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H.
Weiss, Rev. Mod. Phys. 30, 175 (1958).
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long-wavelength sound velocity is unity
0y~ qi+ g3+, (29)
The distribution function Gy(w? for this spectrum

was found by Montroll®; it can be expressed in terms
of the complete elliptic integral K(m)

Go(@?) = (1273 K[w(8 — w?)}/4]. (30)

We use the notation of Ref. 12, where the variable
m replaces the more conventional variable k, accord-
ing to m = k% This reference gives polynomial
approximations for K(m) that are quite useful for
numerical calculations.

Now let us assume that the actual dispersion
relation w?(q, , g2) can be expressed as a function F of
the nearest-neighbor frequency,

*(qy, 92) = Floi(q:, 99)]- (31)

The actual form of the function F(x) will be discussed
later. The inverse function is denoted by F~(w?)

wp(q1, 42) = F (). (32)
The derivative of F(x) is denoted by the standard
F'(x).
Next we observe that the delta function of a function
f(x) can be expressed, according to a familiar formula,
in terms of the delta function of the variable x

OLf(x) — a]l = | f"(xp)|70(x — xo),  (33)
where x, is the root of the equation
J(x%p) = a. G4

(If this equation has several roots, then we must sum
them all; but in the present instance, only one root
occurs.)

On making use of the above observation, we find
that the distribution function G(w?) can be transformed
to

O[F (@) — ©§(q1, g)Dav
|F'[F ()]
But the numerator is just the nearest-neighbor distri-

bution function G,, so that the desired distribution
function is related to the known G, by

G(w?) = G[F()IF[F (D]l  (36)

The rest of the calculation depends on specific choices
of F(x).

This function is not arbitrary. We want to choose it

so that the interaction force constants fall off asymp-
totically in the desired way, with a long but finite

G(w?) = (35)

2 Handbook of Mathematical Functions, M. Abramowitz and
I. A. Stegun, Eds. (National Bureau of Standards Applied Mathe-
matics Series AMS 55 1964), see especially pp. 590-591.
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range. Suppose that the potential energy in the har-
monic approximation is

U=1% z A(my — my, ny — ny)u(my, nyu(my, ny),
(37

where u(m, n) is the displacement (in the z direction)
of the atom whose equilibrium position is x = m,
y =n. Then the force constants are A(m; — m,,
ny — ny). The dispersion relation is given by

w2(‘h’ qs) = Z A(ny, ny) exp i(giny + gany). (38)
On Fourier inversion, the force constants are evidently

A(ny, ny)

| ,
=i ﬂdql dq,0*(qy, q5) exp —i(giny + gany).

(39

So a choice of F(x) implies a choice of A(m, n).

The force constants for large separation are deter-
mined mainly by the frequency w? for small ¢, and g5,
and in this neighborhood, Eq. (29) shows that the
variable x = w? is essentially just the square of the
vector q = (¢,,92). Then, with the corresponding
definition of the vector n = (n,, n,), we can write
approximately

A(n) = 4%,2 fdzqF(qz) exp(—iq-n).  (40)

Because only small ¢ is involved, we may replace the
correct finite limits of integration by infinity. The
integration over angles is then trivial, and leads to
a Bessel function of the magnitudes of the vectors n
and q,

e
A~ [ “daarinor@). @
27 Jo
By imposing some desired form of asymptotic decay
on the force constants 4 (n), this integral equation can
be inverted to yield F(g%).

This procedure, while feasible, leads to rather
complicated formulas. Instead of following it closely,
we combine it with other criteria for F(q%), among
which simplicity of form is important.

The actual criteria are as follows. First, we ask that
the force constants decay asymptotically as

A(n) ~ (my)*Eexp (—ny), (42)

where o is some extra parameter. This includes simple
exponential decay as the special case & = 3. Then, we
require that F(x) should approach x for sufficiently
small x, so that the long-wavelength sound velocity is
unity. A third criterion is that F(x) should become
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identical with x in the limit of infinite y; this corre-
sponds to the limit of only nearest-neighbor inter-
actions. A final criterion was that the choice should
facilitate computation of the inverse function F-* and
the derivative, so that Eq. (36) could be used con-
veniently.

By inspection of tables of integral transforms, it
appeared that the choice

F(x) = (|0l — y*/(»* + x)] (43)
would lead to useful results. It clearly fits several of
our criteria; let us check on the asymptotic form of
A(n). When (43) is substituted in (41), the integral can
be performed and the result for large » contains the
modified Bessel function X,_,,

4
A(my~ — -
2a0l(e)
If, furthermore, we put in the asymptotic form of the
modified Bessel function, we obtain for large ny the
limiting behavior

() 7K a(ny). (44

o1
2mal(e) 2771
which is in-agreement with the criterion (41).

While other choices of F(x) are no doubt possible,
the present one appears to satisfy all of the natural
requirements. In particular, it gives the nearest-
neighbor spectrum when y becomes infinite, and it
gives force constants that fall off approximately
exponentially for large separation when y is small.
The rest of our discussion is restricted to the particular
choice (43).

The maximum allowed frequency in the nearest-
neighbor case is w; = 8; so the maximum allowed
frequency in the present case is w? = F(8). For
convenience we normalize the actual frequencies as
follows:

A(n) ~ — (ny)* Y exp (—ny), (45)

z = w’lw?, (46)

and our goal is to find the function G(z). One more
bit of notation is useful:

0 =1—7"(y"+ 8"
Now we apply Eq. (36) to obtain G(z),

(47)

6() =11 = @16y oL =] (49

This formula, together with Eq. (30) for the function
Gy, solves the problem of finding the distribution
function.

It can be verified easily that G(z) approaches the
correct nearest-neighbor result in the limit of infinite y.
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F1G. 1. Logarithm (to base 10) of the distribution function G(z)
plotted against logarithm of the deviation 1 — z from the maximum
frequency.

When y is finite, the quantity Q is always less than
unity. The reduced frequency z is by definition always
less than unity. Thus the first factor in (48) cannot be
singular in the allowed frequency range. The only
possible singularity is the logarithmic one contained
in G,. This is in accord with Van Hove’s argument;
when y is finite, the range of interaction also is finite.

Now consider what happens when y is small. Then
the quantity Q is only slightly less than unity. For
most of the allowed frequency range, 1 — Qz is of
order unity, and the argument of the function G is
small, of order y2 This means that we are far from the
logarithmic singularity. The actual location of this
singularity is
, L= DG+ )T

R e CE Ry
(If y =02 and « = $§, then the singularity is at
7,22 0.994.) As long as z remains appreciably smaller
than z,, the factor G, changes only slightly, and the
distribution function is determined mainly by the
first factor in (48).

In the limit of vanishing y (or infinite range), the
distribution function approaches

(49)

lim G(z) = [(1 — z)*"/] 2,

y—0

(50)

In this limit, the singularity is not logarithmic;
it is a pole or branch point, depending on our choice
of a.
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For small but nonvanishing », the distribution
function is well approximated by its limit, provided
that z remains sufficiently smaller than z,. We see
again, as in the one-dimensional model, that most of
the frequency range is described, for practical or
numerical purposes, by a singularity that lies outside
the allowed frequency range.

Figure 1 shows graphically how good the approxi-
mation can be. This was calculated numerically for
the parameters « = § (corresponding to asymptotic
exponential decay of force constants), and y = 0.2
(or a range of the order of five lattice spacings). The
ordinate is the logarithm (to base ten) of the distri-
bution function G(z), and the abscissa is the logarithm
(to base ten) of the deviation 1 — z from unity. The
limiting curve, for y =0, would be a straight line
passing through the origin with slope 5/3. The actual
curve follows this limiting curve very closely up to the
point (5, —3), and then the effect of the true logarith-
mic singularity begins to be felt. The limiting function
(49) is a good approximation for about five decades
of G(z), or for values of z ranging from zero up to
about 0.999. If an experimenter presented data in just
this region, we would probably decide by curve fitting
that the singularity is an inverse 5/3 power, and not at
all logarithmic.

CONCLUSIONS

What can we learn from the calculations just
presented? The first point is that investigation of
mathematical singularities, in many-body systems
with weak long-range forces, can be misleading. In
particular, singularities in the physically allowed
range of variables may have very little relation to the
general shape of the functions under investigation.
Singularities outside the physically allowed region may
dominate the singularities inside that region, except
in very limited circumstances.

The second point is that results obtained in the
limit of infinite range and zero strength may be
remarkably good approximations to behavior for
finite but long range and small strength. Such approxi-
mations must fail eventually, but their failure may be
insignificant from a practical point of view.

The latter point perhaps explains Van Kampen’s
results® on the van der Waals gas. His calculations,
for interactions of long and finite range, probably
provide a good approximation to the correct equation
of state of the gas, except in a very small region near
the correct transition.
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The matrix elements of the Coulomb interactions of the configuration d*~'sp were obtained for L-S
coupling in the form of linear combinations of certain radial integrals. The method used can be extended
to the configuration /-0,

1. INTRODUCTION

The spectra of the neutral and singly ionized atoms of the iron group show a strong overlapping between the
configurations d"p and d"'sp. Furthermore, in some cases the configuration d*~2s%p is not too far away. Thus
in order to fit the experimental levels of the main odd configurations of the first and second spectra of the iron
group to theoretically predicted values, it is necessary to consider the configurations (d + 5)"p, i.e., the three
configurations d”p, d"1sp, d"~%s%p and the interactions among these configurations. The purpose of this paper
is to use the Racah algebra® in order to obtain in closed form the angular parts of the electrostatic-energy
matrix elements for the configuration 4*%sp in L-S coupling.

Theoretical results are available for all the configurations (4 + s”p in the first spectra of the iron group and
for the configurations d"p + d"~sp of Sc1I, TiIl, VII, and CuIl. The author hopes to publish these results
soon.

According to the exclusion principle, the eigenfunctions of an atomic state are antisymmetric with respect to
all electrons. An antisymmetric eigenfunction of the configuration d*sp can be written as

p(d™'sp) = [n(n + DI [p({dy ** dua}suPars) — ¥({dy " dua}SniaPs)

-1 n~1

“"‘:gl w({dy - dyadpgadiy dn——l}snpi) ““Zl w({dy - diddipy du—-l}sipr—I.)
n—1 n—1
+ glfl’({dl cordigdpggdig dn—l}sipn) +,Zl w({dy+ dy1dadigycc Ap}SniaPy)
n—1
+i g 1'!’({‘11 d;1dpdyyy " dsgdpdyg d,a}sp)) ¢y

We then consider the matrix elements

n+l
@ispl Y e ldsp) = HEED @ spl Y a4 isp, @
i<je=1

By using the expansion (1) for y(d"sp) we obtain contributions representing the d-s, p-s, d-p, and d-d

interactions, each interaction being characterized by the labeling of the electrons » and n + 1.
2. THE d-p INTERACTION

Since %(r,, .1 acts only on the electrons nand n + 1, the matrix elements with / different from j vanish. Hence
from (1) and (2) the d-p interaction is given by
(n— 1)[<{d1 “tdppt e dn}sn—lpn+1| ery ni l{dl vredy gt dn}sn—lpn-}-l)

- <{d1 n—-ﬂ dn}sn——lpﬁ—ll ezlru_n-f-l |{d1 e dn«-B e dn+1}sn—-lpn>}' (3)

Kdo- - duso** dulSnaPrin) = @7 2018115, 1 (SeL)PpsaSL)-
Expanding by means of coefficients of fractional parentage? yields
14" (3,81 L)5 p(SsL)PpiaSL) = 2 (a2 (%S4 L) (S1L1)8 n1(S2L)P 11 SL)
veSa Ly
X (d"*(v,S,Ly) dS,L, |} d" S, Ly).

1 1J, Fano and G. Racah, Irreducible Tensorial Sets (Academic Press Inc., New York, 1958), henceforth referred to as ITS.
2 G. Racah, Phys. Rev. 63, 367 (1943).

We now specify

686
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Recoupling the s,_, and d, electrons and then coupling the electrons d, and p,,., yields
A" (9,8,L1)8,—1(S2L1)Pp11SL)
= 2 [Id"_2(74S4L4)5n—1(SaL4)a d,Pn+1(SsLs), SLYS3Ly, d,Py1(S5Ls), SL I S3L,d (SoL)PnsaSL)
X (SeLySn1(S3Lyd,SsLy | S4L4dn(SlL1)5n-1SzL1><d"_2("4S4L4)d51L1 |} d"_l”151L1>]- 4
Similarly, by using also (7.11) of ITS we obtain

I{d1 crdpg dn+l}sn—lpn) = Z [|dﬂ_2(74S4L4)Sn—1(SaL4)’ Pndn+1(ssL5), SL) [exp 7i(S5 + L;)]

vaSsLy

SsSsLs
X (S3Ly, dp1Pa(Ss5Ls), SL l S3Lyd 1182y P, SLYSyLySy_1(S3Ly)d 1 S2 Ly I S4L4dn+l(lel)sn—1S2Ll>
X (d"¥(v,S,L)dS, L, |} d" 7w, S,Ly)]. 5)

A. The Direct Part of the d-p Interaction
From (3) and (4) the direct part of the d—p interaction is given by

DI (d-p)=n—D[{d " dns " dp}Sp1Ppial 32/"n,n+1 {dy dps " dp}spaPui)]
=n-1) Z [(d" (484 Le)s,1(SsLy), dnPpia(SsLs), SL| ez/ Tpmt1
vaSsL4S3SsLs
v4'Sa' L4’ Ss'Ss’Ls’
X @ (94851950 1(S3L0); dpPrsa(SsLs), SLYXS3Ly, dPria(SsLs)s SL | SyLyd(SeLy)PrsySL)
X (S3Lg, d,Ppi(SsLs), SLI S3L4d (S;L)Pri1SLY(S4Lys, 1(SsLy)d S, Ly l SyLyd(S1L1)$ 1 S2Ly)
X (SiLisno(S3Ld,S:Li | SiLid(SiL)sn 1 SsLiXd™(vSiL)dS{Ly |} d™ ' S{L))
X (d" (5, 8,Ly) {| d"*(v,SiL)dS,Ly)]. (6)
The electrostatic interaction is of course diagonal in S and L. Since the interaction is between the electrons
rnand n + 1, the quantum numbers of the first (» — 1) electrons must be the same on both sides. Thus in the
summation of (6) we must insert 6(vSyL,, v,5,L,;) and 6(S;, S;). Since the matrix element of the interaction
can be written as
(dnpn+lssL5| ez/rn,n+1 Id,,Pn+1S5/,L'5'>,
it is apparent that we must have also 6(S;L;, S;L;) in the summation of (6).
We then have

DI (dp=mn-1 SEL [(d,Ps11S5Ls| 92/ Tnnt1 | dnPni1SsLs)XSsLya, dnppya(S;Ls), SL , S3Lyd(S,L)Ps i1 SL)
Va4 L4
S38sLs

X (S3Ly, dyPnia(SsLs), SL ' SsLydn(SsL1)Pny1SLXSsLyS,1(SsLy)d,Se Ly , S4Lyd(S1L1)5p1S:Ly)
X (SqLySn1(SsLa)d,S3L1 | SqLyd(S1L1)s, 1SsLiXd™ *(v,S,Ly)dS;Ly |} d" v SiL))
X (d"(»,S,Ly) {l d""*(v,8,L,)dS,Ly). )

Since
(SaLySp1(SsLe)d,SoLy l SuLod(81L1)8,15:L,) = (S:3(Ss), 4S5 l Sa3(SD), $S20(LO(Ly2L, ' L,2(L,), OL,),
we obtain from Eqs. (11.10) and (11.12) of ITS

(S4L4s,,_1(53L4)d,,SzL1, S4Lyd,(S1L1)sp1S2L1)( Sy Ly, 1(S3Ly)d,,S;L] l SaLad (SiL)s, 1 S5Ly)

_ , R £ AN S S
= [exp 7i(2S; + S, + SDI2S; + D[(2S, + 1(2S; + DI*W 114 . ol (8)
1 S, S/ \4 S5 08
Similarly, using (11.8) of ITS yields
(SsLy, dnPpsa(SsLs), SL, SaLAdn(Sle)Pn+1SL><SaL4a d,Pn1(S5Ls), SL, S3Ld . (S;L1)Pr11SL)
= [exp mi(2S; + 25)](2S; + 1)(2L;s + DI(2S; + 1)(2S; + D(2L, + DL, + 1)]

S S,\ _ (S s;\ (L . 4
x W( 3 é 2) W( 3 % 2) W( ‘4 2 L )W(L4 2 Ll)' (9)
1 s s8/ \3 ss/ \1 L L/ \1 L L
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As S3 and S5 do not appear in the coefficients of fractional parentage and the interaction matrix element of
(7 does not depend on S;, we can sum the net spin contribution, denoted by R.C.,;;,, over S; and Sg. Then
from (8) and (9) we have

S RCoypn= 3 {lexp mi(2S + S, + SDI2S, + 1)(2S; + D25, + 1)(2S] + (S, + @S + DI

S Bl S, S S, S .
y W(% A s)W(% A 3)W(Ss 3 Sz>W(Ss 3 Sa). (10
3 S S 3+ S; S 3} S S + S S

Use of the symmetry properties of the #’s and repeated application of (11.15) of ITS yields

szs R.C.pin = 8(S;SD(S,S3). (11)
308
Also from (8) and (9), the net contribution of the L-recoupling coefficients is given by
R.C QL + DICL, + DCL + 1)]*W(L‘ 2 L‘) W‘(L‘ 2 Li) (12)
Shaty: % i M S 1 1 L Ls 1 L L5 .

From Eqs. (16.15) and (16.17) of ITS we have

, —(2 2 k
{duPn11SsLs e”/rn,mld,.pisLs)=§Rk(dp,dp)[expm(1+Ls+k)](2l IC* 1)1 IC"Ill)W(l 1 L)' (13)
5

Using (14.12) of ITS, the fact that (1 + 1 + k) in the reduced matrix element must be even, and the triangular
condition, (7.4) of ITS, for each triad of the W coefficient yields

{d,Pni1SsLs lez/ Fontl |dnPrs1SsLs) = R%(dp, dp)[exp mi(L; + 1)](15)ir

(21 L, _ iof2 1 Ls
x W {2 0 + R*(dp, dp)[exp wi(Ls + DICF)' W ) , ) (14
Inserting (11), (12), and (14) into (7) gives for the direct part of the d—p interaction
D.I. (d-p) = (n — 1)6(S,SD(S:S2) SEL: . {[exp mi(Ls + DILs + DIQL, + DQL; + DIF
VoLl
(L, 2 Ll)_(L4 2 L{)[ i _(2 1 L5) (21 L
x W w 15)¥R%dp, dp) W + CORYdp,dp) W
(1LL5 1L_L5()(pp)120(T)(Pp)122
X [d" 9,8, Ly {| d" (448 LS LY d"*(»,S4L)dSiL] |} d™{S{LD]}. (15)
Using Biedenharn’s identity (Appendix I 3 of ITS) and then (11.12) of ITS yields
D.I (d-p) = (n — 1)6(5,51)d(S:S2) SZL {R°(dp, dp)d(L,L;) + R*(dp, dp)
o ; (L L2\ (L L 2
x [exp mi(L, + L; + L, + L + DAL, + DQL; + DP*W w
2 2 L, 1 1 L
x [(d" 9, S,Ly {] d" (%S, L)dS,Ly)Xd"(v,SeLy)dSiL; |} d" v SiLD]}. (16)

Due to the normalization of the fractional parentage coefficients we finally obtain for the direct part of the
d-p interaction
DI  (d-p) = (n — DF(dP)SLLYI(S:SDH(SeS) + (n — 1) 3 {[exp mi(Ly + Ly + Ly + L + 1)]

vaSaLy
!

10[21(2L, + D(2L] 1*W(L‘ L Z)W(L‘ L 2)6(5 SD(S,SyFa(dp)
x 10[21(2L, + D(2L; + 1)] 2 2 L, i 1L 191)0(92 24P,

X (d" 9,8, Ly { |4 (9,S,L)dS, Ly Xd" (%S, L)dSiLy| } d"viSiL}, eY)

where we let®
R%(dp, dp) = F*(dp) = Fy(dp), R*(dp, dp) = F*(dp) = 35F(dp).

3 G. Racah, Phys. Rev. 62, 438 (1942).
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B. The Exchange Part of the d-p Interaction

From (3) and (5) we obtain for the exchange part of the d—p interaction
EI (d—p) = _(n - 1)[<{d1 e dn——z et dn}sn—lpwf-ll eZ/rn,n+1 '{dl oo dn—z e dﬂ+1}sn—1pn>]
=(n— 1) Z [(dﬂ'—z("’4SaL4)sn—1(S3L4)s dnpn+1(S5L5)9 SL| eg/"n,n+1
v4SsLaSsS5Ls
ve'Sua’'Ly’'Ss'Ss' Ly’
X " ¥ (v,SLy)s 1(S3L4), Pudna(SsLs), SLy[exp mi(1 + S5 + Ly)]
X <S3L4’ dnpn+l(S5L5)s SL | S3L4dn(S2L1)pn+1SL><S:;L£ ’ dn+1pn(SéLé)5 SL I S:;L;dn+l(SéL]’.)PnSL>
X (S4L48,_1(S3L,)d,S,L, ]S4L4d,,(SlL1)s,,_1SZLI)<S;L;s,,_1(S§L;)d,,+1S;L{ | SiLid, 1(SiL)s,_1SsLy)
x (d" % (v;SiL})dS,L; [} d™'vS;LiXd" ', S,L, {] d"*(»,S,L)dS,Ly). (18)
By similar reasoning, as for the direct part, we must insert into the above sum 6(v,S,Ly, v,8,L}), 6(SsL;,S ;L;),
and 6(S;, Sy).
The net effect of the spin-recoupling coefficients is the same as for the direct part. However, here we must
include exp (7iS;) in the sum over S, Also since Sj is the net spin of (n — 1) electrons and §'is the net spin of
(n + 1) electrons, (253 + 2S) must be an even integer. Thus

exp (27iS) = exp (27iSy).
Hence, as for (10), we can write
st [exp 7iS;]R.C.gpin
305
= > {[exp mi(2S, + S5 + S, + SDI(2S, + 1)(2S; + D[2S, + DS} + 1)(2S, + 1)(28; + D

S35
S, S S, S S %3 S\ _(S; 3 0S;
% W.(% 4 3) W-(% 4 3) W_( 3 2 2) W( 3 2 2)'
S S/ \3 S S 3 § S, P S S
Using (11.16) of ITS to perform the sum over Sy and then (12.12) of ITS to sum over S; yields

2. [exp 7iS;]R.Cogpin
S3Ss % S4 Sl

= [exp i(S, + S{ + Sy + SPIES; + D2S; + DES, + DES; + VPX |5, 51 3] (o)

2
S 3 S
The net contribution of the L recoupling coefficients is given by (12). Now by Egs. (16.15) and (16.17) of ITS

. — (2
uPaiaSalal /7 mia [PaduaSsLe) = 3 R¥dp, plexp miLs + KN(1] IC¥12)(21 C* |1>W(2 i Ii)

Using (14.12) of ITS, the fact that (1 + & + 2) in the reduced matrix elements must be even, and the triangu-
lar condition, (7.4) of ITS, for each triad of the W coefficient, we obtain

(dnpn+1S5L5l 92/ Ty, n+1 |Pndy11S5Ls)
. 1 13
= [exp 7i(L. + 1 2R1d,dW( ) SR¥(dp, pd) W ) 20
[exp mi(Ls )J[ @p.pd (5 | ) +ernp#(; | )] o

Inserting (12), (19), and (20) into (18) yields for the exchange part of the d—p interaction
EL @d-p=@®n-1 3 { [2R1(dp, pd)W(i i 2 ) + 2R¥(dp, pd)W(i L3 )}
5.

vaSsLaLg 1 Ly
%_L42L1_L42L{
X 2Ly + DICQL, + DL + DFW w [exp #i(S; + Si + S, + S))]
1 L L) \1 L L
i S5
X [(28, + D(2S] + D2S, + DES; + DX 85 57 4
S 1 S
X (d"*(v,S,L,)dS{L, [} d* 19 S;LiXd"™'w, S, L, {| d”‘z(v4S4L4)dS1L1)}.
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Using (12.12) of ITS to perform the sum over L; finally yields for the exchange part of the d—p interaction
EL (d-p)=(n—1) 3 {lexp mi(S; + S] + S, + SPI(2S, + (25 + DS, + D2S; + DI

veSsLy
1S, S, 1 L L /1 L L
x x|s; s ||30x{2 L L |Gdp) +105x{2 L L,|Gydp)
S 3 S, 11 2 301 2
X (d"79,8,L,{|d"(v,S,Ly)dS, L,Y{d""*(»,S,L,)dS; L{) }d"'v;SiL)}, (2D

where G,(dp) = ¥5R'(dp, pd) and Gy(dp) = +3sR3(dp, pd).}?
The net interaction d—p is then the sum of (17) and (21).
3. THE DIRECT PART OF THE s-p INTERACTION
From (1) and (2) the direct part of the s—p interaction is given by

DI (s-p)= ({d1 Tt dn—l}snpn+1| ezlrn,n+1 I{dl T dn—l}snpn+l>
= (d"_l(’ﬁSlLl)sn(Sle)Pu+1SLI 92/ Tnntt Id"_l(v{S{L{)s,,(SéL{)p,,HSL),

Since the interaction is between the electrons n and n + 1, the quantum numbers of the first (n — 1) electrons
must be the same on both sides. Hence

»S,L, = »S;L;.
Now,

DI (s-p) = (d"—1(715’1141)31;(Sle)Pn+1SLl 32/ Fo,nt1 |dn_l(‘ﬁS1L1)Sn(SéL1)Pn+1SL>

=s§ ,[<d"_1("’1$1L1), SnPn11(SsLs), SL| 92/ T nt1 Id”—l(vlsll‘l)a SaPn+1(S3Le), SL)
303

X (S1Ly, $uPn11(SsLs), SL | S1L15,(S3Ly)PpaSL)
X (S1Ly, SpPnsa(S3Ls), SL | S1L184(S2L)PpyiaSD)], (22)
where Ly necessarily equals 1.
Then from Egs. (16.15) and (16.17) of ITS we have for the matrix interaction element
(SpPns1SsLsl e Tnnt1 1SnPns1SsLa)

, . =0 0 k
= (53, S3) 2, R¥(sp, sp)lexp =i(1 + Ly + K))(0] |C* |0)(1||C*| |1)W(1 1 La)'
k

Using Eqgs. (14.12), (11.12), and the triangle condition, (7.4) of ITS, for the triad (0 0 k) of the W coefficient,

yields
<snpn+1S3L3I ezlrn,n-}-l |snp'n+1S:;L3> = RO(SPs sp)a(sas:’i)- (23)

Using the fact that S; equals Sy, we obtain from (11.8) of ITS that the net contribution of the S-recoupling

coefficients becomes

R.Cogpin = (51, 3 $(52), S | S, (SDESXS1, 3 ¥(Sa), S | 51 H(SDES)

(25, + 28)1(2S; + DI2S, + 1255 + 1) *W(S‘ ¥ Sg)W<S‘ : Sé) 24
= [exp (28, + 1285 + DI(2S, + 1(25; + D] } S S } S Sa. (24)

Then we need to sum only over Sy and using (11.15) of ITS obtain

sz R.C.opin = [exp mi(2S, + 25)18(S;, Sp) = (S, S, (25)
'S

since (25, + 2S) is an even integer.
Also from Eqgs. (11.8) and (11.12) of ITS we obtain

R.Coym. = (L1, 01(1), L | LO(LYILXL,, O1(1), L | LO(LIL) = 1. (26)
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Thus inserting (23), (25), and (26) into (22), we obtain for the direct part of the s—p interaction
D.L (s-p) = 8(%5:Ly, ¥ SiL))3(S;, SYR"(sp, ps) = 6(»S,Ly, ¥SILDI(Sz, SPFo(sp)- @7
The Exchange Part of the s—p Interaction
From (1) and (2) the exchange part of the s—p interaction is given by

EL (s-p) = —=({d," " dn}$uPusrl €[Tnnir [{d1" - dna}sniapn)
= —(d" (1 S1L1)5(SeLy)Pns1SLI €7 41 14" (71S1L1)8,11(S:L1) P SL). (28)
Coupling the s and p electrons on both sides of (28) and then using (7.11) of ITS, yields

EI (S‘P) =SZS’ ,{[CXP 7”(1 - S3 - L3)]<snpnii-ls3L3l ezlrn,'n-H Ipnsn+ls:;L3)
303

X (S1Ly, $uPr1(SsLs), SL l 8,Ly5,(SeLy)ppiaSL)
X (S1L1, Sp11P(S3Ls), SLI 8,Ly8,41(S2Ly)p,SL)}. (29)
Using Eqs. (16.15) and (16.17) of ITS, we obtain

(SnPps15sLsl e/ Tunt1 | PaSni1Ssla)
01 k

= 8(S5,53) % R¥(sp, ps)lexp =i(1 + k)0 IC*| [1)(1] |C| IO)W(O 1 1)' (30)

By the triangle rule, (7.4) of ITS, for the triad (0 k 1) of the W coefficient, k can only have the value 1 and thus

($nPrns1SaLal €°/7n,ni1 |PuSniaSsLe) = 8(SeSIIRY(sP, ps)/3]. €)Y
Since S is a whole number and L, equals 1,
exp mi(1 — Sy — Ly) = exp #iS;.
The net contribution of the S-recoupling coefficients is the same as for the direct part and hence is given

by (24).
Then since (2S; + 285) is an even integer, we have from (24)

. , | , S. b S\ _/[S } S
g, [exp miSs]R.C.opn = sz, [exp 7iS;)(2S; + D[(2S: + (2S5 + 1)]W< L s S:) W( ; . S:)

, , o a S S,
= [exp mi(S; + SII(2S; + D(2S: + DI*W s 3 sy (32)
2
using (11.16) of ITS for the sum over S;.
Inserting (26) for the net contribution of the L-coupling coefficients (31) and (32) into (29), we finally obtain

S, 1 S\ R
EL (s-p) = [exp wi(sz+s;)1[(2sz+1)(2sg+1)1*W< 3 i S)R—(%—Pi) (33)

Then the net interaction s—p, T.I. (s—p), is obtained by adding (27) and (33),
T.I. (s-p) = d(»S:L,, nS1Ly)

S S
X |Fo(sp)8(Ss, S9) + [exp mi(S, + SIS, + 1)(28; + 1)J*W( S‘ i ST)G,,.], (34)
2
where* G,, = [R'(sp, ps)/3].
4. THE d-s INTERACTION

Although the d—s interaction can be obtained in the same fashion as the d-p and s—p interactions, it is much
simpler to use the Dirac vector model.

* E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, England, 1935), Chap. VII.
5 P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, England, 1947), Chap, XI.
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By Eqgs. (16.22) and (16.23) of ITS, the direct interaction for the electrons d and s is given by R%(ds, ds).

Hence the direct part of the interaction d-s for the configuration d"~1sp is given by
D.I. (d-s) = (n — 1)R%(ds, ds) = (n — 1)F°(ds) = (n — 1)Fy(ds). (35)

From Eqgs. (16.22), (16.23), and (16.24) of ITS, the exchange interaction between the two electrons 4 and s

is given by
—3[1 + 45, 5,)[R*(ds, sd)[5] = —3}[1 + 454 ° 5,)Gass
where?
Gas = [R*(ds, 5d)/5].

Hence for (n — 1) electrons d, the d-s interaction will be given by

EL (d-5) = —¥(n — 1)G,;, — #[4(sq, + * -+ + 54,_) " $:]Gas = —3[n — 1 + 45, - 5,]G,,
= —4[n — 1 4+ 258, + 1) — 28(S; + 1) — 31G4,0(»,S1Ly , % S1LDE(S:, S2), (36)
where as usual
(@ 'sp| = (@ (1S, L)s(S:LYpSL|, |d"'sp) = |d"(»;S;Ly)s(S;L1)pSL).
Then the net interaction d-s, T.I. (d-s), is obtained by adding (35) and (36),

T.I. (d—s) = (5(1’1‘511.1, ‘V{S{L{)é(sg, Sé)
| X {(n — DFy(ds) — [n — 1 + 284S, + 1) — 25(5: + 1) — §1Gy.}. (37)

5. d-d INTERACTION

The d-d interaction of the configuration d*~1sp is the same as the d—d interaction of the configuration d"-1,
and hence given by the well-known results of Racah.?

Finally, it should be noted that starting from (1) and replacing d by /, s by I’ and p by /", one can obtain the
Coulomb interactions for the configuration /*~/'l". The latter results are naturally more cumbersome since no
explicit use is made of the fact that one electron has zero angular momentum.
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We prove that for arbitrary completely continuous operators 4, , 4,,
, Pn With 21?—1 Pt = 1, the inequalities,

Pl»Pﬁy“‘

-+, A, and for positive numbers

ITr (4; Ay -+ - 4] < TT (Tr (4] dtoeps?

k=1

n
ITr exp (4, + 4y + -+ + A)| < T [Tr exp pa(a] + a0}
k=1

hold. Further if a,;, a,, * *

-, a,, are the annihilation operators of an N-dimensional harmonic oscillator,

m and n are any positive integers, and p is a nonnegative definite operator, we prove the inequality

m n
ITr (pa], - -~ af @y, -~ a; )| < T (Tx p(al, ai)mp/m T [T pla], a2
k=1 =1

Some consequences of these inequalities, related results, and some applications to correlation functions

of the quantized electromagnetic field are discussed.

1. INTRODUCTION

It is well known that for any two arbitrary operators
A and B, an inequality analogous to the Cauchy-
Schwarz inequality holds, i.e., that

ITr (4B)|2 < Tr (414) Tr (B'B), (1.1

where dagger denotes Hermitian adjoint operation.
This result has recently been generalized by Thomp-
son! for Hermitian, nonnegative definite operators,
and an inequality analogous to Holder inequality has
been proved. Thus if 4 and B are Hermitian, non-
negative definite operators, then one has

Tr (4B) < [Tr A®]V/?[Tr BY)!/s, (1.2)

where p and g are positive numbersand p=! 4 g7 = 1.
The proof given in Ref. 1 does not state conditions
under which the relation (1.2) reduces to an equality.
However, it can readily be deduced from the dis-
cussion given there that this happens if and only if
A? is a constant multiple of B2

In this paper we establish a number of inequalities
which are analogous to, and may be considered as,
generalizations of (1.2). Throughout this paper it is
understood that the operators 4, B, etc. belong to a
class such that the traces appearing in (1.1), (1.2), and

* Research supported in part by the U.S. Army Research Office
(Durham).

t Some of the research reported in this paper was carried out
during the author’s stay as Visiting Professor of Physics at Université
Laval, Québec 10, Canada.

1 C. J. Thompson, J. Math. Phys. 6, 1812 (1965). The inequality
(1.2) is proved in this reference for the case when 4 and B are
n X n positive-definite Hermitian matrices. The same proof is valid
even in the case when 4 and B are any Hermitian, nonnegative-
definite completely continuous operators in a Hilbert space.

elsewhere in this paper are all well defined. Our results
are summarized in the following theorems.

Theorem I: Let Ay, Ay, -+, A, beasetof n (> 1)
completely continuous operators in a Hilbert space
and let p;, p,, - - -, p, be positive numbers with

prHpt =1
Then

ITr (Aydy - A,)] < H [Tr (ALY, (13)

where positive roots are to be taken of the operators
AlA, on the right-hand side.

TheoremII:Let A;, Ay, -, A and p;, p,, - -
be as defined in Theorem I. Then

| Tr exp (414 -+ 4,)]

"3 Pn

< ,H [Tr exp {3pu(AL + 4} (1.4)

Theorem III: Consider a harmonic oscillator with
N degrees of freedom. Let a;,a,, -, ay be the
annihilation operators and af,a,---,al, be the
creation operators; they satisfy the commutation
relations

[a;; a;] =0, (1.5a)

[a;; af] = 8. (1.5b)

Further let p be a Hermitian nonnegative-definite
operator. Then for arbitrary positive integral values
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of m and n the inequality

+
Tr (pal, - ala;, 0,

< k]:iIl [Tr {P(a\;*aik)m}]l/zmg [Tr {P(“;;ah)”}]l/z"
(1.6)

holds. Here each of the indices iy, * , i, /15" s jn
may take on any of the values 1,2, - -+, N. Equality
in (1.6) holds either as a trivial identity (0 = 0) or
only whenm = n = 1 and i; = ;.

In Sec. 2 we prove Theorems I and II and also dis-
cuss a generalization of (1.2). Theorem III is proved
in Sec. 3. A conjecture stating that an inequality of
the form (1.6) also holds for arbitrary linear com-
binations of the annihilation operators is proposed
and is proved in a special case. Some other related
inequalities and their application to coherence func-
tions of the quantized electromagnetic field are
briefly discussed in Sec. 4.

2. PROOF OF THEOREMS I AND I

To prove Theorem I, we make use of a result due to
Fan?: Let A;,A4,,---,4, be a set of n (> 1)

completely continuous operators in a Hilbert space-

J. For each k(1 < k < n), let of¥, «f¥ -+ be the
eigenvalues of the operator AlA4, arranged in a
nonincreasing order. Then, for any positive integer
N,

N
z<x;~i AAy - Ay lxp

gl

S (1) () tmyh
<3t ol
(2.1)
where |x,),i=1, 2, -+, N are orthonormal vectors
in J€.
Using Holder inequality® for positive numbers in
(2.1) we can write
N n N (o -
> el e Ay lx) S TT[ S [ @2)
i=1 k=1 | i=
where p,,ps,-*-,p, are positive numbers and
If we now extend the summation over i in (2.2) to

include all the eigenvalues of the operators 4f4,, we
obtain the inequality expressed by Theorem I,

Tt (Aydy -+ - 4] < I;I [Tr (LA (23)

It may be noted that when Ay, Agy -0, A,
are Hermitian nonnegative-definite operators, the

2 K, Fan, Proc. Natl. Acad. Sci. U.S., 37, 760 (1951) [cf. Eq. (H)].
Author wishes to thank Professor G. S. Mudholkar and the referee
for bringing this paper to his notice. This made possible the gener-
alization of Theorem 1 in the present form. B

3 See for example, E. F, Beckenbach and R. Bellman, Inequalities
(Springer-Verlag, Berlin, 1961), p. 20.
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inequality (2.3) reduces to
ITr 44y - - 4,)| < H [Tr (4”17, 249

and thus it is a generalization of (1.2). Relation (2.4)
reduces to an equality if and only if either all the
operators A7, A%, - - -, 4% differ from one another
by constant multiplication factors, or one of the
operators is identically zero.

We prove Theorem II first in the case when
Ay, Ay, - -+, A, are Hermitian operators. In this case
the proof is based on the inequality (1.2) and the
relation?

Tr [exp (4 + B)] < Tr [e4€F], 2.5)

which holds for arbitrary Hermitian operators 4 and
B,
From (2.5) and (1.2) we obtain

Tr{exp [4; + Ao + -~ + A,]}
STrlet exp(dy + Ay + -+ + 4,)]
< [Tr emAx}m"
X [Tr{expoa(dy + As + -+ + A, (2.6)
where p, and o are positive numbers with p7* + « =

1. A repeated use of (2.5) and (1.2) in this manner
gives the required result

Tr [exp (4, + Az + - + A)]
< T1 [Trexp 2

k=1

It may be noted that the equality in (2.7) holds if
and only if the difference between any two of the
operators py1A, , pyA,, * ** , P4, s a constant multiple
of the identity operator.

Next we consider the general case when 4,,
Ay, -+, A, are arbitrary completely continuum oper-
ators, In this case we make use of another result due
to Fan®: Let 4 be a completely continuous operator
in J¢ and let the eigenvalue 4; and p; of A4 and
3(4" + A), respectively, be so arranged that

RIL2RA 2y p2pe2pa s

where R denotes the real part. Then, for any positive
integer N,

2.7

N N
2 R < EIPi , (2.8)
i=1 i=

Equality in (2.8) holds if and only if 4 is a2 normal

operator, .

From (2.8), it follows that

exp [gﬁi:\ ‘ =z eXp {g.‘ﬁ}.i] < exp l:g:lpi], 2.9)

4 See for example, S. Golden, Phys. Rev. 137, Bl 127 (1965); C. J.

Thompson, Ref. 1. ] ]
5 K. Fan, Proc. Natl. Acad. Sci. U.S. 36, 31 (1950) {cf. inequality

(12)).




SOME INEQUALITIES INVOLVING TRACES OF OPERATORS

and hence on extending the summation over i to in-
clude all the eigenvalues of A, we obtain

|Tr e4] < Trexp [HA' + A)]. (2.10)

On setting A =A4; + 4, + -+ + 4, in (2.10), it
follows that

|Tr [exp (4; + Az + - -+ + A4,)]]
< Tr [exp {3(A] + A) + 3(4] + A9 + -+~
+ 34l + 4. (2.11)

Theorem II [inequality (1.4)] now follows from (2.7)
and (2.11).

We now wish to make a few remarks concerning
the inequality (1.2):

If p is a Hermitian nonnegative-definite operator,
which for convenience is normaled® so that Tr p = 1,
then for arbitrary operators A and B [cf. (1.1)],

ITr (pAB)[? < Tr (pA'4) Tr (pB'B). (2.12)

A generalization of (2.12) analogous to (1.2), namely
the inequality

Tr (pAB) < [Tr pA?JV?[Tr pBYJe  (2.13)

also holds whenever p, 4, B are Hermitian nonnega-
tive definite, and p commutes with both 4 and B.
Here p and g are positive numbers withp=! + g1 = 1.
Inequality (2.13) follows by replacing 4 and Bin (1.2)
by p'/?4 and p/?B, respectively. In a similar manner
one can show that if p commutes with all the operators
Ay, -+, A,, of Theorem I, then

ITe(pAy - )] < TI [Tr (4l (2.14)
where p;, + -+, p, are positive numbers with
PI1+.”+P;1=1'

It should be noted that if p does not commute with
both 4 and B then (2.13) is in general not true.
[Similarly (2.14) is not true in general.] A counter
example is provided by

p==(1 0)’ A=(1 2), B=(2 l)’
0 0 25 1 2

p=% (2.15)

Here Tr (pAB) = 4, whereas [Tr pAY¥[Tr pB2t =
63t < 4.

Another situation where the inequality similar to
(2.13) and in fact similar to the more general result
(2.14) holds is discussed in Sec. 3 [cf. (3.1)].

q=3.

¢ p, for example, may be taken to be the density operator describing
the statistical state of a quantum mechanical system. Then Tr (p0)
is the expectation value of the operator O in the state described by
the density operator p.
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3. PROOF OF THEOREM I AND SOME
RELATED RESULTS

In order to prove Theorem III, we first observe
that it is sufficient to prove the inequality

Trlpal, - alay - a,] < H [Tr {p(al,a,)"} 1"
(3.1)

Here / is an arbitrary positive integer and p, {a;},
{al} (i=1,2,---,N) are those as described in
Theorem III (Sec. 1).

To see that (3.1) implies (1.6), we make use of the
Schwarz inequality (2.12) and obtain
|Tr [pazx e a"l:majl T ain]lz

< Trlpaj, " af,a;," * a;]
x Trlpaj, -~ aj,a;, "+ azl. (3.2)
From (3.1), (1.5a), and (3.2) we obtain the required
result (1.6).

We now proceed to prove the inequality (3.1). Let
us suppose that in the expression a; a,, - - a; the
operator a; occurs k, times, a, occurs k, times etc.,
so that ky, k,, -+, ky are all nonnegative integers
and

ki+ko+-+k,=1 3.3)

Using the commutation relations (1.5), we can then
write

t t t t
a;,ag;,cc ay = (aMaf) - - - (ayray). (3.4)

Further, if a denotes any of the operators a,, - * * , ay,
we have the relation

at*a* =a'a(@'a— 1) - (@a—k+ 1), 3.5

which can easily be established by the method of
induction, and use of the relation [a, a'l=1. On
substituting (3.5) in (3.4), we obtain the relation

tooata ..
Qg "t G584, " " Gy

N
= [T ajaala; — 1) (@ia; — k; + 1) (36)
1

Next we represent the density operator p in the
number representation

P =2 2 Pmpimy {nX{m;}, 3.7
{ns} {ms}
where
N
I{n,}) = H n,), (3.8)

and |n;) are the orthonormalized eigenstates of the
operator ala,:

ala,|n) = ny|n,), (3.9
(ny| my) = 8, ms. (3.10)
The summations on the right-hand side of (3.7) runs



696

over all nonnegative integral values of n,, - -
my, e, my.

From Egs. (3.6)-(3.10) we obtain the following
expression for the. left-hand side of (3.1):

s Ny,

t T
Tl' [Pah e a‘laij, e ai;]

N
= {Z} [P(m),(m} }_Il nn; —1)---(n; — k; + 1)]-
ny o
(3.11)

Since the product nyn, — 1)+ (n, —k;+ 1) is
always nonnegative, it is less than or equal to n¥
(equality holding only if either n, =0 or k; = 1).
Also since p is a nonnegative-definite operator, the
diagonal elements p,; (., are all nonnegative num-

bers. We can therefore write

Tr [paz1 e ait;ai; e an] S{"Z}P(n,},(n,}nllclngat' . nﬁv
1 (3.12)
N K3/t
H{ D Ping,(ngs } .
i=1\{ns}
(3.13)

In going from (3.12) to (3.13) we have used the Holder
inequality for positive numbers.? Simultaneous equali-
ties in (3.12) and (3.13) hold only either as trivial
identities (0 = 0), or in the case when / = 1.

Finally, it is easy to verify that the right-hand side
of (3.1) is identical to that of (3.13). Inequality (3.1)
and hence also Theorem III is thus proved.

It is of interest to note a few related inequalities.
Using the commutation relations (1.5) and the
representation (3.7) of the operator p, one can easily
show that for arbitrary positive integral values of /,

Tr [PaL' ) ;r; l au] S Tr [Pail * l; 11 aﬁ]
(3.19)
Further, if b is any linear combination of a,
02, trty, aN, i.e., if
N
b=>aa,, (3.15)
i=1

where «, are arbitrary complex numbers, we show
below that the following inequalities hold:

Tr [pb'0*] < Tr [p(b'5)"] < Tr [p(bb")!]
< Tr [pb'b1]. (3.16)

Here [/ is an arbitrary positive integer, and p, as
before, is a Hermitian nonnegative-definite operator.
From Egs. (1.5b) and (3.15) we obtain the relation

[b,b]=4= 2 le, 12> 0. (3.17)

C. L. MEHTA

From Eq. (3.17) we find that the eigenvalues of the
operator b'b are 0, 4, 24, - - -, and that the relations

bt = btb(bto — A) -+ - (bTb — 14 + 2), (3.18)
bbt = bbt(bbt + A) - - - (b + 1A — 1), (3.19)
= (b6 + Db + 22)- - (b6 + 12), (3.20)

hold. Relations (3.18)-(3.20) can easily be established
by induction. If we now represent p in the basis
formed by the orthonormalized eigenstates of the
operator b'b and also make use of (3.18) and the fact
that 4 is a positive number, we obtain

Tr(pb''b) = z_lp,,z‘n(n —Dr(n=141)

< 3 palin)' = Tr [p('b)'

Here p, > 0 is the sum of all the diagonal matrix
elements of p in the states which are eigenstate of
b'h, with eigenvalue ni. (Note that each of the
eigenvalues of b's is N-fold degenerate.) Other in-
equalities in (3.16) follow in a similar manner from
(3.19) and (3.20).

We now propose the following.

(3.21)

Conjecture: Let by, by, -+, b, be M linearly-
independent linear combinations of the annihilation
operators a,, s, * * * , ay, i.¢., let

N
bi = Z Tuaa
5=1

where T;; are some arbitrary complex numbers. Then
inequalities of the form (1.6) and (3.14) also hold for
the b operators:

T (pb}, - bbby < H [Tr {p(bbs) T

i=12--,M, M<N, (322

X E [Tr {p(b}b, )"}, (3.23)

. b:,.bil “+b;.)
< Tr(pb,, -+ by bl -+ bl). (3.24)
In Eq. (3.23), it is again sufficient to consider only the
case when m =nand i, =i, la=jp, ", iy = Jm-
We prove Eq. (3.23) below in a special case when the

transformation matrix T is such that 77" is diagonal,
i.e., when

(TTh, = Ady; i,j=1,2,-++, M (325

(A; are nonnegative numbers). Proof of (3.24) in this
special case is similar.

Let us introduce a set of operators ¢, ¢,,
defined by

c; = A‘,."}b,. (no summation over i). (3.26)

Tr (pb},

.,CM’
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From (1.5), (3.22), (3.25), and (3.26) it follows that
these operators satisfy the commutation relations

[e;, ;1 =0, (3.27a)
[e;, ¢]1 = 8,;. (3.27b)
These relations are identical to those satisfied by the
a operators [Eqgs. (1.5)]. If we employ an argument

similar to that used in proving Theorem III, we find
that

Tr (Pc;rl Tt clmcjl T cjn)l

< ﬁ [Tr {P(C;rkcu i zl:_{ [T {p(c;,cj,)"}]lm'
= (3.28)

On substituting for ¢,’s from (3.26) in (3.28), we obtain
the required result (3.23).

4. SOME APPLICATIONS TO CORRELATION
FUNCTIONS OF THE QUANTIZED ELECTRO-
MAGNETIC FIELD

The inequalities stated in Sec. 3 find applications in
the coherence theory of the electromagnetic field. If
A(x) denotes the operator corresponding to the field
variable (e.g., a typical Cartesian component of either
the electric field, the magnetic field, or the vector
potential operator) at the space-time point x =, ¢
of quantized electromagnetic field, we can write

A(x) = AP (x) + A(x), 4.1)

AP x) = {AD =S u,(x)a,, (4.2)
u,(x) are the mode expansion functions and a, are the
corresponding annihilation operators, with

where

01,01 =0, [a;,a}] =8y (43)
It is now obvious from (3.16) that for an arbitrary
nonnegative integer n, the relations

(H{AP @A X)) < AP ERAP X))

< AP XA ()
<UD AP @) (44)
hold. Here : : denotes the normal ordering operation,
“  denotes the antinormal ordering operation, and
the sharp brackets denote the quantum expectation
values, i.e., if the statistical state of the field is de-
scribed by the density operator p, then (9) = Tr p0.
If the conjecture stated above [inequalities (3.23)
and (3.24)] is true, we have in addition the following
inequalities” valid for arbitrary space-time points
Xys "y X,y X5, X, and for arbitrary positive

n?’

7 The possible validity of the inequality (3.23) has also been
suggested in a different paper: C. L. Mehta, J. Math. Phys. 8, 1798
(1967), inequality (4.29). The inequality (4.30) of this reference stated
as a conjecture is now obviously true as can be seen from the
discussion given in the present paper [cf. inequalities (4.4) above].
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integral values of m and n:
(AT - - - AP ) AT(x]) - - - APx))]

< TT (AP C)AP e em

x TT AAGHADEDY,  (4.5)

=1

(A“’(xl) . A“)(xm)A‘+’(x1) ‘e A('H(xm))

< (A(+)(x1)'. . A‘+’(xm)A“)(x1) RN A‘—’(xm)).
4.6)

It is to be noted that

(A (xy) « - - AP (e, ) AP (x) - -+ AP (L))

is the (m, n)th-order coherence function,® and
({49 (D)AD ), {42 (AP ()}, and ({4
(x)AP(x)}™) are, respectively, proportional to the nth
normally ordered correlation of the intensity, nth
moment of the intensity, and nth antinormally ordered
correlation of the intensity at the space-time point x.°

We conclude this paper by stating two more in-
equalities, which in slightly different forms, have been
proved elsewhere.!

Let b, b,, *+,by be M linearly independent
linear combinations of a,, a,," -+, ay as in (3.22),
and let p be aHermitian nonnegative-definite operator.
Then the inequality

|Tr (pby, - - - by, bl - -+ b))
<TIITr ;cpb:zbi,:"}l”m

x TT [Tr {pbb]"}12 4.7
1=1

holds.

Let us express the operator p in a diagonal coherent
state representation'!

p= f $({o}) 1 {0} (v} (o). 4.)

If the functional ¢({v}) is nonnegative and well
behaved everywhere, then the inequality

ITr (pb), - -+ bl b, -+ b))l
<TITr {pb]mbr}em
x TT [Tr {pb?b7 312  (4.9)
also holds. =1
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The stability of a system of charged point particles is proved under the assumption that all negatively
charged particles are fermions. A lower bound on the energy is found to be —Ag¥Nme*h—2, where q
is the number of distinct negative species, N the total number of negative particles, 7 an upper bound for
their mass, e an upper bound for the absolute value of the charge on both negative and positive particles,

and A is a numerical constant.

1. INTRODUCTION

In a previous paper! we presented an analysis of the
stability problem of matter, a problem posed by
Fisher and Ruelle.? The mathematical model for
“matter” is a system of point particles, finite in
number, obeying the laws of nonrelativistic quantum
mechanics, and interacting with each other solely by
electrostatic (Coulomb) forces. We use the word
“stability” to mean that there exists a lower bound for
the energy per particle which is independent of the
state of the system and of its size. In I we proved
stability under the hypothesis that all particles, both
positive and negative, are fermions belonging to
some fixed number of different species, and that all
masses, as well as all charges, have common bounds.
Under these conditions we found?

E> —AqtNRy, (1.1)

Ry = met/2}2. (1.2)

Here E is the energy, N the total number of particles,
q the number of species, m the upper bound on the
masses, e the upper bound on the absolute value of the
charges, and 4 is a numerical constant. We have also
stated* but not proved that (1.1) holds under much
weaker assumptions. In the present paper we give
the detailed proof of this theorem.

The hypotheses we adopt are as follows:

(a) All negatively charged particles are fermions.
Their total number is N, and they belong to no more
than ¢ distinct species. Their masses do not exceed m,
and their charges do not exceed e in absolute value.

with

* This research was done at the Institute for Advanced Study,
Princeton, New Jersey, and was supported by a National Science
Foundation grant.

1 F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423 (1967).
We shall refer to this paper as 1.

* M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966).

* Theorem 4.

¢ Theorem 5.

(b) The number and kind of positively charged
particles is arbitrary. They may be bosons or fer-
mions, or they may all belong to different species.
Their masses, too, are arbitrary. However, their
charges are bounded from above by e.?

Theorem 5 asserts that under hypotheses (a) and
(b) the inequality (1.1) still holds.

Our hypotheses are just those which apply to
physics. The assumption that there be no bosons
with both signs of charge is essential. That a system
with an indefinitely large number of positive and
negative bosons is unstable was recently shown by
one of us.®

Unfortunately, our proof of Theorem 5 is lengthy
and complicated. It is constructive in the sense that
not only is the existence of the constant 4 in (1.1)
shown, but a definite numerical value for it is obtained.
Nevertheless, the result is scarcely better than an
existence theorem because we find 4 = 1.3 x 104,
whereas it is clear from physics that a good value
must be of the order of unity. This lack of precision is
inherent in our method, which depends on successive
use of many inequalities. Each of these is relatively
good by itself, yet their total effect is to build up large
constants by repeatedly multiplying small ones. We
have not been careful to find the best 4 allowed by
our machinery, since in any case, the result would
remain absurdly large. It is likely that any significant
improvement will come from a stability proof which,
at least in part, depends on new ideas.

Another outstanding unsolved problem is the one
posed by Fisher and Ruelle,? namely to prove the
existence of thermodynamic quantities for the Cou-
lomb system in the usual bulk limit of statistical
mechanics. It is a simple consequence of our Theorem

5 We depart from conventional notation in that e is not the
‘‘electronic charge” but the ‘“‘maximum nuclear charge.”
% F. J. Dyson, J. Math. Phys. 8, 1538 (1967).
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5 that the free energy Fy(v, T) of a system of N point
charges in a volume Nv at temperature T satisfies an
inequality

Fy(v, T)> —Nf(v, T), (1.3

where f is indegcndént of N. This is a necessary but
not sufficient®@ condition for the existence of

lim [Fy(v, T)/N} as N— .

2. THE PLAN OF ATTACK

In Theorem § of Paper I we have a result which
almost solves the stability problem. Theorem 9 states
that a system of negative fermions in an arbitrary
continuous distribution of classical charge, with the
self-energy of the classical charge included in the total
energy, is stable. We want to prove that the fermions
remain stable in an arbitrary distribution of positive
classical point charges, with the mutual interactions
of the positive charges included, but with their
individual self-energies excluded. Our whole task
consists in sharpening Theorem 9 so as to deal with
this apparently trivial detail of the positive particle
self-energies. Unfortunately, we have not found a
way to sharpen the theorem directly for a many-
fermion system.

Our plan of attack is based on the fact that we
succeeded in sharpening Theorem 9 only for one
negative particle at a time. We are consequently driven
to an elaborate and unphysical scheme of chopping up
our space into cells, each containing one negative
particle (cf. Sec. 4). We then prove a sharpened form
of Theorem 9 for each cell separately, with its one
negative and an arbitrary number of positive particles
[Eq. (5.29)]. Finally, we reassemble the fragments and
show that stability in the individual cells implies
stability for the whole space (cf. Sec. §).

To make this complicated argument clearer, we
carry it through in this section for the case in which
there is only one negative particle in the whole space.
In this case there is no need to chop the space into
cells, and still the argument is not quite trivial. The
results of this section will not be used in the main
argument which follows, but they may have some
independent interest.

When there is only one negative particle, Theorem
9 may be stated as follows (the numbering of theorems
and lemmas runs consecutively from Paper I).

@ pr. Robert B. Griffiths (private communication) has shown that

Eq. (1.3) implies the existence of the thermodynamic limit in the case
when the positive and negative charges are antiparticies of each
other. His argument makes essential use of charge-conjugation
symmetry and does not work for matter composed of nuclej and
electrons.
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Theorem 10: Let a single nonrelativistic quantum-
mechanical particle with mass 27 and charge (—e¢) be
placed in an arbitrary classical electrostatic potential.
Then the total energy E, including the self-energy of
the classical charge distribution, satisfies the inequality

E > ~}Ry = —(me'[8h%). (2.1)

To prove Theorem 10, observe that the proof of
Theorem 9 in I demonstrated that
E 2 3Es, 2.2

where E, is the energy of a system consisting of a pair
of charges (—e¢) and (+€) with no external potential.
Here E, is just the energy of a positronium atom,
which is never less than the ground-state energy
[—-3 Ryl

Written out in explicit analytic form, the statement
(2.1) becomes

(h/2m) f VP & — e f U @) dr
+ [(1/8m) f (VU@ dr

+ (me'f8h?)] f W@ dr >0, (23)

where u(r) is the wavefunction and U(r) is the po-
tential. Since e and m are arbitrary parameters, Eq.
(2.3) is equivalent to the following inequality.

Theorem 11: Let Ulr) be any real differentiable
function and #%(r) any complex differentiable function.
Then

{ f U@ 9 d*] < [(1/470 f IVU(r)lzdarT

x [ f ti(r)tzdarﬂ f tw(r)azef“rf, @4

provided that the integrals on the right side converge.

This inequality, which does not appear in the stand-
ard textbooks, is the basic tool for our work. The
constant (1/47) is not the best possible. In our proof
of the main stability theorem we shall need a version of
the same inequality (Lemma 9 of Sec. 6) with the
integrals confined to a cell instead of extending over
all space. The reader can see, by comparing the above
one-paragraph proof of Theorem 11 with the brute-
force proof of Lemma 9 in Sec. 7, how great is the
price we have paid for chopping up the space.

We continue with a statement of the main stability
Theorem 5 for the case of a single negative particle.

Theorem 12: Let a single quantum-mechanical
particle of mass m and charge (—e) interact with an
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arbitrary number of fixed classical charges of magni-
tude (+Ze). The total energy is

= (B%[2m)t — Ze*u + Z%e%q, 2.5)
with
f = f Vel &, .6)
u =fu(r) lw[2 d3r, 2.7
u@ =3 ——, 2.8
P s |
g=335—1—, (2.9)

the r; being the positions of the fixed charges. Then
—(Z + 21)*Ry. (2.10)

We prove Theorem 12 by applying Theorem 11 to
a truncated form of the potential u(r). Let 2p, be the
distance from r, to its nearest neighbor among the
r; (j# k) (we assume that there are at least two
positive particles, since the theorem| is manifestly
true for one), and let S, be the sphere of radius p,
with center r;, so that S;, S;, - do not intersect.
Let

U@ = 3 min { 1 } (2.11)

r — rkl
U(r) is the potential produced by unit positive charges
distributed uniformly over the surfaces of the spheres
S, . We write

1 — —
F—rl  p
0 (otherwise).

(2.12)

Since each distance 2p;, occurs at least once but no
more than twice among the |r; — ri|, we have

s1 <4
k P

(rin S,)

w(r) = u(r) — U@ =

(2.13)

and, therefore,
L j VU@Pdr =g+ 3 - <3q. (214)
87 x 2P

Next, we apply Lemma 2 of I to integrals extended
over the interiors of the spheres .S,

f uy |yl* d°r
Sk
2. “ 2 13 1 1 ) 2 13
2 Vel dr + (= + &r
S4.s,¢| pl°d'r (1 o |l

s%LIlezdsr +L (1+%U)le2d3r, (2.15)
&k k
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where 4 is an arbitrary positive parameter. Summing
Eq. (2.15) over the S we find

A

i 3
<=t+-4-=-1{U 2d3, 2.16
u<s 1+2f [ dr,  (216)

provided y is normalized to 1. By Theorem 11 and
Eq. (2.14), this implies

u < ¥ + 3(6g)tet. Q.17
Finally, Eq. (2.5) gives
2
E> 2h— t — zet — § ZeX6g)tR + 2%y
m
2
> 5}—1— t — Zedt — Byt
m
4
> —(Z + %1)2%%: . (2.18)

This completes the proof of Theorem 12.

The argument in Sec. 6 is analogous, and differs in
detail only in that all integrals are there extended over
a cube instead of over all space.

Theorem 12 goes beyond Theorem 5 in one respect,
namely by allowing the negative and positive charges
to be different. In addition, Theorem 12 is asymptot-
ically exact as Z becomes very large, though for
Z small it is numerically poor. We conjecture that a
similarly strengthened version of Theorem 5 holds,
namely the inequality

E> —(Z + Ag*N Ry (2.19)
for the energy E of N negative fermions of charge
—e in the field of positive point charges Ze, the other
symbols having the same meanings as in Theorem 5.
As we now have it, Theorem 5 has a factor Z* on the
right hand side,’ a result which is obviously too weak
for large Z. In trying to prove Eq. (2.19) we en-
countered technical difficulties. This remains a prob-
lem for the future.

3. PRELIMINARY SIMPLIFICATIONS
At this point the formal proof of Theorem 5 begins.
We assume that the state of the system is given by
a wavefunction
p=p(r, T, ry),  (3.1)
which is smooth in all variables and tends to zero
sufficiently fast at infinity. The r, and the r, are

position coordinates of the N negative and N’ positive
particles. We write

—fdrfdrwlz

dr = I]_'dr,, dr’ = Hdark,

j=1

!
rN,l'l,l'é,"',

3.2)
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and for reasons which will become evident below
prefer not to set Q = 1 but leave the normalization
arbitrary.

The total energy is

= (T + W)[Q
=T+ T_+ W, +W,_

Here

+ W_)/Q. (3.3)

2

4 2

v f dr Vil (.4)

I
IR

T.
K
T

(3.5)

“
2]

dr’ f dr V,pl?,

Il
I M=

= 33 f 'derr%, (3.6)
=§ Nge,ekf f ir |w|2rk] 3.7
33 fd fdflr . (3.8)

The charges and masses are subject to the mequalities

—~e<e; <0 1<j<N), (3.9)
0<e<e (1<k<N), '
and
0<m;<m (@@A<Lj<N) (3.10)
The inequality which we want to prove is
T+ W > —Ag8NQRy. (3.11)

Our first remark is that it is both necessary and
sufficient to prove

T_+ W > —AgiNQRy. (3.12)

Necessary, because 7, can be made arbitrarily small
by choosing the m, large enough and the m, do not
enter the right-hand side of (3.11). Clearly sufficient
also, since T, > 0. Furthermore, to prove (3.12),
it is both necessary and sufficient to prove

T () + W(') > —A¢NQ(") Ry,
where, for instance,

Qr') = Qrg, x5,

(3.13)

\Ty) = f dr iy (3.14)

and T_(r'), W(r') are defined similarly. It is necessary
because in the absence of 77, we may choose a wave-
function whose support in the r, variables is entirely
near some arbitrarily chosen points. Sufficient also,
because Eq. (3.12) follows from Eq. (3.13) by inte-
gration over the N’ variable points r,. The quantity

E() = [T_(") + W(r)}/Q@) (3.15)
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is just the energy of the N negative fermions in the
field of N’ positive point charges fixed at the points
r;, this energy including the contribution

W (/)= 33

1<k<iSN |1y — 1y

eer

(3.16)

which is a fixed “classical” quantity independent of
the wavefunction. We keep this interpretation in
mind and revert to the simpler notation of writing
Q, T, W instead of Q(r'), T_(r'), W(r'). The wave-
function y is thought of as depending on the r; only,
and all integrals are over these N position variables,
while the r, are regarded as arbitrary but fixed
parameters.

Since 7_ is minimized by choosing the masses m;
as large as possible, it is no restriction if we replace
Eq. (3.10) by

m=m (1<j<N). (3.17)

We now take a fixed ¢ and consider the dependence
of the energy on the charges ¢; and e;. The Coulomb
energy W, when regarded as a function of a single
charge, is a linear function. Suppose that W assumes
its minimum value W in the (N 4+ N’)-dimensional
cube Eq. (3.9) at some point (é,, &, -, éy-). Sup-
pose j is such that —e < é; < 0. A linear function
can possess a minimum in the inside of an interval
only if, in fact, it is a constant. Thus we still get W =
W if we replace é; by one of the values 0 or —e. This
argument shows that the minimum of W in the cube
(3.9) is assumed at some vertex of this cube. At such a
vertex a certain number of the charges vanish. If we
omit the corresponding terms from the kinetic energy
T the energy is further diminished. Thus we may write

T+W> f dn(T, + Wy, (3.18)
where dr, = ], d%; over those j for which the
minimization of W yielded e; = 0, and the subscript
1 signifies the replacement of all remaining e; by —e
and ¢, by e, as well as the omission of the unwanted
kinetic-energy terms (if any). The integrations defining
T, and W, are only over the N, (< N) variables r;
which actually enter the Coulomb energy. Now

Q= f dr Q) (3.19)
so that it is sufficient to prove
T, + Wy > —AqN,Q, Ry, (3.20)

and then Eq. (3.11) follows from Egs. (3.20) and
(3.18) by integration over the ‘‘remaining™ variables.
But Eq. (3.20) is an inequality of the precise form
(3.11); only the charges have all been taken with
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their maximum allowed absolute value. This shows
that it is no restriction of our original hypotheses if
we replace the inequalities (3.9) by

e;=—e (I<j<N),

(1<k<N) 3.21)

e =e
from the beginning.
Once this is done, it is natural to adopt a system of
atomic units’ such that e = 1 and #%/2m = 1. In these
units Ry = 1.

4. CONFIGURATIONAL DOMAINS WITH
UNIFORM NEAREST-NEIGHBOR SEPARATION

In this section we construct certain domains S in the
3N-dimensional configuration space (3N-space, for
short). A point (r,, ry, - “*, Ty) in 3N-space will be
abbreviated as (r). The r; are the components of (r).

For any point (r) in 3N-space we write

Ry=min|r,—r,| (j=1,2,---,N). (4.1)
1<i<N

i¥7

R; is the distance between the component r; and its
“nearest neighbor” among the other components.

Let S be an N-fold direct product of 3-dimensional
cubes. This means that (r) is in S if and only if r; is in
C; j=1,2, --+,N), where the C; are cubes in
3-space. We use the letter S always to denote such a
domain, and write L; = L,(S) for the length of the
edges of C;. Suppose then that we have a collection
{S} of such domains S. We shall say that the .S in the
collection have uniform nearest-neighbor separation if
there are two positive constants « and o' > o such
that, given any S in the collection, and any (r) in S,
we have

a«l; KR <o'L; (j=1,2,---,N). (42)

This condition means, roughly speaking, that if we
pick any cube C; among those defining S, and then
pick its nearest neighbor C;, the distance between C;
and C; is of the order of magnitude L;, the size of
C; itself. The nearest neighbor of a large cube cannot
be too close. The nearest neighbor of a small cube
cannot be too far.

It is clear that if we have a collection {S?} of domains
with uniform nearest-neighbor separation, then no
point (r), some of whose components coincide, can be
in any of the S. For if r; = r; for some i # j, then
R, = R, = 0 and so the first inequality of Eq. (4.2)
cannot hold for « > 0. We shall make later essential
use of a proposition which in some sense is the
converse of this.

7 See, however, Ref. 5.
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Lemma 6: Given any positive constants o and

o« > 20 + 4\/ 3 there exists a countable collection
{S} of domains § in 3N-space having uniform nearest-
neighbor separation, such that (i) no two S in {S}
intersect, and (ii) if (r) is any point in 3N-space with
distinct components then (r) belongs to one of the
S in the collection..That is to say, the whole 3N-space,
with the exception of the points having some identical
components, is partitioned into disjoint domains .

The proof consists of the following steps. We take
an arbitrary point (r) in 3N-space, with distinct
components, and construct a certain uniquely deter-
mined domain S which is a direct product of cubes
and contains (r). Second, we show that if two such
domains contain a single point in common, they are
necessarily identical. Third, we show that the resulting
collection of disjoint domains § has uniform nearest-
neighbor separation. Finally, we show that only
countably many distinct .S arise from our construction.

We use the following notation: If U and U’ are two
sets in 3-space, we write

diU,U}y=inflr—7r|, (cinU, rinU’). 4.3)

By a cube in 3-space we mean in the following always

a set of those r = (x, y, ) for which
a<x<a+ L,
b<y<b+1l,
c<Lz<c+ L

4.9

for some a, b, ¢, and L.3 If C and C' are two cubes of
edges L and L', respectively, we have

dC,CY < It — | < d{C,C} + V3L + L)
cinC, r'inC’). (4.5

We call a cube C a binary cube if L = 2 where v is
an integer, and a, b, ¢ are multiples of L. Binary
cubes of given size L are disjoint and form a cubic
lattice in 3-space so that every point r belongs to
exactly one of them. We denote by C,(r) the binary
cube of edge length L = 2* which contains r. Binary
cubes of different sizes either do not intersect or else
the larger one wholly contains the smaller one. The
nested sequence C,(r) (v = -+, =2, —1,0,1,2,- )
is uniquely determined by and also uniquely deter-
mines r.
Let (r) be some point of 3N-space such that

n#r, 1<i<j<N). (4.6)

Let « be a fixed positive number. Let u;; = u;; be the
8 Thus we consider only cubes whose orientation is the same.

The convention about boundary points is made so that even when
two cubes are adjoining they have no common points.
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largest integer » for which

d{Cv(rz‘)a Cv(r:i)} 2 2

holds. Evidently such an integer exists. For if (4.7) is
satisfied for some » it is satisfied for all smaller ».
Further, it is not satisfied for large enough », because
then d = 0. On the other hand it is satisfied for small
enough », because

(4.7)

lim d{Cyr;), C(rp)} = I, — 1)l >0 (4.8)
by our assumption (4.6). We now put
A; = min p,;. (4.9)

1<i<N

t£7
The integers u,; and A, are well-defined functions of the
point (r).

Let now S be the direct product of the cubes
C,,(r), C, (x2), * -+, C;,(ry). Thus (r') is in S if and
only if rj is in C,(r;) forj=1,2,---, N. Clearly
(r) itself is in S. Thus every point (r) in 3N-space
which has distinct components belongs to a well deter-
mined S.

We now show that no two distinct S have a point
in common. It is sufficient to prove that if S is assigned
to the point (r), and (r’) is any other point of S, then
S’ which is assigned to (r) is identical to S. Let then
(r') be in S so that the r; are in the C, (r,), respectively.
Then C(r)) = C,(r;) for all j and all v > 4; because
the binary cubes of increasing size containing a given
binary cube are uniquely determined. Moreover,
because u;; > 4; and p;; > 4;, we have

{C"(r;) =0 orally > ). (4.10)
Cr) = C\(r) fagh 2%
Thus

d{C, (1)), Co (£} > 294, (4.11)
but

d{C(r), C(r))} < 2"« (for all » > p,;;) (4.12)

by definition of u,;. But (4.11) and (4.12) show that
u;; = py; and therefore also A} = 4;. Finally

CA,-'(TD = Cz,-(r;‘) = CA,(rj)

where in the last step we used the fact that r} is in
C,,(r;) and that a binary cube of given size containing
a point is unique. Thus S’, which is a direct product
of the C; (r)), is identical to S.

We next show that all S so constructed have a
uniform nearest-neighbor separation. Let (r) be a
point of S and let the u,; and A, be given as above. We
shall verify the inequalities (4.2) with L; = 2%. Take
any j and then pick an i so that R; = |r; — r;| [cf.

(4.13)
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Eq. (4.1) above]. Then
R; = |r; — ) 2 d{C,(r)), C,(r)}
Z d{C[lu(r])’ Cp.-j(ri)} 2 2“”“'
> 2Y = L. (4.14)

This proves the first part of (4.2). Next, take again any
Jj but now pick i so that u;; = 4, [cf. Eq. (4.9) above].
Then

R, L |r, — 1] K d{Cp 1a(r), Cppyia(r)} + AN 3
& Quirtly 4 omiit? \/3’
=2%Q2x 4+ 4,/3) < L' (4.15)

[The second inequality is (4.5) above.] This proves the
second part of (4.2).

Finally, we see easily that in the collection {S} there
are only countably many distinct S. For each S hasa
positive 3N-dimensional volume, namely

f BNy = 93Uatante +Aw) (4.16)

Therefore the number of those S which are inside
some bounded domain of 3N-space, and for which
Ay + A5 + -+ - 4 Ay exceeds some given lower bound,
is necessarily finite.

This concludes the proof of Lemma 6.

5. REDUCTION TO A ONE-PARTICLE
PROBLEM

In accordance with Lemma 6 we choose two positive
constants « and o' > 20 + 4\/ 3 and decompose
3N-space into a collection of nonintersecting domains
S with uniform nearest-neighbor separation. Since the
exceptional points—those that do not belong to any
S—form a set of measure zero, we can represent any
integral over 3N-space as an infinite sum of integrals,
each term giving the contribution of a particular S.

Thus we write
Q=3 Q), (5.1
S

where

Q(S) =Llwl2dT’ 5.2)

and we define 7(S), W(S) similarly. Integrals over S
are of the form

Ldv-(- c) = Cld"rl J.C,d3r2- . -fcﬂderC ) (5.3)

where the C; are cubes in 3-space, their edges being of
lengths L,, respectively, and such that for any r, in
Ci,1in Gy, - * -, 1y in Cy the inequalities (4.2) hold.?

® From here on it is irrelevant that L; = 2%j, with A; an integer.
Only the universal validity of (4.2) with the same & and &’ is essential.
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We now have the following.

Theorem 13: For an appropriate choice of a« in
Lemma 6, there are two constants 4, and A4, such that
for all S,

U |
T(S) + W(S) > — (AIN + 4,5 L—) QS). (5.4)
j=1

7
Before proving this theorem, we show that by com-
bining it with the results of our first paper we can
deduce Theorem 5 from it.

Indeed, from (4.2) we obtain

= QS) <o L dr Lﬁ'—z, (5.5)
§

1

L,
where R; = Ry(r;, 1y, -, Iy) is defined by (4.1).
Substituting into Eq. (5.4) and summing over all §
we then obtain

T4+ W> —(4; + A’ K)NQ, (5.6)

where

— LS (42l
K NG gl J-d-r R, 5.7
It is at this point, and at this point only, that we use
the hypothesis that all negatively charged particles
(i.e., all particles that we still treat quantum mechani-
cally) are fermions. In I we proved the following
inequality under that assumption®:

K < AygH(TINO?, (5.8)

where ¢ is the number of fermion species and 4; is a
constant (about 22.2). Thus

T> A7 KNQ. (5.9)

Adding (5.9) to (5.6) and minimizing the right-hand
side with respect to K, we obtain

2T + W > —[4; + o' d24,)%g8INQ.  (5.10)

2T may be replaced by T since the particle mass m
is arbitrary (this produces a factor 2 on the right).
Finally, noting that ¢ > 1, we have

T+ W > —AqiNQ (5.11)
with

A = 2A1 + %(GIAzAs)z. (5-12)
This completes the derivation of Theorem 5 from
Theorem 13.

The rest of the paper is devoted to the proof of
Theorem 13.

Let S be an arbitrary, but from now on fixed,
domain of the decomposition given in Lemma 6.

10 Equation (7.14).
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We now consider W(S) a function of the N’ param-
eters r, (1 < k < N') which are the positions of
the positive charges. As a function of r;, say, W(S)
has the form

W(S) = Wi(S) + US) S ——
k=2 |r{ — 1yl
_% dsr P(l‘)

i=1Je;  |r—ryl

N

, (5.13)

where W,(S)is independent of r;, p(r) is nonnegative,
and the C; are the cubes defining S. Suppose that
r; is in none of the C;. Then we regard W(S) as a
function of r; defined in the open domain exterior to
the cubes C; and excluding the pointsr;, (2 < k < N').
It is evident from Eq. (5.13) that this function satisfies
Laplace’s equation in the coordinates of r;. Such a
function assumes no minimum in its domain of
definition. Thus either a minimum occurs when ry is
a point on the boundary of one of the C;, or else
there is no minimum at all and W(S) > W, (S). We
see from this argument that for any givenr;,r;, -,
ry- we can find another set ry,r,, - -, ry  Wwith
N" < N'such that by replacing the positive charges at
the r; with charges at the r; we do not increase W(S)
and, moreover, every r;, is inside or on the boundary of
one of the C;. Thus, in attempting to prove the in-
equality (5.4) for any particular S, it is no restriction
if we assume the r;, to satisfy this condition from the
beginning.

The next step is the application of Theorem 6
proved in I. Accordingly,

W(S) > U(S), (5.14)

where

u(s) =Ld7|1,)12{_§ 4 _1§ 1

i=12a; &=12a;

+ 22 A(lr; — 1, a;,ay)
1<i<j<N

+ 23 Ay —rla,a)
1<k<ISN

N N

-3 SA(r; — x4, ay, a,g)}. (5.15)
j=1 k=1

The positive quantities a; and a;, are arbitrary and

may be functions of the r; and r;. The function

A(r, a, b)is defined for positive values of its arguments

by

1—min(l,-l-) O<r<la—b)
r ab
A(r,a,b)=((at+b—n° (la—b<r<a+b)
4abr -7
0 (@a+b<n).

(5.16)
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It is positive and monotone decreasing in r, and it
satisfies the inequality

1 1 < A(r, a,a) <l. 5.17
r a r
We set
a;=>L (I<j<N) (5.18)
and

al = g L, (for ksuch thatrisin C;). (5.19)

(At this point we use the fact that all r; belong to one
of the cubes C;.) We now verify the following fact:
In the double sums of (5.15) all terms vanish in which
the two particle positions involved belong to two different

cubes. Indeed,
Ir; — 1| > max (R;, R) > amax (L;, L), (520)

where the last inequality follows from (4.2), and hence

Ir; — r;] > 2 max (a;,a;) > a; +a; (5.21)
so that
A(lr; — r,}, a;,a;)) = 0. (5.22)
Similarly,
A(lr; — x|, a;,a,) =0 (forr,notin C;) (5.23)
and
A(ll';c - r,ll, a;ca a’l) =0

(forr,in C;, r,in C;, i # j). (5.24)

Let u; be the number of r; in C;. We may then rewrite
(5.15) in the form

N
UuEs) = 21 U«(S), (5.25)
=
where
U(S)
1
=[- e ssa(m-nin i) Jas
oL, k<D; 2
-f dr|y>S A(|r, RS - L,.). (5.26)
s (%) 2 2
In view of (5.17),
1
UgS) > [ - L+di 5y }Q(S)
i <v; |1 — 17
—f d-rltp] z - (5.27
8 ;| r; — rkl

In the last two formulas we used the notation (k); and
(k < D), to indicate the restriction of the sums to those
subscripts for which r; and r} are in C;. In view of the
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inequalities (5.14) and (5.27), if we succeed in showing

1
1 &)
[ OtLj (e< Z)7 l|]

+ f dr[lv,w- 9t

k:l r; rkl]

> — (A1 + fj) QS) (5.28)

for appropriate constants 4, and A,, then (5.4)
follows by summing overj = 1,2,--+, N.

Note that although in (5.28) the integrals are still
over the 3N-dimensional domain S, it is only the

"dependence of y on r; which is relevant. Thus, it is

sufficient to prove (5.28) in a modified form in which
the integrals {gdr are replaced by ¢, d°r;, for then
(5.28) follows by integration with respect to the rest
of the variables ry, - -, T, ;, Py, ry. But then
we may ignore the dependence of y on these other
variables and, since j was any one of the N subscripts,
we may drop it too. We have thus shown that Theorem
13 is a consequence of the following inequality:

—1 1
fda {IVwI +le2[2 + 33 — }}
=1 |r — 1yl 15E<i=<p[ry — 1)

1+ 4 —Az)z} f Privl (529
C

o

S

where C is any cube whose edges are of length L,
r, (k =1,2,- -, u) are arbitrary points in or on the
boundary of C, and y = y(r) is an arbitrary smooth
function defined in C.

The case!* when y = 0 identically in C may be
ignored for then (5.29) holds trivially. If we then
normalize p

f w2 d®r = 1, (5.30)
C

the left side of (5.29) can be interpreted as the energy
of a single negatively charged particle, confined to a
box C, and attracted to u fixed point charges in C.
The energy includes the static repulsive contribution
of these fixed charges. We are then looking for a lower
bound for the ground-state energy of this system, and
this lower bound must be shown to have the particular
dependence on the parameters u and L shown on the
right-hand side. The many-body aspect of the original
problem has been hereby eliminated.

There is one essential remark. Our problem is not
the usual “particle in a box,” because we have no

11 This may occur because (r) is the restriction to C of a function
defined over all space.
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boundary conditions on y. The customary require-
ments are either that ¢ = 0 on the boundary, or that
y is periodic, modulo L, when extended in a natural
manner to all space. In contrast our only requirement
on p is that it remain bounded and differentiable at
the boundary of C, since it is a restriction to C of a
smooth function defined over all space. This lack of
boundary conditions on y leads to some complication
of detail in Sec. 7.

6. SOLUTION OF THE ONE-PARTICLE
PROBLEM
In considering the proof of (5.29) we have to
distinguish three cases, 4 = 0, u =1, and u > 2.
Let # = 0. Then there is only the kinetic energy
left and the inequality reads'?

f Pr|Vylt> —4; + (l _ Ag) L
c o L

For this to be satisfied it is sufficient that

4,>1 (6.1)
o

Let now x4 = 1. In this case we need to show

f dar{lvwlz — |'¢|2 2 1
(o)

- Z_4,)-.
hr—r;l}2 A‘+(a *)L

(6.2

Lemma 7: For any positive 4, and any complex ¥'(r)
with continuous derivatives, and any cube C of size L,

2
f ds,.lﬂ < (§ + 2) f d’r |¥® + 22 f |V a®r.
o r A Lj)Je c
(6.3)

This proposition is closely related to Lemma 2 which
we proved in I. There we had a sphere Q of radius b
centered at the origin; here we have a cube C of edge
length L in an arbitrary position. The inequality is of
the same form, and only the numerical coefficients
are different. In contrast with Lemma 2, here we do not
have the best possible constants. The proof of Lemma
7 will be given in Sec. 7. To show (6.2) we take origin
of coordinates at rj, set 24 = 1, and take p = ¥. It is
seen that (6.2) follows from (6.3) if

4, > 16 (6.4)

and

4, >2 424, (6.5)
o

12 From here on we assume ¢ to be normalized to unity in the cube
C, according to (5.30).
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Finally, suppose 4 > 2. We use the notation

t= ~[‘C|Vt/)|2 &r, (6.6)
n 2
w=Y f vl — d°r, (6.7)
=1Je(r —ryl
and
, 1
w=3 (6.8)

154% g, — 1)’

so that the inequality to be proved reads

1 2
z-w+w'z-Al+(—+—”--Ag)1. (6.9)
o L

Let
Ri = min |r; — rj]

1<i<u
1#k

and let o, denote the sphere whose radius is R;/2 and
whose center is r,. These spheres do not intersect.
They all have a nonempty intersection with the cube
C, but they need not lie entirely inside C. We denote
by &, the part of g, which is inside C. The radii of the
o, satisfy the inequality

(6.10)

R; 3L
> < 5 (6.11)
We define a function V(r) as follows:
H
V(i) = ~ (rin none of the o;),
=1|r — 1]
b g s (6.12)
V() =3 —+ = (rin o).
L] Ir—rl Ry

V(r) is bounded, continuous, and has piecewise-
continuous first derivatives. Itis the Coulomb potential
of a surface charge distribution, namely a unit positive
charge distributed uniformly over the surface of each
sphere o,.. By elementary electrostatics

1 . 1
- f VY@Edr= 33

1<k<izp I — 17

(| LS|
+3 =—=w43 =, (6.13)

’ ’
k=1 Ry k=1 Ry,

where the integral is over all space. Let

V) = Vi@ + 7, 6.14)
where
_1(
= I?fcd rV(r), (6.15)
so that
fcfrﬂ(r) —o. (6.16)
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We have
o< (6.17)
=y — kI
and
3 3
j dr gmaxf dr _ (6.18)
clr — 1y v Julr—r

where the maximum is taken among all domains U
whose volume is L3. It is obvious that this domain is a
sphere centered on r;. Thus, (6.15), (6.17), and (6.18)

give

< 3( ),u/L< 3u/L. (6.19)

We now write
2 13 £ 3 1 2 2
w=| ViyPdr+ dr( ——)I’tpl
¢ Ir—rl R,
(6.20)

k=1 Jéx
and estimate the integrals over the domains &, by
using a proposition similar to Lemma 7 above.

Lemma 8: Let D be a domain common to a sphere
of radius b around the origin and some cube whose
edges are larger than b, and let D contain the origin.
For any positive 4 and any ¥(r) with piecewise
continuous derivatives,

f oL o ( 1_2) f dor [
frf — b/Jp
+ 8ZJ d*r|\VYE (6.21)
D
The proof is given in Sec. 7. Making use of this, we

have
2 24 2 1
L<ti-+= d°r
-(/1 R,;)Lk"p'

2
l’/" - d3r
s T — 1]
+ SZf |V1p|2 d’r. (6.22)
-

But, when r is in &,

2
V(r) > R (6.23)

k

Hence, by summing (6.22) over k, and noting that the
disjoint g, are inside C, we get
W g% +8At 4+ 12 f Vil dPr,  (6.24)
c

or, minimizing with respect to 1, and making use of
(6.14) and (6.19),
w< 8t + 36“ +12 f Vo dr. (625

It remains to estimate the last term of (6.25). We do
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this with the help of the following inequality whose
proof is given in Sec. 7.

Lemma 9: Let f(r) be a complex-valued and g(r) be
a real-valued function, defined in a cube C, both
functions continuous with piecewise continuous deriv-

atives. Let
Llf |*dr =1 (6.26)
d
B f gd’r =0, (6.27)
Then ‘
[ <2 ([ var e ([ o dar)%.
(6.28)

We take f = p and g = V; and then our conditions
are fulfilled [cf. (6.16) above]. Thus,

V1ol dr < 8\ 4 ). (6.29)
J. () (e

f (VY[ dor = f YV dor < J' VVIEdr
C C

But

u
- 811(w’ +3 i) < 24w, (6.30)
#=1 R,

k
by (6.13) above. The last inequality follows from the
fact that each term in the sum occurs at least once but

no more than twice in the sum (6.8) defining w’. Thus
we obtain from (6.25), (6.29), and (6.30)

t—w4w >t~ 8 —962G@w)t -3—6Lﬁ +w.

(6.31)
We now note that
It — vl < V3L, (6.32)
and, therefore,
—-1) 1 u
w>He=D 1 o (6.33)
2 \/3L 4\/
because u > 2. It follows that
! 2 2
V_V__3_§.E2_1.(_&:_36 ) 21(1"'/‘ '—Az),
2 L —L\8y3 L\ «
(6.34)
provided that _
x> 83 (6.35)
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and
1 1 1
A, > = 4 max {36 — 2(—_ - —);
22 hmax o —u 8/3 «
1 324

+ ——— (6.36)
(1/83) — (1/a)

We choose « to satisfy (6.35). Then we choose 4, to

satisfy (6.36). Then (6.34) is satisfied, and (6.9)

follows from (6.31) if we can choose A4; so that

Ay > —t + 8t + 9633wt — ', (6.37)

On the right-hand side we have a function of the two
variables ¢ and w’" which is bounded above and so the
choice is possible. Numerically, one finds the condition

A, > max {—t + 8¢ + 9623wt —

t,w' >0

lw’}
= (3482 + 4)% (6.38)

With (6.35), (6.36), and (6.38) we have proved (6.9).
The conditions (6.1), (6.4), and (6.5) now automati-
cally hold and so (5.29) has been proved for arbittary
u# 2 0. As we have shown in Sec. 4, this implies the
truth of Theorem 13. And Theorem 13 implies
Theorem 5. So the proof of Theorem 5 is complete
except that we still have to prove Lemmas 7, 8, and 9.

It may be of some interest to present our final result
in numerical terms. Choosing the reasonable values
o = 30, o' = 70, 4, = 104, 42 = 500, and 4, = 108,
we get from (5.12) 4 = 1.3 x 10", and this is the
constant which appears in Theorem 5.

7. PROOF OF LEMMAS 7, 8, AND 9

We begin with a useful extension of Lemma 2 which
was proved in 1.2

Lemma 2a: Let Q be a domain which contains the
sphere €, of radius » and center at the origin. For
any positive 2 and any complex valued function ¥'(r)
with continuous derivatives

f P ";’2 ( 53’-)) Ld”r P+ f L Pr [V,

(7.1)
Let (¥, Q) denote the functional
3 g2
[V¥[? d°F L]T|' ar
F¥, Q) = |2 —da If (1.2)
f 2 f %2 d°r
O o
and let
w(Q) = inf F(¥, Q). (7.3)
b4

By choosing the 4 in (7.1) optimally, one sees that
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Lemma 2a is equivalent to the inequality

p(Q) > —(3/2b). (7.4)
To prove this we take the infimum of (7.3) in two
steps.

MQ,a,8,9)= inf FW,Q),

7.5
YeX(a,p,7) ( )

where X(«, B, y) denotes the class of ¥ which satisfy

Y dr =, (1.6)
Qo
f (P2 dor = 1, .7
Q
||V dr = 8B, (7.8)
Qp
f VEP dPr = 9, (7.9)
0
with the real numbers «, 8, y subject to
0<al (7.10)
and
0By (7.11)
Thus,
() (7.12)

= inf 4(Q, «, 8, »),
ap,y

the infimum being over all sets («, 8, ¥) subject to
(7.10) and (7.11). If ¥ belongs to J.(«, B, ) we have

2 2
F, Q) =yt — [ T g, f T s,
Q, |r| -0, |r|
2
>yt Bl 12 gy
Q, |r] b

because, forr e Q — Qq, |r| > b. By Lemma 2!

R R SO AT
so that for' ¥ € X(«, B, ),
FEQ 2P - - )
Therefore
w0 B9 29t~ Pt -T2, (116)
The minimization of (7.12) then yields the desired

inequality (7.4).

Let C be a cube of edge length L, and let C, be a
cube with the same center, with faces parallel to those
of C and whose edge length is 2L. If ¥(r) is a con-
tinuously differentiable function in C whose normal
derivative vanishes on the faces of C, we can extend it
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by reflection in the faces of C to a continuously
differentiable function ¥',(r) in C,. Then

19,2 & = sf W2 Br (7.17)
Ci C
and
j V2 dr = 8 f VY. (7.18)
[N c
On the other hand, if y, is any point in space,
2 2
f BELTRAPN f L (qa9)
c1lr — vl o lr — ol
Consider now the quantity
: k4
{ VY d®r If I — ‘da .
= _“l_—l'—_—?(lp.>cay>
f weErar |8 J WP &
Je c
(7.20)

If y is not in C then 4 is a harmonic function of y and
so it is minimized for some y on the boundary of C.
Thus we may assume y to be in or on the boundary of
C. Let W(r) and y, be such that they minimize F.
Because no boundary condition is imposed on ¥ in
the minimization, the variational problem automat-
ically gives the “natural boundary condition” of
vanishing normal derivative for V', on the faces of C.
Thus we may extend V', as explained above, and from
(7.17), (7.18), and (7.19) it follows that

FE,C,y) > FWo, C, o) > F(F,, C), (7.21)

provided we shift the origin of the coordinate system
to y, . But the distance of y, from the faces of C, is at
least 3L so that we may apply Lemma 2a with b = }L,

F¥,, C) > —3/L. (1.22)
The resulting inequality
FW,Cy) > — % (7.23)

is equivalent to (6.3). This completes the proof of
Lemma 7.
The proof of Lemma 8 is similar, We have

F(¥, D,0) > F(¥,, D, 0), (1.24)

where ¥, is the minimizing function and therefore
has vanishing normal derivative on the boundary of
D. We now extend ¥, by reflection on the faces of the
given cube to a function ¥, defined in the complete
sphere D,: |r| < b. Because the origin r = 0 is in D
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we see that
9,2 d®r < 8 J (Wl d®r (7.25)
Dy D
and
B IVF, 2 d%r < 8fDlVW0|2 d®r. (7.26)
Also !
L eTa i iy (71.27)
D1 x| D |r|

Note that 5(¥,, D, 0) < 0, since the left-hand side
of (7.24) is negative for ¥" = constant. This, together
with the last three inequalities implies

3

3%(\1}0: D,0) > F(¥,, D) > — Z—‘b (7.28)
by Lemma 2.! The resulting inequality
4 3
5, D,0) > — — 7.29
( ) 2 (7.29)

is equivalent to (6.21), as seen by choosing 4 to give
the strictest inequality. This proves Lemma 8.

It remains to prove Lemma 9. It is clear that the size
of the cube C is irrelevant. Therefore we choose C to
have edge length 2. We also take the origin at the
center of C.

We first show that it is sufficient to prove the Lemma
with the constant 8 replaced by 1 if fand g are required
to be periodic with respect to opposite faces of C.

Indeed, let
0(f 9) = | fog ear| / fC|Vg|2d3r(fC|Vf|2 dar)%,
(7.30)

and let f, and g, be the functions that maximize Q.
Then f; and g, have vanishing normal derivatives on
the faces of C, and they may be extended by reflection
on the faces to functions f; and g, defined in the larger
cube C,, which is concentric with C, has faces parallel
with those of C, and is twice the linear size. Now we
put

fo(r) = f1(2r)
g:(r) = g,(2r).

/> and g, are periodic in C, satisfy (6.26), (6.27),
respectively, and

(7.31)

Q(f2, 82) = 118Q(fs, go)- (7.32)
Thus
o(f, 8) < 0(fo, 8) = 80(f2.8),  (1.33)
and it is sufficient to show
O, 8) <1, fgperiodic;  (1.34)
T

then by (7.33) the desired inequality (6.28) follows.
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Expand f and g in Fourier series

1@ =Cm) Y aen (7.35)
and ’

g = Quy 3 bye™, (7.36)

the sums running over vectors mn = (n,, n,, n,) with
integer components. The normalization of f'is

Sla)=1, (7.37)

and
bo = 0.

In terms of the Fourier coefficients,

a8
=L
T8

3 z % a: ambn-m
n

(7.38)

Z/Zznmbnzz(g: rnt*ranxz)%.

(7.39)
By Schwarz’s inequality

2
S ah i an . (7.40)

< Z [K[? [y E mg
Therefore (7.34) follows from

%
2 2
3 |3 oisda <8 (Zinl*tanr).
By Schwarz’s inequality
Sty < 3l =1 (7.42)

for all k. Therefore, the left-hand side of (7.41) is not
more than

kzﬂ ﬂi Zam+kam S 2 !klz Z lam+k' ]aml (7‘43)
It is therefore sufficient to prove that
$
Iy kGm 2.2
3,3 ke <o (z In] a,,) (7.44)
for any real ;;ositlve a, normalized by (7.37).
Let, for any positive 4,
1
2 = . (745
G n(Z) mg,wn {mlz([m + ll!2 -+ 2.2) ( )
The elementary inequality
{nf? (m{* + A1 + [m[*(n]* + 9]
< ([nf* (Inf* + )1 + [m[* (jm]* + )] (7.46)
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shows that

o, < 0. (7.47)
We derive an upper bound for g, as follows. The
function ¢(r) = |r{~2(Ir]* + A% satisfies V3¢ > 0,
and therefore its value $(u) at any point with integer
coordinates is less than its average over a sphere
centered at this point. We choose for all n spheres of
radii 4 so that they do not overlap. This way we obtain
the estimate

) < é(r) dr

i1z}

= g;arctan 224 < 127%(1 + =d). (7.48)

The last inequality follows from

1 1
>
(n/2 ~ o)*

(o <1< 12’) (7.49)

cos® t
Integrating between 0 and $#?A(1 + #4)~! one has

2
tan -——j-»}i——* > 22,
2(1 + =d)
which yields (7.48).
We now consider the sum on the left-hand side of
(7.44). Let p, = p_, > 0. We have then by Schwarz’s

(7.50)

inequality
Amnikm Ony ik Ptk
k#o% Jkj® kzv*:g .35
2 2
% —mlm nPn (151
K| Pt k*"mlk m+k
Let
f*+ 2* (1 0),
(7.52)

P = 277(3;)* (n = 0).

Then the right-hand side of (7.51) may be written

¢ 1
4n*lag + E (jm|* + l’)af.’,(am + 7 n‘:m)
< 4nia? +6;:j;2’;“ 3 (mf + Pk, (759

by virtue of (7.47) and (7.48). Since
[67(1 + 27A))/(1 + #d) < 472,
we get an upper bound on the right-hand side of (7.53)

(7.54)

4TS Gl + 2l (7.55)
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Finally, we choose A to minimize this upper bound.
This yields the inequality (7.44) and the proof of
Lemma 9 is complete.

We conclude with some informal remarks which are
intended to clarify the physical meaning of Lemma 9.
In our whole proof of stability, Lemma 9 is the inner-
most core. It is unfortunate that both the statement
and the proof of Lemma 9 are couched in algebraic
terms which conceal the physical motivations. Basi-
cally, the effect of Lemma 9 is to set a bound to the
interaction energy between negative and positive
charges, the bound depending only on the kinetic
energy of the negatives and on the potential energy
of the positives.

An alternative statement of the content of Lemma 9
is obtained by analyzing the inequality (7.44) which is
essentially equivalent to Eq. (6.28). We can give Eq.
(7.44) an intuitive meaning as follows: The function

exp [@ q- xj|
L

R(x) =3

a#0 mLq?

(7.56)

is the Green’s function for a cube of side L with
periodic boundary conditions. R(x) is the Coulomb
potential generated by a unit positive charge at each
vertex of a cubic lattice, with a constant negative
background density to preserve neutrality. Equation
(7.44) is equivalent to the statement that a particle of
mass m in the periodic Coulomb potential [—e2R(r)]
has a ground-state binding energy less than 16 Ry, or
in symbols

& f R() 9@ d°r < (B%)2m) f V(o[ d*r

4+ 16 Ry flzp(r)lz d’r, (1.57)

irrespective of the spacing L of the lattice. The awk-
wardness of the proof of Eq. (7.44) arose from the fact
that R(r) is not spherically symmetric and so the
standard argument based on Lemma 2isnotapplicable.
Note that R(r) is defined to have mean value zero, so
that there is no term proportional to €2 in the ground-
state energy.

We know that in the limit L — oo, when R(r) tends
to the Coulomb potential (1/r), the ground-state
energy is one Rydberg, and so Eq. (7.57) holds
without the factor 16. It is also easy to verify that,
as L —0, Eq. (7.57) holds with a coefficient smaller
than 1 instead of the 16. It is extremely likely that
Eq. (7.57) is true for all L with the 16 replaced by 1.
This would mean that Eq. (7.44) holds with 2 replacing
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8, and likewise Eq. (6.28) would hold with 2 replacing
8 on the right side. To prove this strengthened form of
Lemma 9, it would be sufficient to show that the
ground-state binding energy of the potential [—e2R(r)]
decreases monotonically with L. The monotonicity
of the ground-state energy is physically plausible, but
we have not succeeded in proving it. Our proof of
Lemma 9 misses a factor of 4 through various crudities
of detail, particularly in the estimate (7.48) for ¢,.

When Lemma 9 is expressed in the form (7.57), its
relation to the arguments of Sec. 2 becomes clear. In
Sec. 2, Theorem 11 was deduced from the fact that the
ground-state binding energy of a particle in a Coulomb
potential in infinite space is one Rydberg. Analo-
gously, Lemma 9 is deduced from the fact that the
ground-state binding energy in the periodic Coulomb
potential is less than 16 Ry. The simple Coulomb po-
tential is the Green’s function for infinite space, while
the periodic Coulomb potential is the Green’s func-
tionfor a finite cube. The logical structure of the proofs
of the two inequalities, Theorem 11 and Lemma 9, is
the same, and the logic of their use in the proofs of
Theorem 12 and Theorem 5 is also the same. Only the
details are more complicated for the case of the cube,
and the numerical coefficients are correspondingly less
Pprecise.

It is a remarkable fact that our proof of the stability
of matter, after such a tremendous detour via dis-
sections of space and other artificial tricks, boils down
in the end to an estimate of the binding energy of a
single electron in a periodic Coulomb potential. We
conjecture that this appearance of the periodic
Coulomb potential at the kernel of the proof is not
accidental. After all, the ground states of most forms
of matter are crystals in which electrons are actually
moving in periodic Coulomb potentials. The essence
of a proof of the stability of matter should be a
demonstration that an aperiodic arrangement of
particles cannot give greater binding than a periodic
arrangement. If this dominance of the periodic
potential could be proved directly, then we would
have a proof of Theorem 5 vastly simpler and more
satisfactory than the one presented in this paper.
Into the bargain we would also undoubtedly find a
more reasonable numerical coefficient than 1.3 x 1014,
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The object of this paper is to find and study a class of potentials for which the corresponding scattering
amplitude / decreases rapidly in energy at fixed (nonforward) angles. Specifically, we ask that £(k, 0) =
Olexp {—b(6)k}] as k — oo for 6 fixed. It is shown here that this relation is valid for certain potentials
¥(r) which are even functions of r analytic in a strip about the real r axis. With further restrictions on the
potentials we show that the scattering amplitude converges to its first Born approximation at high

energies for fixed nonforward angles.

1. INTRODUCTION

It is a striking experimental result that elastic
differential cross sections for processes involving
nucleons decrease very rapidly with respect to energy
at fixed nonforward scattering angles,! i.e., that they
exhibit Orear behavior. This behavior appears to be
a general feature of strong interaction scattering
processes. It has been qualitatively described as a
manifestation of the spatial extension of composite
particles.? Since it is so general a feature of strong
interactions, we have looked into nonrelativistic
potential scattering to see under what conditions this
behavior occurs there. We do not propose to invent a
serious physical model of any sort for this behavior—
we work within the context of potential scattering for
guidance.® (We of course recall that Regge behavior,
analyticity in energy, and the Mandelstam representa-
tion all have conceptual validity in potential scattering,
so that the conditions for Orear behavior in potential
scattering may be of some interest.) Potential scattering
is an internally consistent theory, it does give unam-
biguous results, and finally, it is a relatively simple
theory in which to work.

The basic experimental behavior pointed out by
Orear is that the elastic differential cross section
decreases roughly exponentially with respect to energy
at fixed nonforward scattering angles. For the purposes
of this paper we understand by ‘“‘Orear behavior’ the
following asymptotic relation upon the scattering

* This paper is based upon a thesis by the author submitted to
Princeton University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy. The author was a Nationali Science
Foundation Predoctoral Fellow and National Aeronautics and
Space Administration Trainee while working on his thesis.
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amplitude?:

Fk, 6) — Olexp (—2kb sin $6)], ()]
with 5 > 0, as the wavenumber k — oo with the
scattering angle 6 fixed away from the forward
direction.®

The object here is to find a class of (nonsingular)
central potentials ¥(r) such that (1.1) is valid for the
corresponding scattering amplitude. It is obviously
necessary that the first Born approximation #; obey
the order relation (1.1) in order that (1.1) be valid for
# for sufficiently weak potentials.® One can easily see
that /, obeys (1.1) for potentials which are even in r
and analytic in r in a strip about the real axis. For
definiteness we limit our considerations to potentials
which are analytic in the region |Im r| < ry and have
the following representation for positive r, 7:

V(r) =J;wd<xo‘(ot) exp [—a(r* +1d)].  (1.2)

The following conditions are placed upon the weight
function o(«):

(a) o(a) is continuous for « > 0, and it possesses
a finite derivative almost everywhere,
(b) 1im+ og(e) = 0, and

a—0

(c) the integral
Q(e) =f doat |o’(«)] exp (—ae) (1.3)
0
converges for every € > 0. We then show in Sec. 2 that

4 The original Orear formula for elastic p—p scattering, do/dQ ~
exp {—p | /po}, inevitably takes exchange scattering processes into
account. One could include an exchange potential here to approxi-
mate the physical behavior more closely, but such is not our purpose.

5 High-energy, large-angle scattering is discussed in T. T. Wu,
Phys. Rev. 143, 1110 (1966). For consideration of the related concept
of Schrodinger equation models of form factors, see S. D. Drell,
A. C. Finn, and M. H. Goldhaber, Phys. Rev. 157, 1402 (1967).

% The fact that ¢, satisfies (1.1) is by no means sufficient to guar-
antee that # satisfies (1.1) as well!

? Conditions (a) to (c) here are sufficient to guarantee analyticity
in the strip.
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if the potential has a representation of the form
(1.2) subject to conditions (a) to (c), the corresponding
scattering amplitude satisfies relation (1.1) for every
b < r,. An example of such a potential is V(r) =
2+ r)ymforn> L

One may obtain more restrictive asymptotic bounds
upon the scattering amplitude at higher energies if
further conditions are imposed upon o. With this in
mind we place an additional condition upon o.

(d) The following integrals converge:

) j " da o),
(ii) J:Odoc o' (@)].

It is shown in Sec. 2 that if ¢ meets conditions (a) to
(d), the scattering amplitude obeys relation (1.1) with
b = r, as well. Furthermore, in Sec. 3 additional
conditions are placed upon o.

(e) o(x) > 0 for « > 0.

(f) For positive « there exists some positive number
A such that ¢'(«) + A20(x) > 0.

(g) For some number p > 0 the following integrals
converge for 0 < g < p:

o) f * doot o),
(ii) L ® daa™ (),
(iif) f ® ot |0 ().

(h) Finally, for p as chosen above there exist
constants K and o, such that o(o) > K/a?t2 for
o > .

Under conditions (a) to (h) upon ¢ we will establish
the following limit involving the scattering amplitude
J(k, 0) and its first Born approximation #;(k, 0):

lim Z(k, 0)/ Ak, 0) = 1.
Oﬁ;xogd

It should be noted that the limit of the above
function at fixed momentum transfer is known to be
unity. for a wide class of potentials. However, the
limit here is taken at fixed angles of scattering.

An example of a potential meeting conditions (a)
to (h) is V(r) = Zexp [—ay(r? + r2)?], for which the
corresponding weight function is

o) = (32m¥)(xo/a) exp (— a3f42).

In Sec. 4 we speculate that relation (1.1) is valid

for members of a broader class of potentials than (1.2).

2. OREAR BEHAVIOR

We define the scattering amplitude through the
usual asymptotic limit of positive energy solutions of

(1.4)
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the time-independent Schrodinger equation. From
the Schrodinger equation one can obtain the familiar
Born series expansion of the scattering amplitude,
which is written formally as follows:

f=V+ VGV + VGVGY + -+, (21

where V is the potential and G, is the free Green’s
function. We factor the potential formally through the
relation V(r) = v,(r) - vy(r). Then the Born series may
be written formally as

f=V+o,Wo, +v,Woh, + -+,

where W = v,Gyv; .
Let us define the Fourier transform of the potential
through the relation

V(q) = (2m)~° f dxV(x) exp (—ig-x).  (2.3)

The Fourier conjugates to v; and v, are similarly
defined. Then the formal relation (2.2) can be written
as

£k, k) = 27r2[—~V(k’ s

(2.2)

+J.dp1 dpave(py — K)W(py, po)oy(k’ — py)

—fdpl dps dpavy(py — K)W(py, p2)

X W(pg, p)or(k’ — ps) + -+ ] (2.2)
Then the expression for W is
Wipn, ) = () [ 252 (s
(2m)
X exp {—i(pz+ X1 — Py Xy)}
X exp {ik [x; — X,|}/[x, — X,|.  (2.4)

We now require that the potential factors v, and v,
have representations analogous to (1.2) with the same
number r, as in the representation (1.2), i.e., there must
exist p; and p, such that

o(r) = L wdocpé(oc) exp [—a(r® + )] (2.5)

The object here is to obtain a relatively simple bound
upon W. Let us use the representation (2.5) of the
potential factors to write

W(ps, po) = i f f do. dB pu()pe(B)
0

X exp [—0((7‘2 + rtz))]‘](“a ﬂ, D1, Pz)
The following bound upon J can be obtained:
(o, B, prs pol < 4%k + B) ()
X exp (—(p; — p)*/4(x + B)).
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As a result we derive a bound upon |W| of the form

[W(ps, p)| < QZ—)

oo [ 424 1) 104
i [ 8t

— (22— P[4 + B)].
(2.6)

The bound (2.6) of W may be used to bound each
term of the Born series (2.2) in a relatively simple way.
Let us define functions #; and 7, by the relations

B0 = f " do Il exp [—a(r* + 1]

and let U(r) = 6,(r) - 5(r). We define the Fourier
transforms of 7, and 7, as in the relation (2.3) for 7.
Then the scattering amplitude may be bounded by the
following series:

(k' — k)|
< 2#2[|V(k' — K|

X exp [—(a +B)r

+ K f dpy dpgiops — K)K(py — Pk’ — py)
+ k2 f dp, dp, dpsty(p, — k)K(p, — py)

x K(py — po)iu(k’ — po) + -~ ]

The following theorem on convolution integrals may
be applied:

f dp, : * * dp,ai(q — p)ax(pr — p2)
X ag(ps — Pa)* ** An(Ppy — Pn)an+1(Pn - 1)
= @m~ f dxa,(¥)ag(X)as(x) - 8,(X)apia(x)

X exp [~i(qg — )~ x],
where a,(p) and a,(x) are Fourier conjugates as in
(2.3). Thus the modulus of the scattering amplitude
may be bounded as follows:

|f(k, D)
< 2772|V(A)I
K(x) . (K&Y | .
+ i f dxvl(x)vz(x)l: +( X ) + ]
x exp {—iA - x}
<27 V()
1 K(x) AL
+ 4#k| f dxVU(x) T (KooK (KGJK] exp {—iA - x}.

@2.7)
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We can easily obtain the following expressions for
U(x) and K(x) from their definitions:

V(x) = f f doc dB | py(@)] |pa(B)|

x exp {—(x + H)(* + D}, (2.8)
K(x) = = f f dec dB |py(@)] p(B)] [ + Bt
0

x exp {—(a + B)(r* + rD}. (2.9)
The formal manipulations of this section can be justi-
fied if the following conditions are met:

(a) V(r) is finite for real r and is square integrable
as a function of r.

(b) There exists a suitable factorization v, - vy = V
such that v,(r), v4(r), 5,(r), D5(r), and VU(r) are similarly
well-defined and square-integrable functions of r.

(c) K(p) given in Eq. (2.6) is absolutely integrable
as well as square integrable over p.

(d) The conjugate function K(x) given in Eq (2.9)
is bounded uniformly by some number C for all real
x.

With these four conditions one can prove that the
steps leading to equality (2.7) are rigorous and that
the right side of (2.7) is finite for k > C.

One can prove that conditions (a) to (d) of this
section are met if there exists a factorization v,(x) -
vy(x) = V(x) such that the corresponding weight
functions p; and p, satisfy the following conditions:

L9 = L " daot | Pyl exp(~ae)  (2.10)

must be finite for every ¢ > 0. We will prove (d)
explicitly, to illustrate the method used in proving the
others,

K(x) < K(0)

=t f f dadBl(x + B)IEAT 1p@) 1B

X exp [—(x + B)rg].
We let r2 = €, + ¢,, where ¢; and ¢, are both positive.
Thus

K(©) = = f " daot | ()] exp [—ocer]

x [ 88 150} exp 1—pe. B, .

One can show that #(«, f, €,) < (e€;)™, so that
K(0) < (m}/eey)L,(€;)Ly(ey), Which is finite.

We will now show that if conditions (a) to (c) of Sec.
1 are met, a suitable factorization subject to (2.10)
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exists. We choose to factor V(r) into

u(r) = (7 + i)V (),

v(r) = (r* + 1y
One can see explicitly that p,(x) = 1 and p, and o are
related by the integral equation o(a) = [% dfp,(p).
Under the assumption of conditions (a) and (b) of
Sec. 1 the solution to this equation is

(2.11)

pi(2) = o'().

Condition (c) of Sec. 1 implies the finiteness of
L,(e), whereas one may explicitly calculate L, to obtain
L,(€) = I'(})e~t. Thus this factorization meets con-
ditions (2.10), so that the inequality is valid under
conditions (a) to (c) of Sec. 1.

We wish to obtain a bound of the form (1.1) upon
the scattering amplitude. For that purpose we rewrite
the inequality (7) as

|f(k, B)]
< (4m)7

f dx‘U(x)l:I - 5%)] Texp (—ib - x)

2.7)
Since U and K depend only upon |x| and are even in
|x|, we can rewrite the inequality as

|f(k, D)
= (2iA)™

f:dm(x)[l _ Ii(;—)} " exp (idx)

(2.12)

We pick.a number b < r,, and we distort the contour
of x integration in (2.12) from the real axis to the line
Im x = b. (We will see that such a distortion is justi-
fied.) We let € = r2 — b2 Then for real s we can use
(2.9) to show that

|K(s + ib)] < K(ib)

= =[x a8 1@l 1B L2 + DI

x exp {—(« + p)e}-

One can use Eq. (2.10) above to show that K(ib) is

finite, just as it was used to prove condition (d) above.
Now we require that k > 2K(ib), so that
1 — k71K(s + b)Y < 2.

Then one can use (12) to bound [f| as follows:
17,81 < ZEEED[™ ] + 1) 10(s + i),

We can use relation (2.8) for U along with condition
(2.10) to show that the above integral is finite. Since
it is independent of A and k it is just a number. The
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following bound is thus valid for sufficiently large A
and k:
|f(k, A)] < Cexp {—Ab},

from this one can easily deduce the order relation (1.1).

We now wish to show that conditions (a) to (d) of
Sec. 1 allow us to prove an order relation such as
(1.1) with b = ry; the previous considerations allow
us to conclude this only for b < r,. The approach is
to distort the contour of integration in (2.7) to that
given by Im r = b. One can hope to do this only if
U and K have “finite singularities’ at » = ir,, such as
the branch point in the function exp {—o,(r? + r2)}}.
We can show that U(<r,) and K(cr,) are finite if the
following integrals of p, and p, are finite:

I - ﬁ " da | A (2.13)

G, = f doot | py(a). (2.14)
2 0 2

It is necessary to require that k& > 2K(<r,), so that
|K(u + ¢ry)| < 3k and

[l — E7K(u + crg)]t < 2.
We now distort the contour in Eq. (2.12) to obtain

|f(k, A)] < A7 exp {—Ab}
Xf_w du(lu| + ro) [V(u + ¢ry)l.

We use Eq. (2.9) to obtain the bound
[U(u + <ro)l

< j f doc dB |py(@)] | po(B)] exp {—(o + B)u®}.

This leads to the following bound upon f:

1£(k, A)] < A~ exp {—Arg} f f do B |py(@)] | po(B)
0

X {(&+ B + [mfa + Bltro).
Under the assumption of conditions (2.13) and (2.14)
one can show that

|/, D] < Cexp {—Ary) (2.15)

for sufficiently large k and A. Thus (1.1) is valid for
b=r,.

In view of the previous requirement (2.10), the
integrals (2.13) and (2.14) can fail to converge only as
o — 00. One can show that if (2.10) and (2.13) are
finite integrals, then (2.14) must of necessity be finite.
It is thus necessary to show that conditions (a) to
(d) of Sec. 1 are sufficient to guarantee a factorization
for which the integrals are finite. We will establish this
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by exhibiting such a factorization of ¥, namely

o) =@+ rs + 2)V(),

v(r) = (* + g + 27,
where 4> 0. Under the constraint ¢(0) = 0, the
corresponding weight functions are

pr(®) = o'(@) + Mo(a),
pal%) = exp {— 2},

Then I, < [§ do|o’(«)] + 22 [ da |o(a)|, which is
finite by condition (d). One can calculate I, explicitly
to obtain the finite result I, = A2,

We have thus shown that conditions (a) to (d) are
sufficient to guarantee that the scattering amplitude
obeys the following relation as k — o at fixed angles:

Ak, 0) = Olexp (—2kr, sin 36)].

3. CONVERGENCE TO THE FIRST
BORN APPROXIMATION

In this section we will show that the scattering
amplitude asymptotically approaches the first Born
approximation at high energies for a fixed angle of
scattering for potentials which satisfy conditions (a)
to (h) in Sec. 1. That is, for this class of potentials we
will show that

F(k, 6)

m k.0 =
Bkgxc:d/l( s )

The proof of this will be carried out in two steps.
First we will show that there is a number K’ such that
for sufficiently large A,

|/:(A)] 2 K'A~ exp (—Ar), 3.1

where p is given in condition (g). Then we will show
that

| £(k,A) — A(B)] = o(k~ " exp {—Ar}) (3.2)
as k and A become large. One can then conclude (1.4)
from (3.1) and (3.2). We will give the explicit proof
here only with p = 0; however, the proof can easily
be extended to p > 0.
We begin by proving (3.1). By our conventions

(1.4)

3 po
—/() = lf dao%o(x) exp {—(arg + A%40)}.
4 Jo
Now since o(x) > 0 and o(«) > Ko2 for « > «,,
3 ®
—A(B) > -774—Kf doo? exp {—(arg + A%40)}
3 ©
> 145 f dao® exp {—(ar, + A¥4a)}
0

- f " doat exp {—(ar? + A¥)).
0

JOHNSON

One can show that

faodom_; exp {—(ard + A?/4a)}
= O(exp {—A%40,} = o(A™ exp {—Ary))

asA— o0
and the first integral may be calculated explicitly:

f do® exp {—(arh + A%/4a)}
0
817ér3
A3
(We have used some well-known properties of modi-
fied Bessel functions in the last step.) Thus the in-
equality (3.1) is proved.
For the proof of inequality (3.2) the following lemma
is useful.

= 2[2r /AT Kg(Ary) >

exp {—Ar,}.

Lemma: If p(«) is defined for a > 0 such that the
integrals

I

Jowda p(#)] and ﬁ " dat |p' ()]

converge, then ap(a) is bounded for 0 < « < oo and
op(a) — 0 as o — co. Further, if we define

U(q) =Lmdaa“%p(a) exp {—(ars + ¢*/4)},
then U(q) = o(q 2 exp {—qr,}) as ¢ — .

We will now outline the proof of Eq. (3.2).

We consider potentials defined by Eq. (1.2) with
o(a) being restricted such that the following integrals
converge:

W | dxlot
G [ dxlo,
(iii) Lmdaaw'(a)],
(iv) L " da |0(3).

It is convenient to choose the factorization v, * v, =
¥V such that v, and v, are given as follows:

pr(@) = o'(@) + Ro(@),

pa() = exp {—A%al.
One can then use properties (i) to (iv) to show that
the following integrals involving p, and p, converge:

W) f " doat | p} (@),
(i) f ® da i),
(vii) f " dao | py(a)].
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We rewrite Eq. (2.8) in the form

V(x) = L 0odou?(oc) exp {—a(x*> + 1)}, (3.3)

where
5(o) = f "B 1)) 1o — B

Now (v) and (vi) are used to prove that the following
integrals involving & are convergent:

(viii) L ® dad(),
(ix) L * doa |5(@)].
Let us rewrite Eq. (2.9) in the form
K(x) = ﬁ wdocl(oc) exp {—a(x* + r3)}, (3.4)
where
o) = [ abmaiple — B 1 = D 1B

We use (v) and (vii) to prove that the following inte-
grals converge:

®) f ® da (),
(xi) Lwdaoc [A()]-

Let us define a weight function =(y, k) through

K(x)l:l — —I%(%)]— =J:°dy'r(y, k)exp {—a(r* + 13)}.

3.5)

It is easily shown that 7 is related to 4 by the integral
equation

) = 40) + f 4Bty — Byr(B, k).

A number k, is then defined as the maximum of these
three finite numbers:
(a) The Lu.b. of ad(e) for 0 < o < 0,8

(b) f * doo | 1),

© J da(e).
0
Then if we define a function 7(y) = 7(y, 2k,), we can
show that
0L 1y, k) < 7(y) for k > 2k,. (3.6)
It can be shown through the use of (x) and (xi) that

8 This is guaranteed to be finite by the lemma of this section.
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the following integrals involving 7 converge:

(xii) f “ay 1),
(xiii) f "y IF .

It is convenient to write the inequality (2.7) as
follows:

| Ak, ) — A(D)]
—1 _K(_L —iA .
< (4mk) f dxU(x) T (K exp {—ilA - x}.
2.7)

We insert the representations (3.3) and (3.5) into this
equation and explicitly perform the integration over
X to obtain

£k A) — £(D)]
ﬂé ) 0
< f () f dyr(y, KB + )

x exp {—(8 + y)rs — AA(B + »)}. (3.7
Let us restrict £ to k > 2k, and use the inequality
(3.6) to rewrite (3.7) in the form

|/, 8) = A(B)]
< i’% L""dozoc‘%lu(oc) exp {—(ar? + A¥4a)}, (3.8)

where
() = f "dBE(By(o — B).

Now (viii), (ix), (xii), and (xiii) are used to prove
the convergence of the following integrals involving
7S

(xiv) f " dap(a),
(xv) f " o | @)

We can use the convergence of integrals (xiv) and (xv)
along with the inequality (3.8) in the lemma to prove
that

I/, D) — /(D) = O((kA%)™ exp {—Ary})

as A — oo, so that at fixed angle the relation (3.2) is
valid. Thus the limit (1.4) is proved. One can also
extend the proof to the case p > 0 with relative ease.

One can no doubt extend the validity of relation
(1.4) to a wider class of potentials. We will show,
however, that relation (1.4) cannot be so general as its
fixed-A counterpart by giving an example of a potential
whose second Born term is asymptotically larger than
its first Born term. (The higher terms cannot cancel
out this behavior for arbitrarily weak potentials.)
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The example here is the Gaussian potential, V(r) =
A exp { —ar?}, for which

A1(B) = —(n¥1/4at) exp {—(k%/a) sin? 36}
and
= (A*n[a?) exp {—k?/a} sinh {(k?/a) cos }0}/k cos }0
so that
lim é(k—’ez = 0.
fk, 6)

There is another type of potential for which the first
Born approximation oscillates, such as

k—> o0
0<f=<7w

V() = f da sin (m*«) exp {—a(r® + r3)}
0
= mim* + (©* + "1™
The corresponding first Born approximation is
F1(B) = —(7[2A) exp {~AA} sin (ud),

where [r2 — ¢m?]t = 1+ /u with the convention
A > 0. For such a potential the limit considered in
Eq. (2.4) cannot be defined unambiguously.

4. SPECULATIONS

In the previous sections we have considered
potentials of the form

V(r) =Lwd0(0‘(0() exp {—a(r* + )}  (12)

We have placed conditions upon o sufficient to
guarantee that ¥(r) is analytic in r = x + ¢y in the
region y* — x> <r?, and we have Shown that
| Ak, 0)| < exp {—2krosin}6} as k-—>oo at fixed
angles.

There are cases in which this bound is economical,
as is seen in Sec. 3. On the other hand, in the case
considered at the end of Sec. 3,

V(r) = m*m* + (©* + 1’17,
we saw that /;(A) = O(exp {—2A}) as A — oo, where

PORTER JOHNSON

A= [3(r2 + (r4 + m"L. This potential is analytic in
the strip |Im r| < A. We are thus led to speculate
about potentials which are analytic in a strip.

Let us consider the representation of potentials
which are even in r and analytic in the strip [Im r| < b,
namely

V(r) =J:)mdow(oc)[(r2 + (b + i) + (b — i)H]™
(.1

The formal expression for the first Born approximation
is

_ . m _ @ (o sin Ao
Ai(®) = — Z exp {~ b} fo dur(a) 22 (42)

We see that /,(A) = O(exp {—Ab}) as A— o if
either of the following integrals of = converges:

J:Oda {(a)], 4.3)

f dao™ |7(a)]. (4.9
0

One can show that if conditions (4.3) and (4.4)
are satisfied the second Born approximation satisfies
the relation

fe(k, 6) = O(exp {—Ab})

as k — oo for a fixed angle 0.°

One is thus led to conjecture that the scattering
amplitude itself exhibits Orear behavior for potentials
of the form (4.1) with reasonable conditions such as
(4.3) and (4.4) placed upon the weight function 7.
We have not yet been able to prove this conjecture.
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An integral equation, originally derived for a perturbation expansion of the n-point scattering function
(Pugh’s equation), whose (finite) solution is the renormalized perturbation result, is derived here as an
exact “strong” equation for the nth operator derivative of the scattering operator, whose vacuum

expectation value is the n-point function.

1. INTRODUCTION

An integral equation, Eq. (3) below, for a perturba-
tion expansion of the n-point scattering function was
derived by Pugh from the postulates of asymptotic
quantum field theory, and the assumption that off the
mass shell the scattering function should be represen-
ted by the ¢ products, rather than by the time-ordered
products of interpolating field operators.! This
assumption was later shown to be a consequence of a
generalization of Bogoliubov’s causality condition.?
Pugh’s equation is remarkable, because with an
appropriate choice of boundary conditions, its
solution is identical with the result of renormalized
perturbation theory, and no divergent expressions are
encountered in obtaining it.?

After the development of the differential calculus of
quantized free-field operators (operator derivatives),*
it was shown® that the exact two-point operator,
the operator whose vacuum expectation value is the
exact two-point function, satisfies Eq. (3), with n = 2.
The case n > 2 was not derived, perhaps because
Eq. (3) with n = 2 does not imply Eq. (3) with n > 2,
and so a derivation must start further back in the
theory, perhaps because the notation was not concise
enough to write compact equations with arbitrary n,
or because it did not appear to be necessary, as the
n = 2 operator equation was enough to yield the
renormalized results.

- Now that there is interest in nonperturbative solu-
tions of Pugh’s equation,® it is desirable to have an

* This work was begun while the author was at Syracuse Univer-
sity, and part of it was done while he was attending the Summer
Theoretical Physics Institute at the University of Colorado, whose
hospitality is gratefully acknowledged.
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exact derivation. Furthermore, in his discussion of
boundary conditions for Pugh’s equation, Wray® was
obliged to inquire rather deeply into the diagram
structure of the n-point operator. He did this by
means of an equation similar to the operator equation
to be derived here, but valid only as an operator
distribution over a left space of test functions. The
equation we derive here is not so restricted. We show
that Pugh’s equation is satisfied, for any n, by the
exact n-point operator, as a ‘‘strong” operator
equation (in the sense to be explained) and therefore
by the exact n-point scattering function.

In Sec. 2 we quote some of the results of asymptotic
quantum field theory (AQFT) which are necessary
for our derivation. In Sec. 3 we derive Pugh’s equa-
tion, and in Sec. 4 we verify a necessary condition for
the existence of solutions. We confine our discussion
to neutral self-interacting scalar particles, although
there are no obstacles to extending it to charged
particles and up to spin one.

2. RESULTS OF AQFT

In terms of the (assumed) complete set of normal-
ordered products of asymptotic incoming free-field
operators a(x) of physical mass m, satisfying

Ka(x) = (O — m?a(x) = 0, 0y

the scattering operator has the representation

S = %ﬁ—_l)"J‘ @(xy " X,): a(xy) -+ - alx,): (dx)™

n=0 n!
€)
If w(x, - - - x,) has a perturbation expansion

0
o x) =3 g0 x,),
r=0
then w” satisfies Pugh’s equation?

w(r)(xl S Xy) —fB(xl X V1t V)

X oy y A =270 x,), (3)
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abbreviated as

(1 — B)w"’(xl . xn) = l‘”(xl e xn)’ (3')
where
B = Z B,
A=1
and

By(xy " X3 Y1 V)
= (=K, - Kz,.[I_Il' 6(x3 — xDA(x,; — y,.)]
X AR(xl - .VA)

— (4)%1@(}2’ e,.l)Al CAL AT ()

in more concise notation. The symbols used mean

K'=K,  K,, 0;=0x]—x),
N =Ax;—y), Ap=Ar(x— ),
and the prime on the product sign means that j 3 A
in the product. The function A" satisfies the equation
BA(x; -+ x,) = 0, ®)

which is independent of Eq. (3). A is determined by
the functions w'® with s < r, and is therefore known
when it appears in Eq. (3). Since B is idempotent,
ie.,

f Byt Xl yic yBs - yaiza -z )d)
= 6).uB).(x1 Ctt Xps 21t Zn)a (6)

so that B? = B, a necessary condition that a solution
of Eq. (3) exist is that Eq. (5) be true, and independent
of Eq. (3).

If the exact w(x, * - - x,) is determined uniquely off
as well as on the mass shell (by dynamical assump-
tions), and is a symmetric function of its arguments,
then the mth operator derivative of S is given by*

m 5ms _ ] (_i)n
da(x,) - - - da(x,) n=0 n!
X f (X " Xpyytct Ya)t a(yy) e e a(yn): (diy)”,
a

and this is the operator whose vacuum expectation
value is w(x, - ' x,). We also have, from the
definition of the operator derivative,

(009, 81 = ~i [AGx = BSfBa('y. ()
If one defines a current operator
J(x) = iS*8S/da(x), 9
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then it is possible to construct an interpolating field
operator

Alx) = a(x) + a(x), (10)
where
o) = = [Anx = ipaty, (D
such that 4(x) satisfies the field equation
K, A(x) = j(x), (12)
and has the correct LSZ asymptotic limits’
Fl a(x), y* — — o
Alx — y) — A(y)d®y — ’ 13
[ae=n G amay [T X T 0y

So far we have been describing an operator func-
tional called the operator derivative. If we wish to
define an operation, called “differentiating with
respect to the operator a(x),” and denoted variously by

0 =0, =6,
da(x,)

(14

such that this operation commutes with ordinary
differentiation and integration, then we must distin-
guish between operator equations which are “strong”
and those which are “weak” with respect to this
operation.® Strong equations are those which yield
valid operator equations after operator differentiation
any number of times. Weak equations are those
which do not. It is most convenient to take the field
equations (1) and (12) as weak,%® all other operator
equations in this paper are strong, and therefore no
special symbol will be used to indicate this fact.
The strong equation we will derive is

(1 — B)imS*8, -+ 6,8 = A(xy -+ x,), (15)

where A is an operator which satisfies the strong
equation

BA(x, - x,,) = 0. (16)

Eq. (16) is to be proved without using Eq. (15).

3. DERIVATION OF EQ. (15)

We start with a representation of the scattering
operator which follows from the postulates of AQFT
and the strong Bogoliubov causality condition

8,(5%6,5) = 0, an

7H. Lehmann, K. Symanzick, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955); 6, 860 (1956).

8 T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967).

?J. G. Wray, Ph.D. thesis, Syracuse University, 1966 (unpub-
lished). Chen, who first recognized the desirability of having a weak
free-field equation, chose to take Eq. (10) rather than Eq. (12) as
weak. We adopt Wray’s choice, however.
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outside the forward light cone of (x — y). It is'®
im™S*é,---4,S
=K, K, 2 (=1)T,(A™ )T (a"). (18)
1=0

The compact notation on the right-hand side of
Eq. (18) is meant to indicate that each term in the
sum over [ is itself a sum over all partitions of the
variables x, - - * x,, , [ of them assigned to operators a,
the remaining m — [ to operators A. 7,(7_) is the
positively (negatively) time-ordered product. Thus

T:h(Ao) =1, Tj:(Al) =A4, T(A™")= T (4, - A,
T(A™ T (a) = k}'_flnml Ay Aa

T, (A™ )T (a%) (19)

m

= > T4y Dy, Am)T—(aklak,):
k2> k121

etc. The symbol Ayy,,... indicates that the factors
Ay, Age, + - - are missing from the product 4, - « * 4,,.
A; = A(x;). We may set 4 = a + « in Eq. (18), and
rearrange the terms, obtaining

m—1

T, (4™ = 3 T(a"a™"). (20)

u=0
As in Eq. (18), each term in the sum over u is itself a
sum over all partitions of the m — / variables x,,
u of them assigned to operators «, the remaining
m — I — u to operators a. For example, with u = 1,
one of the terms in the sum over partitions is

m—1

T-’-(aam—l—l) = kzl T+(a1'1aiz e “"k e aim—-l)'

If we change the summation index in Eq. (20) from
utou’ = m — p, substitute in Eq. (18), and exchange
the order of summation over / and y’, we have

imstdl “e 6mS

m u
= K™Y Y (=1)T(«"*a* )T (a"). (21)
u=01=0
We are now able to apply a remarkable ordering
theorem, relating the time-ordered product to the
multiple-retarded commutator,* which in the present
case and in the present notation is

u—l
T (@™ *a* ) = Y [a, T.(™ T (a* ). (22)
=0
Each term in the sum over k is as usual a sum over all

partitions of the (u — /) operators a(x,), k of them
appearing in the k-fold retarded commutator, defined

10 See Ref. 9. This expression is weakly equal to the @ product of
Ref. 1.

11 F, Rohrlich and J. G. Wray, J. Math. Phys. 7, 1697 (1966).
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by

[a, T+],Ici’ = [a’ [0, T+]’ICE—1]Rs

la, T,Jg = [a, Ty, [0, Tk =T,,

and the remainder in the 7', product. There is no sum
over permutations of the operators a(x) in the multi-
ple retarded commutator, since it is already sym-
metric in them by virtue of the Jacobi identity.
Substitution of Eq. (22) in Eq. (21) and exchanging
the order of summation over k and / yields

(23)

m B
imS*(Sl PRRE 6ms == sz Z[G, T+(am—”)]§2
#=0 k=0
u—k

X 3 (~D'T (@ )T (a)

m—1

= K" §=;0 la, T.(«" )]k,

since, as will be shown in the Appendix, the sum over
! in the second-last equation vanishes, except when
# — k=0, in which case it is the unit operator.
Note that there is no term g = m, since for such a
term

(24)

[a, T, (N = [a, 11 = 0.
Extracting B
The integral kernel B is contained in the term y =
m — 1 of Eq. (24). We exhibit the dependence of this
term on the variables x;, x;,: - x,, one at a time,
making use of Eq. (8). Thus

[a, o] = ﬁlta, (eI

]
M3

[a, [a(xy), a(x D) RIn2

~
]

1

1l
M3

6, f Ax; — yola, —id, o(x,) a2y,

(25)
We repeat this procedure for x,, etc., and in the
end use Eq. (11), and obtain

K™fa, ol
= (="K 3 T GHJ‘A‘ Ak AT
i=1 j=1

X 0yt Au;, T dvmj(y/l)(d4J’)m

m
= im-lng)ﬁl' "A;." '6mj}.'

i=1

(26)

The operator derivatives commute with each other,
and therefore may be written in any order, so we may
abbreviate

8,008, =0" b,---A,---6,
It will be clear from the context which variable is to

—_ 6m—1.
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be omitted in ™). From the definition of j(x),
Eq. (9), we have

— 8™, = 6™ (5*4,8)
m—1

= S*O"S + 3 (B*S*)}o™1*5,8). (27)
k=1

Each term in the summation over k is itself a sum of
all partitions of the operator derivatives &y, -+, A,

*, 6,,, k of them differentiating S*, the remaining
m — 1 — k differentiating 4,S. This completes the
extraction of B, as we now have

K™[a,a]i" = Bims*oms
+ lmz B, Z (0" S*)(8™1%5,8), (28)
i=1 k=1

so that we can rewrite Eq. (24) in the promised form

(1 — B)i"S*6™S = A, + A,, (29)
where
A=K S W TG GO
and
Ay = 1"‘le > S (@SHEmS). ()

4. PROOF THAT B(A, + A,) =0

Since B is idempotent (Eq. (6)), BA, = A,.
Therefore, in order to show that B(A, + A,) =0,
we show that BA, = —A,. We will have to integrate
expressions of the form

JAI...AQ..

Although the sum over 4 and u of all such expressions
is symmetric in the variables not integrated, x; - - - x,,,,
and therefore independent of the order in which the
integrations are performed, any one such expression
will depend on the order of integration. However, if
we perform the integration in the fixed order y, * - * y,,
for each such expression, we will not run the risk of
losing or duplicating terms when we sum.
We start with g = 0. Then

- A™K™a, T (™) p(d*y)™.

f AL« A APKPT, () d )™
=jA‘---A§e---A’"fl--‘Al---j,,Jz(d‘y)'", 32
where
K;T(o)) = K, T la(yy) - - - 2y},
and
Je=j()

Proof: Integrate y, by parts. The volume term
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vanishes, and the surface terms are

f AR, T (M

= ( hm — lim )
¥’ — AT

XJ‘A 3y o)’y

= fim  [A' L T NGy,
1/1°~*-—oo ayl
- lim A‘-««-—at(yl)T+ ar Hdy, . (33)
v Pt 3

Since « = 4 ~ a, the asymptotic condition, Eq. (13),
together with (8), (9), and (11) give

f AGx = ) 3% a(y)d“
0, ¥ -
- j A(x — 2)j(z)d*z, y®—> + o, G4

and so
f AK, T («Mdy,
= f AYGIT,((yp) - - - aly)d'y;. (35)

We continue, integrating in order y,---y;,, and
obtain for the left-hand side of Eq. (32) the expression
“JiakK,, T Kym

J’ Al...Ab
X T(a(yy)  + - a(pIN@'y)™.  (36)

The integration by parts over y, gives only a volume
term,

f ALK, Ty(a(y)) - - -y 'y,
= - +(°‘(x;)°‘(y,1+1) e “(.Vm)), 37

because both surface terms vanish, at )] — —c0
because of Eq. (34), and at y} — + oo because of A}.
Once past y,, we may integrate the remaining y
variables, as in Eq. (35). At the end we substitute
Eq. (11), and obtain (32).

For the general case, we show that

fA‘-» AL

. 'Amj1

- AmKMay, Ty ) (d'y)™

e Jmi AP
(38)
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The operator product on the right-hand side of (38)
is the same product of currents as in Eq. (32), but
Jui = j(s) is replaced by the operator derivative
i6,; = i6/da(y;;), which acts on everything to its
right, i=1,2, -+, u, k; # A, and the expression is
summed over all such possible substitutions. The
proof is by induction. We suppose that Eq. (38)
holds for any » < m, and any » < u, such that
v < n, (If v > n there would be no such expression.)
u = 0 is a special case of Eq. (38). First we extract
y, from the left-hand side of (38). The method is
similar to that of Eq. (33). We have

la, T M) = [a(y), [a, T" ™))% 1r

+ la, T(a(y)e" ")z, (39)
When we integrate y; by parts the volume term van-
ishes, and the surface integral of the term with a(y,)
vanishes when »? — —oco, because of the retarded
commutator in which it appears. When »? — + 0,

the retarded commutator with a(y,) becomes an
ordinary commutator, so

f A(x — YK, la(y), Qlzd"y

lim (A — y) a—i— [a(3), Q1d°y

“—r

1110—'+oo

= f A(x — 2)id,Qd’z,
according to Eq. (8). The surface integral of the
term with «(y,) vanishes when y§ — — 00, because
Ty (a(y)o™ ) = Ty (™ #)a(yy),
[a’ “(h)]R . [a’ a(yl)]s'

(40)

so that

[a, T (a(y)e"™ )] — F(@)a(yy) + G(a)[a, «(y)],

where F and G are operator functionals of a, and Eq.
(34) applies. When y} — + 0,

la, Ty (a(ya™ M) — [a, a(p) T, (2™ M)
— a(y)H(a) + [a, a(y)]zK(a),

and the retarded commutator with «(y,) vanishes, so
that

f A'K, [a, Ty #)]zd"y,

. ? i
== Jm &5 ala, Ty,

= f AY(yla, Ty ) edy, 1)
Putting together (39), (40), and (41), we have
f A'K, [a, T, (a™*)]dty, = f AY(i8,, [a, T,(a™#)s

+ j(y)la, T+(°‘m_l—”)]‘1‘e)d‘y 1. (42)
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Since y; has been extracted from the multiple
commutator, it is not included in the sum over
partitions of the remaining variables indicated by the
notation. Therefore, either 4 < m, or Eq. (42)
reduces to 0 = 0. In the former case we may set
u—1=v», and m—1=n Then » <n, which
satisfies the induction hypothesis following Eq. (38),
so that

f AZ-.. A’i% o AM sz - Kv,,.[aa T+(am—u)]4;1( d4y)m—1

C Am

8y, o (A"
3

In the term [a, T, («™3#)]z, we extract y, in the
same manner that we extracted y; from Eq. (39).
We obtain an equation like Eq. (42), but with x,,
1, and m replaced by x,, y,, and m — 1, respectively.
Since y, and y, have now been extracted from the
retarded commutator of this term, either uy < m — 1
for this term, or there is no such term (i.e., m = 1),
and the induction was completed at the step before
this one. In the former case we set » = u — 1, and
n=m— 2; theny < n, and [a, T («™1#)]5? satis-
fies the induction hypothesis. This gives us an equa-
tion like (43), except that it starts with A® and j,
instead of A? and j,, and the sum over the indices k;
starts with k, > * - - >k, > 3. These considerations
reduce the left-hand side of Eq. (38) to

X {551 Z' ja iak, s e 561:,. Jmda
kl‘> e >k322
m
+ j1id, z, Ja* iak. T, idk“ *Jmia
k,‘> e >ke>8
+jueKs -+ Kula, T"*)Ri(d'y)™ (44)

In the same manner we may extract the variables
Ya© " yi1, satisfying the induction hypothesis at
each step, and further reduce the left-hand side of
Eq. (38) to

1,..A4 ...

f AY--- AL
A—1 m
x{3 ¥
Kimlky> - - >ky>lks

...... . .jmjl
+ j]. T 'ji.—lKl e Km[aa T+(am—)’+1_p)]“R (d‘)’)m-
(45)

12 The case u = m is excluded anyway by Eq. (24).



724 MARTIN

Integration over y, produces only a volume term,
[Abute, T2y,

—la, Ti(a(x)a™ " )]k, (46)
The surface terms vanish, at y?— 4 oo because of
A%, and at y° — —oo because y, appears only in
terms [a(y,), Ol and a(y,). Once past y,, we extract
in turn the remaining y variables, and at the end
apply Eq. (11), thus finally reducing the left-hand
side of Eq. (38) to

J'Al...A%..

m—pu+1 m

.Am Z: Zr jl...iékl...,

k1=1 k> -+ >ka>k)
iy, fad A", (4T)

which is equal to the right-hand side of Eq. (38),
because
m—u+1 m mn

3 ¥ = ¥

k1=l kp> e >k ke >k 21

The last step in the extraction, namely

fAm—-u+l R Ame—u+1 e Km[a’ a]‘;i(d4y)“

- f APt AT 8 i8,a(x)(dY),
(48)

offers no difficulty, since there are no volume terms,
and assigning any variable to « except x; makes the
surface terms vanish as well.

Having verified Eq. (38), we supply the missing
factors in front that make up B;, sum it over 4 and g,
and so obtain

m—2 m

z zl jl"'iakl"'a

u=0 kl‘> st >k>1

m
BA, =3B,

A=1
“Jmia. (49)
We can use an interesting property of the m-point
operator,?

AT Y
ky

imS*o™S = (j, + ial)(jZ + iaz)' ot AA o (m+ iam)j).

m
=jiAaimda +k§1'.i1"'i5k' “mla

m
! jl".iakl...iakg..'jmjl
ke>k12>1
+ e e + i"'_la"'_ljl
m—1 m
— jl"'iék,"':"'i‘sk""'jmjza
u=0ky> - >k 21
(50)
to obtain
BA, =Y B,(i"$*6™S — i" o™ Y).  (51)
A=1
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But from Eq. (31),
Ay =i™3 B, (6™(S*6,S) — S*6™S)
A=1

=3 B,(i™'6™ Y, — i"S*s™S)
i=1
= —BA,.
This completes the proof that BA = 0. This was
shown to be a necessary condition for the existence

of a solution to Eq. (15). That it is also a sufficient
condition can be seen' by observing that

imS*"S = A
is a solution of Eq. (15).
ACKNOWLEDGMENTS

It is a pleasure to acknowledge several stimulating
discussions with Professor F. Rohrlich and Dr. J. G.
Wray, and to thank Professor Rohrlich for critically
reading the manuscript.

APPENDIX
Proof that
Zo(—l)lT+(a’"")T_(a’) = Opm,0- (A1)
1=
For m = 0, we have
T (a)T_(a" = 1. (A2)

For m = 1, we have
T(a)T(a") — T()T()=a—a=0 (A3)
Now proceed by induction. Suppose that (A1) holds
when m is replaced by m — 1. Exhibit a,:
T(a")T(a") = T (a, 0" HT(a)
+ T (@™ HT (a,a"). (Ad)
The ordering theorems!*
T (a,a") = T\ (a")a, + [a,, T, (a")]r, (AS)
T (a,a") = a,T_(a") — [a,, T (a"]g
enable us to write
> (=)' (a™HT(a")

=0
m—1

= zgo (—I)Z(T+(am_l_l)a1 + [ay, T+(am_1_l)]R)T_(al)

+ 3 (D@ @ TG ~ lay, T

= go (=D{(T(@a™ " Yay

+ [a,, T+(am—1_l)]R)T_(a’) - T+(a"‘—1—')
x (a,T(a") — [ay, T(a)]R)}

m—1

= Eo (—=D'ay, T(a" )T (a)]g

- [al, S (—1)’T+(a"‘_l_‘)T_(a')]R =0,
=0
by hypothesis.

(A6)
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The notions of strong convergence of state vectors, introduced by Haag in his formalism of axiomatic
quantum field theory, are extended to the case of vectors with an infinite number of particles but finite
densities. Some general properties of nonequilibrium distribution functions are derived without the use
of power series expansions or any other simplifying assumption. An integral representation is obtained
for the distribution functions which makes it possible to discuss their behavior for small and large energies
and to obtain some information about the singularities of these functions when continued analytically.

I. INTRODUCTION

Many of the basic problems in the theory of non-
equilibrium statistical mechanics, e.g., approach to
thermodynamic equilibrium, discovery of H-type
theorems, irreversibility, etc., are reflected in the
lack of understanding of the nature of a nonequilibrium
system. Many of the attempts® have been devoted to
the quantum-mechanical derivation of the Master
equation for the occupation probability function
which leads, in the limit of infinite time, to statistical
equilibrium. Also, the early work of Bogoliubov? has
been partially successful in obtaining a Boltzmann-like
equation for the distribution function.

Beginning with any available theory, the distribution
functions should, in principle, be calculated from the
fundamental equations of the theory. However, the
analysis of the kinetic equations of Bogoliubov, for
example, is limited to power-series approximations.
On the other hand, derivation of the Master equation
is based on assumptions which are not entirely well
understood. It appears therefore suitable to obtain
statements about these distribution functions without
undue use of additional assumptions.

In this work, a new formalism in axiomatic quan-
tum statistical mechanics is presented which unifies
two, so far directly unrelated, disciplines: axiomatic
field theory and statistical mechanics. This unification
is accomplished by the strong convergence of states in
axiomatic field theory, as introduced by Haag? in his
collision theory, when properly applied to statistical
mechanics.

The main results are, therefore, the derivation of an
integral representation for nonequilibrium distribution

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

! L. van Hove, Physica 23, 441 (1957).

2 N. N. Bogoliubov, J. Phys. (U.S.S.R.) 10, 256, 265, 1946;
English transl. by E. Gora in Studies in Statistical Mechanics, J. de
Boer and G. Uhlenbeck, Eds. (North-Holland Publ. Co., Amster-
dam, 1962), Vol. 1.

# R. Haag, Phys. Rev. 112, 669 (1958); Suppl. Nuovo Cimento
14, 131 (1959).

functions as the superposition of equilibrium distri-
bution functions with different temperatures and
conclusions resulting from it.

II. ASYMPTOTIC CONDITIONS IN FIELD
THEORY

Before considering the asymptotic condition rel-
evant to quantum statistical mechanics, it seems
proper to summarize rather briefly the existing asymp-
totic conditions in field theory. Presently, the main
emphasis in axiomatic quantum field theory is the
construction of scattering theories. As will become
evident in what follows, the fundamental assumptions
of field theory are extensible to quantum statistical
mechanics and this extension, together with its
implications, forms the basis for the present formal-
ism.

The Lehmann, Symanzik, and Zimmermann*
(LSZ) formulation of quantized fields introduced an
asymptotic condition for the field operator A(x) as a
basic requirement of the theory. Let {f,(x)} denote a
complete and orthonormal system of positive fre-
quency solutions of the Klein-Gordon equation

, (O — m)f(x) =0, 1)
with .
. 3 a *
—i f PR o 156) = by, @
where
£0Z 170 = 5100 2 1200 - 1502 10, )
T oxg ! T ox,”? P ox,
The field operator A(x) is given by
A(x) = Z {£(04%() + £} (x)A** (1)}, )
with the coefficients
A =i| dxA(x) 9 X ). 5)
zo=1 axo

LSZ postulate the following asymptotic condition for

4 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 11, 342 (1954); 1, 205 (1955).
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normalizable states:

lim (@, A41)¥) = (0, A%, o, ¥),

t=F oo

(6)

where the right sides are independent of time. The
fields Ay, o¢(x), constructed by means of (4) with the
aid of Af .y, satisfy the interaction-free Klein—
Gordon equation (1). The operator 4%¥, when acting
on the physical vacuum, creates an incoming particle
with wavefunction f,(x) and the set of all such states
may be used to construct a complete orthonormal
system.

The smeared-out field 4%(¢) satisfies a weak con-
vergence asymptotic condition® and establishes the
particle interpretation of the quantum field theory of
LSZ. 1t should be clear that this formulation of field
theory is tailored to scattering theory and in fact the
main results of the LSZ formulation are analyticity
properties of the S-matrix elements and the many-
particle structure of Green’s functions.

The method of Haag? consists in deriving a time-
like asymptotic condition for scattering states from the
assumed asymptotic behavior of the vacuum expecta-
tion values at spacelike directions. Suppose A(x) is
an “almost-local operator field” which creates a state
of a single particle from the vacuum. Then the main
result of Haag is that the vector

V.,=4,® A4, (0]0), )
formed by acting on the physical vacuum with the
operators (5), asymptotically, [¢[— oo, approaches
a constant vector. This limit is independent of the
choice of A(x) and is given, for the case - — oo, by
Joy « + @), ie., the Heisenberg state with an
initial configuration of » particles which move before
they collide according to the wavefunctions f, - - f, .
The approach to the limit is in the sense of strong
convergence.®

The existing asymptotic conditions in field theory
are, therefore, mathematical requirements which in-
sure every system of interacting particles to tend away
from each other with increasing time so that, after
a sufficiently long time, the particles are essentially
free from each others influence and, consequently,
behave as interaction-free particles. It is clear that
such behavior holds only for a system of a finite
number of interacting particles (zero density). There-
fore, the asymptotic conditions discussed so far are
restricted to situations peculiar to scattering theory.

The basis of the formalism presented in this work

5 Let f and g be any two elements in the Hilbert space H. Denote
by (f, g) the scalar product of f and g, and the norm of fby || f].
The sequence {fn} converges strongly to f if || f, —f[ —0. It
converges weakly to fif (fy,00) — (f; &) for any g in H.
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is to extend the notions of asymptotic conditions®
to the case of vectors with an infinite number of
particles but finite density. These vectors are outside
of the realm of interest of scattering theory but are of
fundamental value in statistical mechanics.

Let the quantum-mechanical system, described by
the ket vector |y,), be specified as completely and
accurately as is possible in accordance with the general
laws of the theory. One makes the following basic
assumptions:

(1) States of statistical equilibrium, represented by
the ket vector |&,), exist for the dynamical system.

(2) Every state |y,) approaches, in the limit
t — + o0, a unique equilibrium state |£,).

The limit in (2) is in the sense of strong convergence,

e — 16X =0 (t— ), @®

i.e., the norm of the difference of the vectors in Hilbert
space tends toward zero as f— +co. Note that
contrary to the usual conception of equilibrium in
statistical mechanics, |£,) represents a single state of
the system and 7ot an ensemble of states. Interestingly
enough, these types of equilibrium states have also
been considered by Friedrichs and are described by
myriotic fields referred to as equidistribution states.?

An interesting feature of myriotic fields is that they
do not possess vacuum states.” The vacuum state plays
a central role in field theory as applied to scattering
theory. However, the absence of vacuum states for
myriotic fields is rewarded by the existence of equi-
distribution states’ which, as remarked above, are
analogous to the equilibrium states introduced in the
present formalism.

The use of states with an infinite number of particles
avoids the so-called “Poincaré cycles.” However, the
Hilbert space of such vectors is not the same as the
Hilbert space usually assumed in axiomatic quantum
statistical mechanics. The space assumed in these
theories is an infinite-dimensional separable Hilbert
space.® The more general spaces considered in the
present formalism are referred to by the mathe-
matician as nonseparable Hilbert spaces.®

¢ The more suitable asymptotic condition for this purpose is that
of Haag (strong convergence approach). The LSZ asymptotic
condition can be partially justified by Haag’s formalism. See K.
Hepp, Commun. Math. Phys. 1, 95 (1965).

7 K. O. Friedrichs, Mathematical Aspects of the Quantum Theory
of Fields (Interscience Publishers, Inc., New York, 1953), Part IV.

8 See, for example, G. G. Emch, J. Math. Phys. 7, 1413 (1966).
In this reference, for Hamiltonians having a purely continuous
spectrum one can no longer describe physical states by means of
density operators (in a separable Hilbert space). This is contrary to
the present formalism where density operators are used but are

bounded self-adjoint operators in a nonseparable (see Ref. 9) Hilbert

space.
® A Hilbert space is separable if it contains a denumerable com-

-plete orthonormal set; it is nonseparable if complete orthonormal

sets are not denumerable. F. Riesz and B. Sz.-Nagy, Functional
Analysis (Frederick Ungar Publ. Co., New York, 1955), Chap. II.
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II. INTEGRAL REPRESENTATION

The formulation of quantum statistical mechanics
introduced in the preceding section, though rather
axiomatic, can be readily used to derive a useful
integral representation for nonequilibrium distribution
functions.

The state [yp,), as well as its asymptotic state {&,),
contains a maximal amount of information which,
in principle, can be deduced from experiments. How-
ever, in practice no such measurements are ever
attempted. From the asymptotic nature of the equilib-
rium state |£,) one has that the set of states {|&,)}
forms a complete set with which to describe the
dynamical system.!® Therefore, for any operator 4,

A= 525,{50(6“ &l 4180 )

Suppose one considers operators which limit
themselves to gross measurements of the equilibrium
system. These operators are functions, for example,
of the density, energy, and momenta. Then there
exists a group of states |£,), denoted by A, which give
rise to the same values for these measurements. One
usually refers to the states |£,) as microscopic states
and to the operators for gross measurements as
macroscopic operators.!! Let G be one such macro-
scopic operator, then

, ((el)
G lEY = G(A
(&1G &Y (4) & €A

otherwise.

(10)
=0

This requirement truly defines the subspace A as a
macroscopic state since it implies that the expectation
value of any macroscopic operator is the same for any
vector in A. The subspace A can properly be called a
macroscopic equilibrium state.

A constant is certainly a macroscopic operator.
One obtains the following macroscopic orthogonality
condition for the equilibrium states:

N _ 1 (§ed)
(&] &) N, (& ch) (
=0  otherwise,

where N, represents the number of microstates con-
tained in A. It is clear that one must assume N, to be
finite.

For any macroscopic operator, (9) becomes

G= ; 5,G(B), (12)

10 Strictly speaking, the completeness of the equilibrium states is
an assumption on the same fundamental level as the axiom of
completeness of the asymptotic states is in axiomatic quantum field
theory. See D. Ruelle, Helv. Phys. Acta 35, 147 (1962).

11 See, for example, G. Emch, Helv. Phys. Acta 37, 532 (1964).
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where
Sa =2 €& (13)

£eA

teA
G(A)(Tr S,) gives the expected value of the operator
G for states contained in A and S§,/Tr S, represents
the projection operator onto the macroscopic space
A. In fact, one has from (11) and (13) the usual
equations for a projection operator,

SASAr = SA'SA = 0 (A # A,),
(S5/Tr )% = SA[Tr S,.

(14)
(15)

For macroscopic states, the microscopic completeness
relation reduces to, after using (11) and (13),

Sa_
A Tr S,
which expresses macroscopic completeness.

The above considerations, although usually asso-
ciated with notions in statistical mechanics; have
purely field-theoretic foundations. These arise when
considering the infinite number of degrees of freedom
ascribed to a field.”®* In general, for states with an
infinite number of particles, one must consider
systems with an infinite number of degrees of freedom,
thus making the infinite degrees of freedom problem
in field theory of interest and relevance to statistical
mechanics.

In studying the representations of the commutation
(or anticommutation) relations for an infinite set of
oscillators, one encounters peculiar behavior when
considering the unitary transformations between
different representations.’* The Hilbert space, which
is formed by a nondenumerable infinity of repre-
sentations of the commutation relations, is divided
into mutually exclusive equivalence classes. Any
vector in a given class differs from another in the same
class by at most a finite number of occupation num-
bers (so that the vectors in one equivalence class all
have the same density). Whereas, vectors from different
classes differ by a denumerable infinite number of
occupation numbers and, consequently, have different
densities and satisfy the orthogonality condition (11).
Also, the vectors from two different equivalence
classes are connected by an improper unitary operator,
i.e., operators whose matrix elements, between
vectors in the same class, vanish. The macroscopic
operators introduced above are proper operators;
therefore, the matrix elements of these operators
satisfy Eq. (10).

=1, (16)

!z R. Haag, Kgl. Danske Videnskab. Seiskab, Mat.-Fys. Medd.
29, No. 12 (1955); see also G. Barton, Introduction to Advanced
Field Theory (Interscience Publishers, Inc., New York, 1963), Chap.
13,
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Since the dynamical system has constant energy

£y = e B|E), (17

where H is the macroscopic Hamiltonian operator of
the system and is obtained from the microscopic H by

=358 1 (s, (18)

A N3

the equilibrium state |§,) is a stationary state?
Hence, G(A) and S, are actually time independent. In
what follows the subscript ¢ will be dropped in de-
noting the equilibrium state. Also, the stationary
nature of the equilibrium states implies the com-
pleteness of the set of states {|£)}, thus corroborating
this same conclusion from the basic assumptions (1)
and (2). It is worth remarking that the energy eigen-
value for an equilibrium state depends on the state
through A,

A1f = LU g (19)
Ny

where

1& =318 (£€d).

teA

(20)

One can relax the maximal description of the system
by introducing the density operator®

Sa
D, = P(A), 21
¢ gTr s, (D) @D
where D, is normalized by the condition
TrD, =Y P(A)=1. 22)
A

P,(A) represents the probability of finding the system in
the macrostate A at time 7. The density operator D,
describes the state of the system macroscopically and
Eq. (21) is consistent with expression (12) for an
arbitrary macroscopic operator.

It is interesting to note that the density operator
D, cannot satisfy the equation of motion satisfied by
the usual (microscopic) density operator.’ [Unless in
the trivial case when there is no time dependence.]
This can be seen directly from (13) and (19).

Consider the expected value of a microscopic
operator G for the system described by the density
operator D,

(G),=TrGD, =3 GAP(A)Tr Sy, (23)
A

13 p. A. M. Dirac, The Principles of Quantum Mechanics (Oxford
University Press, London, 1959), Chap. V. )

14 For the derivation and study of the equation of motion, see
Ref. 11, Sec. 3.
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where the last equality follows from (10) and (11)
and G is the macroscopic operator obtained from G by
(18). Equation (23) expresses the desired resuit. It
represents the expected value of any microscopic
operator for any macroscopic state of the system as a
superposition over the expected value of the same
operator in different macroscopic equilibrium states.1®

A specific microscopic operator is the ordinary
operator for the number of particles of field theory.
For the case when the momentum of the particles can
take on any continuous value,

n(p) = a*(p)a(p) 24

plays the role of the density of the number of particles
in three-dimensional momentum space. The operator
at(p)[a(p)] creates [annihilates] a particle with mo-
mentum p and given mass m.1¢

As an illustration, consider a gas of infinite mass.»?
The steady-state velocity distribution function for such
a gas is given by

f(V) = Ae—(m/ZkT)(v—-vo)g’ (25)

where all possible steady states are obtained by giving
different values to the five independent constants 4,
T, and v,. The general representation (23) becomes,
for this simple case,

1@, ) = f f f A BN geo T A £ dy, AT dA,
(26)

which expresses the nonequilibrium distribution
function for the gas as an integral over the equilibrium
distribution functions. The function a(v,, T, 4; 1), to
be referred to as the spectral function, is positive
definite and by (22) is normalized to unity:

ﬂfa(v,,,T,A;t)dvodeA=1. @7

Since the probability of finding the nonequilibrium
system in the equilibrium macrostate specified by 4,
T, and v, must be finite, it follows that the worst
singularity which can occur in the spectral function
a(vy, T, A; ) is a Dirac 6 function and represents
the attainment of equilibrium.

The explicit dependence of f(v,?) on the other
variables, e.g., spatial dependence, has been omitted
in (26). All such dependence appears only in the spec-
tral function.

15 This result is reminiscent of the Lehmann spectral representa-
tion in field theory; see H. Lehmann, Nuovo Cimento 11, 342 (1954).

18 For simplicity, the states of a particle are characterized here by
only a four-momenta. Of course, in general, there are other quanti-
ties to be specified, e.g., charge, spin, etc.

17 J. H. Jeans, The Dynamical Theory of Gases (Dover Publ., Inc.,
New York, 1954), Chap. 11.
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It is clear that (26) is not the most general repre-
sentation possible for this type of particle. In general,
one will have to consider the equilibrium distribution
function which includes mass rotation. This intro-
duces an additional integration over three variables.
Similarly, the case of a gas in the presence of an
external field can be so treated provided one uses the
appropriate equilibrium distribution function, and so
on.

Recently, the work of Suchy’® was brought to the
author’s attention and, with it, that of Weitzsch,!®
where the integral representation (26) is introduced
as an ansatz and used for the study of strong shock
waves. In the original work of Weitzsch the spectral
function need not be positive definite; its sign, for
different ranges of the variables, is determined by the
actual solution of the equations of motion. The above
derivation insures the positive definiteness of the
spectral function.

Suchy was able to relate, via the integral repre-
sentation (26), existing approaches for the treatment
of processes with weak deviation from equilibrium
with methods for the study of strong deviations. In
the former class, a series expansion of (26) yields
Grad’s expansion?® of the distribution function in
tensorial Hermite polynomials. In the latter, one has
the “two-stream” Gaussian distribution used by Liu
and Lees** for Couette flow and the anisotropic
Gaussian distribution used by Chew, Goldberger, and
Low?? for a plasma in a strong magnetic field.

The derivation of the integral representation (23)
gives an understanding of the ansatz of Weitzsch. First,
the ansatz is shown to be a consequence of a formalism
based on fundamental physical assumptions. Second,
the derivation brings forth the physical meaning
of the spectral function and obtains its positive defi-
niteness. Third, it generalizes the ansatz to other
statistics.

IV. INFINITE HOMOGENEOUS MEDIA

In the previous section, an integral representation
for nonequilibrium distribution functions was derived.
The representation (23) gives a physical insight into
the constitution of a nonequilibrium system and may
be of considerable aid in understanding nonequilib-
rium phenomena.

8 K. Suchy, 3rd International Rarefied Gas Dynamics Symposium,
Vol. I.(Academic Press Inc., New York, 1963), p. 181.

1% F, Weitzsch, Ann. Physik [7] 7, 403 (1961).

20 H. Grad, Commun. Pure Appl. Math. 2, 325 (1949); 2, 331
(1949).

21 C.-Y. Liu and L. Lees, Rarefied Gas Dynamics, L. Talbot, Ed.
(Academic Press Inc., New York, 1961), p. 391.

22 G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc.
(London) A236, 112 (1956).
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For an infinite homogeneous medium, the repre-
sentation can be linked to the theory of Laplace

transform from which questions of mathematical

origin, but with important physical consequences,
can be studied. These include, the class of functions
which can be so represented, the question of the
uniqueness of the spectral function, etc.

A. Maxwell-Boltzmann Statistics
The equilibrium distribution function for a system
of particles satisfying Maxwell-Boltzmann statistics
is given by

nXB(E, T) = 2N/n(1/kT) E e BT, (28)

where N is the total number of particles and is inde-
pendent of the temperature T. The representation (23)
becomes, when using (28) and after a trivial change
of variable of integration,

b3 M-B Y
27TN k n E(%E, t) =J; e—Er pM—B(T’ t) dT, (29)
where
_ o™ B[(kr) 2, t
0 = = )

T

Equation (29) establishes the equivalence between the
representation and expressing the distribution function
as a Laplace integral.

From the general theory of the Laplace transform,
one obtains the following?3:

M

[ "M ) dr = oo, 31

v

(2) WB(E, t)/E} is an analytic function of E for
Re (E) > 0and it is completely monotonic for E > 0,

(=1

2 [ )

>0.
oe*l E! } -
(3) The (spectral) function pMB(r, 1) is uniquely
determined by the distribution function n™MP(E, 1)
and is given by

Gy = K f‘“wem nP(E, 1)

T dE,
2N 27i E

(33)

e—ico

where the path of integration is the line £ = ¢ and ¢
is infinitesimally small.

One can determine the small energy behavior of the
distribution function from (31). Suppose nMB(E, 1)

8 D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, N.J., 1946), Chaps. II and VII.
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is finite at E = 0, then, for (0 < ¢ < ),

M-BE {) ~ EFf(E (E—0) 34
n=(E, 1) f()(OSﬂS%), (34)
where
_ -5 (E—0)
1/f(E) = o(E™) 3> 0)
and 35)

(E—0)
E) = o(E
JE) = oE (n > 0),
with & and 7 infinitesimally small.

If one knows the distribution function as an analytic
function of the energy, from (33) one determines the
spectral function and, through the representation (23),
the expected value of every macroscopic operator
which refers to these particles.

Finally, suppose p™B(r, ) possesses the following
asymptotic expansion for high temperature and
fixed# ¢t (0 <t < ©0):

P )~ SOt G <T <k (6)

then for £ — o0,%

%, M-B ©
(m)°k n (#E,t)wzcnr‘(n+l).
2N E E#ntl

Therefore, a nonequilibrium distribution function can
vanish more slowly than an equilibrium distribution
function as the energy approaches infinity. The integral
(33) can be evaluated by enclosing the singularities to
the left of E = ¢ by a suitable contour and making
use of Cauchy’s residue theorem. The value of the
integral over the contour (at infinity) vanishes by (37)
and one is left with only the contributions due to
poles and cuts to the left of E = e.

(37

n=0

B. Bose-Einstein Statistics

For concreteness, a system of photons will be
considered in studying the implications of the repre-
sentation (23) for a system of particles satisfying
B-E statistics. The analysis, of course, will not differ
if other cases are considered.

The equilibrium distribution function for a system
of photons is given by Planck’s radiation law:

87 E2 1

nED =3G9

The representation (23) becomes, after a change of

¢ The value of $ for the lower bound follows from the normaliza-
tion condition j‘:’ o¥B(T, 1) dT = 1 [see (27)]. If, in addition, one
requires the total energy to be finite then (4 > $).

8 G. Doetsch, Theorie und Anwendung der Laplace Transformation
(Dover Publications, Inc., New York, 1943), Chap. 12.
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integration variable,

cahs k BE © pB-—E(T t)

CL X gy =| £ D20
h L nNE D) fo e dan (39)
where

_ B El(kr) 1, 1)
— .

PP, 1) = (40)

It is clear from (39) that for fixed 1 (0 < ¢ < ),
PP, ) —>7* (2> 0). (41)

One has, then, that the singularity of the right hand
of (39) at E =0 is a simple pole, just as for the
equilibrium distribution. Thus, the low frequency
photons are in equilibrium with the temperature

o
f To®XT, t) dT.
0

For the general Bose gas, the preservation of this
singularity is of interest in studying Bose condensation.

The integral (39) represents, to the author’s knowl-
edge, a new mathematical transform which resembles
the Laplace transform and is studied in some detail
in the Appendix. It follows from the theorems in the
Appendix that

(1) [n®E(E, ))/E? is an analytic function of the
complex variable E for Re (E) > 0 and it is completely
monotonic for E > 0. [Recall that (¢* — 1) is
completely monotonic, see (32).]

(2) The spectral function ¢®2(T,7) is uniquely
determined by the distribution n®B(E, r).

In proving the uniqueness of the spectral function
by Theorem 4 in the Appendix, one must assume
a > 1 [see (41)]. This justifies taking a limit on the
energy variable inside the integral sign. For instance,

&K k

— nB¥E, 1) NJ; e E B Y, ) dr (E— o).

(42)

Therefore, the representation reduces to that for
M-B statistics, thus insuring the passage, in the limit
of high energy, of a quantum-mechanical nonequilib-
rium system to a classical nonequilibrium system.

Analogous results as in (37) will follow from (42)
if the function p®%(r, r) has the behavior expressed
in (36) (with 4, > 1). If one requires the total energy
to be finite, then 4, > 3.

The spectral function o® (T, ) is determined only
by a knowledge of the high-energy behavior of the
distribution and, together with (39), gives the be-
havior for all energies. This may seem somewhat
surprising, but one must remember that quantum-
mechanical features are already contained in the
equilibrium distribution and hence in (39).
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C. Fermi=Dirac Statistics

The proofs of analyticity of the distribution function
and uniqueness of the spectral function follow closely
those for B-E statistics.

Consider the equilibrium distribution function where
the number of particles is conserved,

D(E)

¥-D
Neq (E’ T) = e“eE”‘T + 1 ’

(43)

where D(E) is a known phase-space factor and u is a
function of T determined by normalization. Equations
(23) and (43) give

F-D w F-D
kn (E,t)= (’T,t)dT, (44)
D(E) o e*eE + 1
where
F-D -1
PF_D(Tg t) = a [(k;-) 3 t] . (45)
As before,

(1) n*P(E, t)/D(E) is an analytic function of E
for Re (E) > 0 with the possible exception of the
line Re (E) = y, where it may be discontinuous.

(2) The spectral function ¢"P(T,¢) is uniquely
determined from the distribution n*P(E, 7).

To obtain (2) and, consequently, the approach to
the classical limit at high energy, one must assume

pF (1, 1)

1+ ¢ -0 o

If one considers the nonrelativistic2® form for the
energy E in (43),

e—u(r) > 7.%.
=0

(47)
The normalization to unity of ¢®°(T, t) requires

pF0(r, 1) = ™ (x> —1). (48)
T
Therefore, for this case (46) is satisfied.

The existence of a line of discontinuity in (1) is
associated with the large = behavior of e*™ [see
Appendix]. One can resort to the previous nonrela-
tivistic case for a determination of the exact value of
y. Since this case holds rigorously for all fermions in
the limit of zero temperature?®

en(r) > "

700

, = 2 [3 N

2mk 4w V]

26 E. Schrodinger, Statistical Thermodynamics (Cambridge Uni-
versity Press, New York, 1964), Chap. VIII.

s (49)
where

(50)
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Therefore, if the spectral function ¢¥2(7, t) does
not vanish identically in a small neighborhood of the
absolute zero, then n*P(E, t)/D(E) will be discon-
tinuous at £ = y.

V. CONCLUSION

The basic attitude in the present work is to shift
one’s attention from the problem of “the approach to
equilibrium” to that of obtaining general information
derived from such behavior. A field-theoretic formu-
lation of quantum statistical mechanics is presented
and is used to obtain an integral representation which
allows for the study of low- and high-energy behavior
for nonequilibrium distribution functions, as well as
analyticity and singularity structure in the complex
energy variable. For instance, the pole at £ =0,
which appears in the Bose-Einstein equilibrium
distribution, persists for the nonequilibrium case.

The theory of quantum statistical mechanics
presented is based on purely axiomatic field-theoretic
notions. Since axiomatic field theory is developed as a
relativistic quantum theory, the formalism and results
obtained are easily extended to relativistic quantum
statistical mechanics.

The question of the equations of motion satisfied by
the probability distribution is not studied here, but is
shown to correspond to quantities considered by other
authors. The representation for the distribution
function prescribes the form for the initial distribution.
Description not in accord with such representation
cannot lead to equilibrium. For example, for M-B
statistics an initial description of the particles by
means of a Gaussian distribution in energy is not
allowable.
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APPENDIX

The integral transforms (39) and (44) are special
cases of the general transform

© f(H)dt

G(p) = b 24 A0

(A1)
where A(?) is a known (real) analytic function of ¢.
The function f(¢) is real and together with its first
derivative is sectionally continuous. For A(¢) = 0,
(A1) reduces to the ordinary Laplace transform.

In the domain (0 < ¢ < o0) the range of A(?) is
contained in (—1 < A(¢) < o). Further, the function
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A(f) is of exponential order at infinity,
(1 o)

A1) = o(e™) (A2)
(y >0).

Let p be a complex variable with real and imaginary
parts o and 7, respectively. One now proves Theorem 1.

Theorem 1: If

¥ f()dt

u.b
0 e? + A1)

0=u=<w

=M< (d60>7), (A

then (A1) converges for every p for which ¢ > g,, and
® f()dt
0 e” + A()
(P _ po)e(p+po)t+ Z(pe”‘— poepot)

Y — (dA/dt)(e” — e™")
- L G B dt,
(A4)
where
SWds << AS
py = [ L% LB 0si<@), (9
the integral on the right-hand side of (A4) converging
absolutely.
Definition (A5) for S(¢) gives
Ff@dt _ R+ AR) gopy
o e”+ M) "+ AR)
(p — Po)e™ ™' + A(pe™ — poe™)
E — (dAjdb) (et — e
+], s Ao dt.
(A6)

By (A2) and (A3), the first term in (A6) goes to
zero as R — oo for ¢ > o,. Hypothesis (A3) implies

r

(P - po)e(po+1z)t+ Z(pe”‘— poepot)

v L

Dot — ePl
<M < ©
o)
The last inequality follows from (A2). Hence, the
theorem is proved.

Corollary 1: If

* f(dt

| =N <® @<n (&)

u.b
o<

then (A7) converges for every p for which ¢y < ¢ < 7,
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and
® f()dt ® f@)dt
o e+ ) Jo e+ A(D)
(P _ p)e(po+p)t+ l(pe”t— Do ezzot) t
+ f ™) 81y dt,
’ (A8)

— (dA[dt) (e — e
(eﬂt + 1)2
where f(t) is defined in (A5), the integral on the right-
hand side of (A8) converging absolutely.
The proof of this is exactly the same as that of
Theorem 1.

Theorem 2: If the integral
© f)dt
6 = | L0
et + A1)
converges at p = ¢, + i7y, and if H and K are any
constants for which H > 0, K > 1, then the integral

(A9) converges uniformly in the region A defined by
the inequality

lp = pol < K/J dt [e‘ﬂo“” + |4 —

di
dt

(A9)

0’+0’0
a—ao

=< Go]/(e“‘—w)?

(6 2 00). (A10)

Let G(p) converge at p = p,. Define §(¢) as in (AS5).
One has that

ot

+2

* f()dt
R e’ 4+ A(Y)
(P _ po)e(po+p)t+ l(pe”t— poep"t)

=f°° — (dA[dt)(e®t — &)

& (e®t + A)?

X [B(D) — BR)] dt (o > dg > p). (A11)
Let R, > H be such that

B — < ek 7R A

(' > Ry).
This follows from the convergence at p, [see (A3)]. If
R > Ry, (All) gives

® f(n) dt
R e” + A1)

< i f dt |[[(p — po)e® ™t + A(pe™ — poe®)
R
— (dA[dt)(e™ — e**h][(e** + A)?|
<<lp- Polf d’[ oot 4 |3 ZE 20 ot

U - Uo
42|94 ] /(e” 1Ap?

(o > ay).

dt (A13)
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For p = p,,
© f(H)dt o R €
S | = — < —=<e (Al4
= 4 20 |B(e0) — AR < - <€ (A14)
So that for all p in A,
v fmadt
T

which proves the theorem.
An analogous theorem can be proved for oy <
o<y

Theorem 3: If the integral

_[* f@)adt
o) = o e”' 4 A(t)

converges for ¢ > ¢, < o, then G(p) is analytic for
o> 0,.

If p, is an arbitrary point in the half-plane ¢ > g,
one can surround it by a circle X which also lies in that
half-plane. By Theorem 2, the integral (Al5), and
hence the series

(A15)

X M™M St
=2 i

converges uniformly in K. Since each term of the
series is entire, one has that G(p) is analytic for
o > 0,.

Finally, one establishes a sufficient condition for
proving the uniqueness of the spectral function f(?).

(A16)

Theorem 4: If the integral

* f(#)dt

P =)

(ALT)
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converges for p = o, + iy, and if f(2)/[e?* + A(t)] is
a continuous function of both variables when ¢z > 0
and ¢ > 0y, then f(f) is unique.

By Theorem 1, (Al7) converges for ¢ > o, and
uniformly in A [see Theorem 2]. From the uniform
convergence of G(p) and the assumed continuity of
the integrand, one has that* G(p) is a continuous
function of p for ¢ > 0y, so that

6 —> @)= [ W (a19)

Since g(p) is the Laplace transform of f(¢), therefore
f(¢) is unique.

As an example to this theorem, let A(¢) be inde-
pendent of #. Now g(p) = pt[f(t) = 6(t)] gives
G(p) = [In (1 + A)]/Ap which does not satisfy (A18)
for (4 # 0). However, g(p) =e?/p with a>0
[f(t) = 6(¢t — a)] yields G(p) = (Ap)2In [1 + e~724]
which does satisfy (A18). In the first example the
continuity hypothesis on the integrand is not satisfied
since

lim lim J@ =0,
t-0" |p[—> o0 e’ + 2
f@ _ fO)

lim lim = .

plowt-0t e+ A4 142
One can reconcile this by requiring /(0) = 0. Note that
this requirement is not satisfied by the unit step

function 6(¢) of the above example which violated
the theorem.

27 E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, New York, 1962), Chap. IV,
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This is a sequel to a previous paper, designated as I, which dealt primarily with. nonequilibrium
systems. The ideas in I are extended and include the study of systems of interacting particles in equilib-
rium. An integral representation is obtained for the distribution function of interacting particles as a
superposition of distribution functions for noninteracting particles. In particular, it is shown that an
interacting Bose gas need not show Bose condensation and that the behavior near the point E = 0

cannot be more singular than that of a simple pole.

I. INTRODUCTION

In a previous paper,! to be designated as I, an
integral representation for a nonequilibrium distribu-
tion function was derived. The derivation is based on
some basic postulates, which are somewhat related to
the notions of strong convergence in axiomatic
quantum field theory ? and invoke no specific dynam-
ical assumptions.

The basic ideas contained in I are sufficiently general
as to entail, in some cases, a similar representation for
the equilibrium distribution function for a system of
interacting particles.

The study of this extension, together with some of
its implications, is the subject of the present work.
The notation follows I; equations labeled I refer to
that article. The reader is referred to I for most
bibliographic references.

II. INTEGRAL REPRESENTATION

One of the postulates in I concerns the existence of
states of statistical equilibrium. It is clear that these
states describe interacting particles and, for the pur-
pose of this paper, will be denoted by a subscript I.

In using the integral representation (I23), one needs
to know the expected value of macroscopic operators
for these interacting states. This is indeed a difficult
problem and deserves attention on its own right.
However, one can still obtain an integral representa-
tion in terms of noninteracting states for many cases
of considerable interest and with obvious advantages.

Let |&) and |&) denote the interacting and non-
interacting equilibrium states, respectively. Consider
the limit which lets all the coupling constants of the
interaction between the particles approach zero.
Denote this limit by lim. Then,

90
lim |&y) = [£). M
g0
The general conservation laws are independent of the

* This work was performed under the auspices of the U.S. Atomic
Energy Commission.

1 M. Alexanian, J. Math. Phys., 9, 725 (1968).

2 R. Haag, Phys. Rev. 112, 669 (1958); Suppl. Nuovo Cimento 14,
131 (1959).

interaction strength; therefore, quantities like the
chemical potential, for example, will appear auto-
matically in the noninteracting states.

Consider now the case where bound states are
excluded from the theory or cases where bound states
can occur but that the interaction strengths are
sufficiently small that there exist no bound particles
among the interacting particles. Then the set of
noninteracting equilibrium states {|£)} forms also a
complete set. Equation (I12) for every macroscopic
operator G becomes, with the present notation,

G =3 54,G(Ay). )

From the completeness of the states {|£)} one has the
similar equation
G= % SAG(D). 3)

Equating (2) and (3) and after multiplying both sides
by Sa /Tr Sa, and using (I114) and (I15),

Sa, Sa,Sa

GA) =3 ——G(A). 4

TrS,, @0 >A:(Tr Sa ) @ @
Finally, by taking the trace of (4),
Tr(S4,54)

G(A)) =Y ——G(A). 5

(Ap ; (TrSy)° (GAY) (5)

The representation (5) expresses the expected value
of every macroscopic operator for any interacting
state of the system as a superposition over the
expected value of the same operator in different non-
interacting states of the system. This result is quite
analogous to the representation obtained in I for
nonequilibrium systems. Actually, (5) is nothing else
than the change of basis from one macroscopic
covering of the Hilbert space to another. Its interest
lies, of course, in the meaning of the two different
coverings.

The coefficients in (5) are positive definite. Using
(I13) and (I111),

. Tr(Sa,Ss) = IM]%, (6)
with M=3 €& 0
tea'
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and
Tl' S AI = N AI,
where N,, denotes the number of microstates con-
tained in A;.
The representation (I123) for nonequilibrium sys-
tems with the present notation for interacting states is

G),= AZ G(ADP(Ay) Tr Sy - 9)
With the aid of (5) one obtains
G),= ; G(A)P(A) Tt S,, (10)

where the probability of finding the nonequilibrium
system in the noninteracting macroscopic equilibrium
state A is given in terms of the similar quantity for the
interacting state by

Pt(A) = Z Pt(AI) M . (11
& (Tr SAI)(Tr S4)
From (I13) and (I116) one has that
Tr (SAISA) — (12)
a(TrS AI)(Tr Sy
Therefore, (11) and (12) give
gPt(A) = AEI: P(Ay) = 1, 13)

thus establishing the representation (I23) obtained in
I in terms of noninteracting equilibrium states for
cases where bound states are excluded from the theory.

HI. INTERACTING BOSE GAS

The representation (5) for interacting states is quite
analogous to that of I for nonequilibrium states. In
fact, the results of Sec. IV of I for nonequilibrium
distribution functions hold true also for the equilib-
rium distribution function of interacting particles,
provided no bound states exist in the theory.

One case which was not considered in I is the general
Bose gas where the number of particles is conserved.
This differs more from the Bose gas with particle
nonconservation than one would think at first. This,
of course, is due to the possibility of Bose condensa-
tion in an interacting Bose gas.

The equilibrium distribution function for a system
of particles satisfying Bose-Einstein statistics where
the number of particles is conserved is given by

neq(E, T) = R(E)/[¢" VT — 1], (14)
where R(E) is a known function of the energy E of
the particle and u(N, T)is a function of the tempera-
ture T and the number of particles N, the functional
relationship being determined by normalization.?

The function u(N, T) is nowhere negative and

3 Here, as in I, one deals always with an infinite system (¥ — o,

N — o such that N/V is finite). However, for the purpose of this
section it is convenient to consider N rather than the density p.
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vanishes at the temperature at which Bose condensa-
tion occurs,

u(N, Ty) = 0. (15)
For lower temperatures,
pN, T)=0 (T<Ty). (16)

The particle distribution function for the inter-
acting system is obtained from (5),

® R(E)o(T, T")dT'
n(E, T) =J; N T ERT _ 1 °

(17)

Note that in (17) one has no integration over the
number of particles since the system contains a well-
defined, fixed number of particles. Hence, (17)
expresses n(E, T) as a superposition of systems of
noninteracting bosons with different temperatures T*
but the same number of particles N. This leads to the
following relation between noninteracting quantities:
N =ny(T)0(Ty — T') + n(T"), (18)
where ny(T’) denotes the number of particles in the
condensate? and N is independent of T".
The spectral function o(7, T") is normalized to
unity by (12),

(19)

In order to study the singularity structure of n(E, T)

one writes (17), with the aid of (15) and (16), as

follows:

n(E, T) (Teo(T, T)dT’
R(E) L |

f oT, T) AT’ = 1.
0

©® (T, T)dT’
1, eHNTIERT _ | )
(20)
The first term in (20) has a simple pole at E = 0 (see
Appendix) with residue

Ty
#(T) = k f T'o(T, T') dT".
(1]

2y

As in I, the order of the pole is established by the
normalization condition (19).

It is instructive to express the number of particles
in the condensate for the interacting system No(7T")
in terms of the spectral function. One obtains from
(18) and the normalization condition (19)

T )
N =f n(THo(T, T dT" + f n(T"o(T, T') dT"',
(22)
so that T
Ny(T) = f n(TNe(T, T") dT'. (23)

The A-transition temperature T is usually defined by®
No(Ty) = 0. (24)

¢ The explicit form ny(T") = N[1 —~ (T’/To)%] is obtained for non-
relativistic particles.

% This definition is only meaningful if Ny(T —¢) #% 0 for e
infinitesimally small and positive.
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The known general properties of the spectral function
(positive definiteness and normalizability) are not
sufficient to establish the uniqueness of 7, nor rule
out the possibility that (24) may hold identically for
all T;. The physical implication of the latter supposi-
tion is that an interacting Bose gas need not exhibit
Bose condensation.

Suppose the integral in (23) is continuous at 7 =
T,. From the positiveness of n,(7”) and o(T, T"), (24)
is equivalent to®

o(T,,TY)=0 LT < Ty. (25)
Similarly, «(7;) = 0 implies
o(T,,T)=0 (0<T'LTy. (26)

Hence, the vanishing of Ny(7) need not imply the
vanishing of «(7’), and conversely.

An upper bound can be derived from (17) for the
particle distribution function. Define the “tempera-
ture” T* by

T Ef T'o(T, T)dT' < o, (27)

0

where the bound on T* is a consequence of the as-
sumed finiteness of the total energy. From the physical
meaning of the spectral function as a probability
function, it is tempting to identify 7* with the tem-
perature T of the system. However, the integral (27)
will, in general, depend on other parameters of the
theory, e.g., the strength of the interaction, which are
quantities independent of the temperature T.

One gains an insight into the meaning of 7T* by
considering the implications of its vanishing. One has
from (17) and (27) that the vanishing of 7* requires
all the particles to occupy the level with £ = 0. With
this result in mind, T* is the analog, in the interacting
case, of the temperature in the ideal Bose gas. [In fact
in the limit 7* — O they become one and the same.]
From (17), (21), and (27),

n(E, T)|R(E) < kT*|E (28)
0 < o(T) < kT*. 29

The bound in (28) is reminiscent of that for the ideal
case and emphasizes the analogy given above.

Finally, the representation (17) is contained in the
class of integral transforms studied in the Appendix
of I. Consequently, (1) n(E, T)/R(E) is an analytic
function of the complex variable E for Re (E) > 0
and it is completely monotonic for E > 0 [see (I32)].
(2) The spectral function o(T, T”) is uniquely deter-
mined by the distribution n(E, T).

and

¢ Integrals containing the spectral function are understood in the
Lebesgue sense and (25) is said to hold almost everywhere in the
openset (0 < T7 < Ty).

MOORAD ALEXANIAN

IV. DILUTE BOSE GAS

Some of the features established above for systems
of interacting particles can be illustrated by an
exactly soluble model.” The model represents a weakly
interacting Bose gas, but strongly degenerate. Sum-
marizing the results of the model for temperatures
below the condensation temperature T,, the energy
spectrum of the elementary excitation is given by

e(p) = [E? + 2Ea}t, (30)

with E = (2m)~1p? and
a = [(4mah®)[m](N|V), (31
where a is the S-wave scattering amplitude. The

momentum distribution of the excitations is given by
the noninteracting Bose distribution

ﬁp — {e[f(p)/kT] _ 1}-—1 (32)
And, finally, the momentum distribution of the
actual Bose particles is given by

N, = A, + 4,7, + DI(1 — 43), (33)
where
A, = o e(p) — E — «]. (34)

Ideally, one would like to express (33) by the
representation (17) with a positive-definite spectral
function which satisfies (19). However, in the absence
of such a result, some of the implications of the
representation (17) will be verified by the distribution
(33).

From a knowledge of the distribution function one
certainly cannot verify the strong convergence®
required in (1). Nevertheless, strong convergence
implies weak convergence. This is satisfied by (33)
since

lim N, = (/4T — 1y, (35)
a—0

The distribution (33) is analytic for Re (E) > 0. The
behavior near the point E = 0 is given by

v — kT _ kT

N, £ (ZOLE)% + p(E) (T >0),
where p(E) is regular at E = 0. Note the simple pole
at E = 0. The existence and order of this singularity
agrees with the analytical properties of the integral
representation (17) (see Appendix). Also, the next
leading singularity is of the same form as the singu-
larity of the second term in (20) (see Appendix).
Finally, for large energies,

N, ~ o*/4E? (E large), 37

which agrees with a possible behavior already dis-
cussed in I.

(36)

7 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1963), Chap. 1.

8 The notions of weak and strong convergence are those en-
countered in functional analysis (see Ref. 5 in I).
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The introduction of quasi-particles (elementary
excitations) is a feature of the method used in
obtaining (33). However, the integral representation
(17) cannot discern the different effects of the inter-
action.

V. CONCLUSION

The fundamental postulate in the present work and
in I is that of strong convergence of interacting states.
In I this assumption was made in relation to the
asymptotic approach to equilibrium, whereas here
it relates to the approach to noninteracting states.
Strong convergence is sufficient for an approach to
equilibrium in the weak sense, i.e., the approach of
quantum-mechanical averages of (macroscopic) opera-
tors to the proper equilibrium values. This latter be-
havior is what may commonly be understood by the
phrase “approach to equilibrium.”

In axiomatic quantum field theory,? one has the
strong convergence of states which, in the limit
t — + o0, define asymptotic states of a finite number
of freely moving particles. These states are constructed
from the vacuum by the application of a finite number
of time-dependent operators on the vacuum state.
Further, it is clear from the nature of the operators
that the states are interacting states. Consider the
state constructed from the vacuum by acting on it
with an infinite number of time-dependent operators.
The work of Ref. 2 shows that asymptotically, for
t — + o, these states approach constant vectors. It
is clear, if not obvious, that such states cannot lead
(in the limit £ — 4 c0) to an asymptotic state of an
infinite number of freely moving particles. Herein lies
the connection of axiomatic quantum field theory to
the basic postulate in I and, hence, to quantum
statistical mechanics. The content of the postulate in
I lies in giving an answer to this question by stating
that any interacting state of an infinite number of
particles must approach an equilibrium state as
t— + oo, This view is consistent with theorems of
the nature of Poincaré’s in that a system with a finite
number of particles cannot approach equilibrium.

Note added in proof: The possibility of (at most) a
simple pole at E =0 in the distribution function
supplements Bogoliubov’s 1/k? theorem. [H. Wagner,
Z. Physik 195, 273 (1966); P. C. Hohenberg, Phys.
Rev. 158, 383 (1967).] Bogoliubov’s result is

N(T)ym 1

N Bp
for temperature f~1. The momentum distribution of
particles n(p) might have a singularity of the order
E~1 at least as E — 0 (but less than E-%). Tt is clear

that Bogoliubov’s theorem can be of use only for
0< T<T;.

n(p) 2 (r—0)
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Suppose Ny(T) # 0. From this one cannot conclude
that «(7T) # 0. However, if one invokes the theorem
then, for 0 < T < T,, one must have «(7) # 0.
Consequently, the result of the present formulation
requires the singularity to be precisely E~* as E—0
for0 < T < T,.One must then view the 1/k? theorem
of Bogoliubov as a condition on the residue of the
pole and not on the degree of the singularity.

APPENDIX

This Appendix is concerned with the singularity
structure of expression (20) in the neighborhood of
E=0.

From the positiveness of the spectral function

JTO o(T, T)dT' _ o(T)
0

AT = f

(A1)

where «(7T) is defined by (21) and is bounded for finite
temperatures [see (29)]. In (A1) the equality holds as
E approaches zero. Therefore, the first term in (20)
has a simple pole at E = 0.
Similarly, for the second term in (20),
f‘” o(T, T') dT’ <f°° o(T, Ty dT’
7o !N TVENRT _ 1 = Jpy (N, T’y + EJKT
(A2)
As E — 0 the region of integration which is important
for the value of the integral is that near the condensa-
tion temperature T, [recall (15)]. The bound in (A2)
will be determined for the case of nonrelativistic
energy-momentum relationship. For such cases, the
behavior of the chemical potential (N, T) near T, is
given by
p(N, T) = (BTl — (T (T— Ty,

(A3)
where
272h8 [NV
/9 - m3k3 (V)‘ (A4)
On substituting (A3) into (A2) one obtains
© o, T)dT’ 7no(T, T)Ty
To N TVERT _ | = 3(kﬂE)é : (AS)

As before, the case of the equality holds in the limit
E — 0. Therefore, one obtains a weaker approach to
infinity from the second term in (20) as E — 0. It is
believed that such behavior is preserved in the more
general case of relativistic kinematics.

The sign of the next leading singularity need not be
determined by (AS5). Since from (Al),

fTo (T, T)dT' _ «T)
0

Ty g

(A6)
Therefore, the square-root singularity of (A5) may
appear with a negative sign (in the distribution
function) if a simple pole exists at £ = 0.
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The commutation relations [H, P & iQ] = (P * iQ) for the symmetric operators H, P, @ are
considered without assuming (a priori) any other relationship between H, P, Q, in particular without
making any assumption concerning the commutator [P, Q}. It is shown that under certain mild restric-
tions the spectrum of H is integer spaced, and that in the two particular cases [P, Q] = ieH, € = 0, +1
and H = §(P* + Q% + io[P, Q), corresponding to Lie groups and parastatistics, respectively, it is
simple. For these two cases the explicit representations of P, Q, and H are found in a simple manner.
The question of the existence of a common analytic domain for P, @, and H is investigated, and some

sufficient conditions for this are found.

1. INTRODUCTION

We consider in this paper a set of closed symmetric
operators P, Q, and H in a Hilbert space %, satisfying
the commutation relations

[H, P £ iQ] = (P £ iQ), (1.1

on a common invariant dense domain D < J¥. P,
Q, and H are defined to be the closures of P/D, Q/D,
and H|D respectively. Equations (1.1) are the well-
known relations first introduced by Cartan® in the
study of compact simple Lie groups (for which one
has in addition the relation [P, Q] = iH) and later
introduced by Heisenberg? in his description of the
quantum-mechanical harmonic oscillator (for which
H = }(P? + Q% and [P, Q] = i). We shall call the
operators P + iQ ladder operators, because if (1) is an
eigenvector of H on which they are defined, and such
that P |A) and Q [4) are in the domain A(H) of H,

(P + iQ) |2) = const |4 £ 1). (1.2)

What we wish to study here is the more general case in
which the Egs. (1.1) are not supplemented (at least
a priori) by any other relationship between H, P, and
Q. Further, we wish to study this case in a fairly
rigorous way and obtain in a unified way some results
which have been obtained previously for some special
cases, in particular the case of Lie groups (with
supplementary condition [P, Q] = ieH, e =0, £1)
and parastatistics® (with supplementary condition

* Work supported in part by the U.S. Atomic Energy Commission.

+ On leave of absence from Dublin Institute for Advanced
Studies, Dublin, Ireland.

L E, Cartan, thése, Paris, 1894; Qeuvres Complétes (Gauthier-
Villars, Paris, 1952), Vol. L.

t W, Heisenberg, Z. Physik 33, 879 (1925).

3 For a comprehensive bibliography on parastatistics, see O. W.
Greenberg and A. Messiah, Phys. Rev. 138, B1155 (1965). The free
parafields are of the form ¢(x) = j‘ [Pk/2w)t][aet*s 4 age=2),
ay, a¥ = (P £ iQy), where the P, and Q, are variables satisfying
relations of the form (1.1) for each value of X, and the relations
(Px, Pirl = [Py, Qx’]l = [Qx, Qw1 = O for k 5 k',

H = }(P?2 + Q% + io[P, Q). The latter case includes,
in particular, the generalization of the quantum-
mechanical commutation relations [P, Q] =i sug-
gested by Wigner* in connection with the Heisenberg
harmonic oscillator equations.

We first show that if 3 is irreducible in the sense
that any bounded operator which commutes with P,
0, and H is a multiple of the identity, and if D is
analytic for H, then the spectrum of H is integer
spaced.

We then consider the two special cases,

[P, Q] = ieH, €=0, %1
and

H = }(P* + @ + io[P, 0],
and show for both cases that in addition to being
integer-spaced, the spectrum of H is simple.

Using this result, we find the explicit representations
of H, P, and Q for these two cases. In particular, for
the case [P, Q] = —iH, which is the case of the Lie
group SU(1,1), we impose the condition that
P? 4+ Q2 4 H? be essentially self-adjoint and rederive
the five classes of unitary representations of this
group rigorously obtained by Bargman,® while for the
parastatistic case H = }(P? + Q?) + ic[P, Q] we re-
derive the representations of H, P, and Q which were
obtained earlier in a less rigorous manner.%?

Finally, we return to the general case [Eq. (1) with
no subsidiary conditions] and discuss the question of
the analyticity of the domain D for H, P, and Q. We
show that a sufficient condition for D to be analytic
for H, P, and Q is that it be analytic for H and that
H dominate P and Q on D (i.e., that [|Zd|| < | Hd| +
c||d||, where Z = P or Q, deD and c is a positive

4 E. P, Wigner, Phys. Rev. 77, 711 (1950).

5 V. Bargmann, Ann. Math. 48, 568 (1947).

(19.6'113‘)‘ Jordan, N. Mukunda, and S. Pepper, J. Math. Phys. 4, 1089

7 L. O’Raifeartaigh and C. Ryan, Proc. Roy. Irish Acad. 62A, 93
(1963).

738



SOME PROPERTIES OF LADDER OPERATORS

number independent of d) and discuss some conse-
quences of this resuit.

2. INTEGER-SPACED SPECTRUM

We consider the operators H, P, and Q satisfying the
commutation relations (1) and, in this section, make
in addition the following two assumptions:

(i) D is an analytic domain for H.

(ii) % is irreducible, in the sense that any bounded
operator that commutes with A, P, and @ is a multiple
of the unit operator.

It is not assumed that D is an analytic domain for P
and @ or even that P and @ are self-adjoint. The
question of the analyticity of D with respect to P and
Q will be discussed in Sec. 6. Using the assumptions
(i) and (ii) we establish® the following result.

Lemma 1: The spectrum of H is integer-spaced.
Further, if £(4) denote the projection operators on the
eigenspaces J; of €, then

(P £ IQEA)D = EQA £ 1)(P £ iQ)D.

Finally, the closures of the restrictions of P and Q

to D(1) = U E(A)D are equal to P and Q, respec-
tively. A
Proof: From Eq. (1.1) we have
[H,P+iQl=+(P £iQ) on D, (2.1)
whence
PriQH=HF HP £iQ) on D, (22)
and
(PLiQH =HF D (P +iQ) on D. (2.3)

Hence

N (:0\n
(Piig)g(—;‘,)—H"

S (D" » .
=>1:7(H:;1) (P+iQ) on D. (24)

N r:n N n
Py 25 O — 1yp 1 ig)

iQ) on D.

2.5)

Similar relations hold for Q. Since D is invariant with
respect to P and @ and analytic for H (and hence for
H £ 1), it follows that the limits N — oo on the
right-hand side of (2.5) exist for sufficiently small ¢,

N n
#3134y -

# The basic idea of this section, namely showing that exp 2#iH)
is a multiple of the identity, is due to T. Jordan ef al. (Ref. 6).
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[t < t, say. Since P and @ are closed operators, we
obtain on taking the limit

PeitH — %eit(H—l)(P + lQ)

+ 3 HET(P — Q) on D, (2.6)

and
iQeitH — %eit(H_l)(P + IQ)
—~ e Hp _j0) on D, (27)
whence,
(P & iQ)e'H = " HTN(P 4 i0) on D, (2.8)
for [t] < t,.

Repetition of the argument shows that (2.8) holds
for all |¢] < nty, n integer, and hence for all real .
In particular,

(P £ iQ)eH = &"H(P 4 iQ) on D. (2.9)
Thus e*"*H commutes with P and Q on D. Now let f
be any vector in the domain of P. Since P is the closure
of PD there exists a sequence d,eD such that d, — f,
Pd, — Pf.
Hence, since e2"# is bounded we have

eerinn — eZVin

and
P& H] = ™iHpPJ _, oiHPL (2 10)
Thus e?*Ef is in the domain of P and
P f = THPS, (2.11)

ie., e2H commutes with P. Similarly it commutes
with Q. Thus, since it obviously commutes with H, it
commutes with P, Q, and H. From the irreducibility
of H as defined in (ii) above, it follows that e27H ig g
multiple of the identity, i.e.,

2riH __

e eZﬂia,

0<a<l.

Thus the spectrum of A is integer-spaced.

Now let 4 be any eigenvalue of H, E(4) the projec-
tion operator on the corresponding eigenspace, let
0 < 8 < 1, and consider the Riemann sums

(2.12)

My _ fiad)ty
RA(Z') = z A(ta) it elHtu’
a i,
GO pita-—on .
g dt o et = E(1). (2.13)
From (2.6) and (2.7) we have
PRy(2) = IR, (A — 1)(P + iQ)
+ iR (A+ (P —iQ) on D, (2.14)
IQR\(A) = 1R\ — 1)(P + iQ)
—iR\A+ DP ~iQ) on D. (215
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Since P and Q@ are closed we obtain, on taking the
limit A — 0,

PE(A) = }E(A — (P + iQ)

+3E(A+ 1)(P—iQ) on D, (2.16)
IQE(A) = 3E(A — 1)(P + iQ)
—3EQ+ )P —iQ) on D, (2.17)

whence,
PLIQEQ)=EQAF D@P+iQ) on D. (2.18)

Finally, let f be any vector in A(P). Then there exists
a sequence d, € D such that d, — f, Pd, — Pf.

Choose any fixed E(4) and construct the sequence of
projection operators-

Ko=E#), Ky=EX+EA+1)+ EA-1),
K=EQ+EL+D+EA-1)+ EQA+2)
+EA-2), .
Clearly K,, — 1 as m — co. Hence if we construct the
sequence K,d, we have

K, d,—~d,—~f 2.19)
and

PK,d, = K, \Pd, —~Pd,—Pf.  (2.20)

A similar relation holds for Q. Since each X, d, €
A[P|{D(2)] this establishes that P is the closure of
P|/D(%). Similarly, Q is the closure of Q/D(A). This
completes the proof of Lemma 1.

3. SIMPLE SPECTRUM

In this section, we establish conditions under which
the spectrum of H is simple, i.e., to each eigenvalue
there corresponds only one eigenvector. First we
establish the following general lemma.

Lemma 2: The spectrum of H is simple if and only if
there exists a (i) € D(A) such that for all p, =
P+ IQ)”W(AO)’ n=0,1,2,---,

(P + lQ)(P - lQ)Wn =AYy,
where c,, and d, are numerical coefficients.

(3.1)
3.2)

Proof: The necessity of the condition is obvious. To
prove the sufficiency we let ¥, denote the closed
linear span of the y, and let A denote the projection
operator on J,. Then for any de D, AE,d is a
multiple of the vector y,. [E, = E[4, + n)]. Hence
AE,de A(P + iQ) and

(P £ IQ)AE,d = (P x iQ)ky, = k¥pi1.
On the other hand,
A(P + iQ)Ed = AE,-,(P £iQ)d = k'{nis -

(3.3)

(3.4)
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Further,
k= Yni1, (P £ IQ)AE,d)
= ((P F iQ)¢ni1, AE,d)
= ((P F iQWni1, E.d)
= Y1, (P £ IQ)Ed)

= (Pni1, AP £ IQ)Ed) = K. (3.5)
Therefore for all E,d we have
AE,de A(P £+ iQ)
and
(P + iQ)AE,d = A(P % iQ)E,d. (3.6)

Thus A commutes with P/D(4) and Q/D(4).

Now let f be any vector in A(P). Since P is the
closure of P/D(1), there exists a sequence f;, € D(4)
such that £, — f and Pf, — Pf. Hence Af, — Af and
PAf, = APf, — APf. Since P is closed it follows that
Afe A(P) and PAf = APf. Thus A commutes with P.
Similarly A commutes with Q. Since A obviously
commutes with H it follows that A commutes with
P, 0, and H and hence is a multiple of the identity.
Since A% = A (projection operator) it follows that
A =1 (A =0 is excluded since w(4,) # 0). Thus
I, = X, and the spectrum of H is simple.

We now apply this lemma to two cases of physical
interest.

Lemma 3: The conditions of Lemma 2 for the
simplicity of the spectrum of H are met in the following
cases:

(@) [P,Q)=ieH, e=0,+1, P24 Q%>+ H? es-
sentially self-adjoint on D,

(b) H = }(P* + 0% + io[P, 0] > O on D.

Proof: Case (a). According to a theorem of Nelson,?
under conditions (a) the operators P, Q, and H
generate a unitary irreducible representation of a
Lie group [SU(2), E,, and SU(1, 1) for e =0, £1,
respectively]. The operator C = P? + Q% 4 eH? is a
Casimir operator of this group. Since H is irreducible
it follows that C is a real C number, C say. We then
have

(P + iQ)(P F iQ)y,
= {P* 4+ Q* F i[P, Ql}y, .
= {(P* + Q® + eH?) — (¢H®*F eH)}yp,
= {C — (A F D}y,.

Thus the conditions of Lemma 2 are satisfied and the
spectrum of H is simple. In addition we obtain for

(X))

% E. Nelson, Ann. Math. 70, 572 (1959).
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the coefficients c,,, d, the relation

en=dy=C—edA+ 1), A=ly+n (38

Case (b). We can write H in the following form:

H = (1 - 20)(P + iQ)(P — iQ)

+ (1 + 20)(P — iQ)(P + iQ). (3.9)
Hence (except for the special case!® 2¢ + 1 =0, to
be discussed below) we have
(P — iQ)(P + iQ) = [(20 — 1)/(20 + 1)]

X (P + iQ)(P — iQ)
+ [4H/Q2¢ + 1)]. (3.10)

Since H > 0, then there exists a least eigenvalue Ay of
H. The corresponding eigenvector ¥, is such that

(P — iQ)y, =0, (3.11)
from which it follows that
(P+iQ)(P — iQyp,=0 3.12)
and
(P — iQ)(P + iQ)yo = [(4h)/(20 + Dlyo. (3.13)

In deriving Eq. (3.13), Egs. (3.10) and (3.12) are used.
Suppose that Egs. (3.1) and (3.2) are satisfied for
n=0,1,2---5—1, then
(P + iQ)(P — iQ)y,
= (P + Q)P — iQ)(P + iQ),
= (P + iQ)c; 195 1 = coyp,  (3.14)
and
(P - IQ)(P + lQ)y)s = [(20' - 1)/(26 + 1)]Cs—11ps
+ [4h + 9)/20 + Dly,.  (3.15)
Thus Egs. (3.1) and (3.2) are satisfied also for n = s.
Thus, once again, the conditions of Lemma 2 are
met and the spectrum of H is simple.
Further, we obtain the recurrence relations
¢y = dyyy = [20 — 1)/Qo + DIC,,
+ [4(h + 1)/ (20 + 1)]

for the coefficients ¢, and d,,.

(3.16)

10 The special case 20 + 1 = 0 is actually the most important
case since, as will be seen later, it includes the case of the quantum-
mechanical harmonic oscillator and of parastatistics. Also the case
20+ 1 ## 0 can be reduced to the case 20 + 1 = 0 in a certain
sense, namely that since the spectrum of H is integer-spaced and
simple, it is possible to introduce new variables P and Q such that
[H,P'+iQ'] = (P £ iQ) and H = }(P*+ Q% — [P, Q']
The question as to whether the original (P, Q) or the new (?’, Q')
are the “‘physical” (P, Q) is left open. For details see D. Boulware
and S. Deser, Nuovo Cimento 30, 230 (1963), where the (non-
canonical) transformation from (P, Q) to (£’, Q") is given explicitly,
and B. Gruber and L. O’Raifeartaigh, Proc. Roy. Irish Acad. 63A,
69 (1964).
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Finally we consider the special case 20 + 1 = 0.
In this case we have

H = (P + iQ)(P — iQ). G.17)
We introduce the operator
S = [2(H — D)]Y(P —iQ)(P+iQ), (3.18)

which is a well-defined operator on D and D(4). On
E(A)D we have

8% = [2(4 + DITYP — iQ)(P + iQ)[2(4 + D}
X (P —iQ)(P + iQ)
= 24 + D)7Y(P — iQ)2H[2(A + DI(P + iQ)
= 22 + DIYP — iQ)(P + iQ)
=S. 3.19
Since D(X) is dense in H, it follows that the closure S
of S is a projection operator. There are then two
cases to consider.
Case 1: § = I (where [ is the unit operator). Then
from (3.20) we have
P—-iQ)P+iQ)=2(H+1) on D.
Combining (3.19) and (3.22) we obtain
[Q,Pl=i and H=3}P2+ Q%24+ 1) on D.
(3.21)
But H is essentially self-adjoint on D. Hence this is
exactly the case of the harmonic oscillator in ordinary
quantum mechanics.
Case 2: There exists at least one vector 4 € J€ such
that Sh = 0. Then since
[S,H]=0 on D(),

there exists at least one eigenspace E(4,)JC such that
S # 1 on E(4)¥. From this it follows that there
exists at least one vector y(4y) € E(4,)D such that

Sy(i) = 0.
But then from the definition of S we have

(3.20)

(P + iQyp(4y) = 0. (3.22)
Let us now construct the sequence
Y= P —iO)p(dy), m=20,1,2,---. (3.23)
Since
(P + Q)P — iQ)y_,, = 2Hy_,, = 2(2g — m)y_,,
(3.24)
and

(P — Q)P + iQ)y_,,
= (P —iQ)(P + iQ)(P — iQ)y_,pi1
= (P —iQ)2(4 — m + 1)"/’—m+1
=2l =m+ Dy_,, (3.25)
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it is clear that this sequence satisfies the conditions of
Lemma 2. Thus the spectrum of H is simple.

In addition, since H > 0, the sequence (3.25) must
terminate. Further, it is clear from (3.25) and (3.14)
that H = 0 on the lowest state. Thus we obtain a
finite representation for the operators P, Q, and H
and the spectrum of H is 0, 1,2, -+ -, n. This is the
case of parafermi statistics.

4. EXPLICIT REPRESENTATIONS FOR THE
CASE [P, Q] = ieH

Since in the special cases (a) and (b) considered
in the last section the spectrum of H is simple, the
representation of P, @, and H is completely determined
by the eigenvalues of H and the coefficients ¢, and
d, of Eqgs. (3.8) and (3.18). In fact the only non-
vanishing matrix elements are

(Wus Hy,) = 2 + 1,
(wn+l’ P+ ian) =a,,
(wn—li P — 'an) = bn’

|aa* = ¢,

|bn|2 = dn'

@

Hence in order to obtain the explicit representations
in these cases it is sufficient to determine the range of
n and the coefficients ¢,, and d,,. But since H, P, and
Q are symmetric the necessary and sufficient condition
for the existence of a representation is

Joreal, a,=br,,. 4.2)

The second relation sharpens the relation ¢, = d,;,
of (3.8) and (3.18). The phases of the 4, and b, are
otherwise undetermined, but may be absorbed into the
phases of the vectors y,,.

In the present section we determine the explicit
representation in the case (2), i.e., when [P, Q] = ieH
and P? + Q2% + H?is essentially self-adjoint on D. In
this case, as mentioned earlier, the P, Q, and H
generate a unitary representation of a Lie group on H.

From (3.8) we have in this case

¢, =C— ed(A + 1),

A=ldo+n (43

We discuss the special cases € = 0, 41 separately.

(i) € = 0. Group E,

In this case we obtain the representation (4.1) with
d,=c,=C>0. For C =0 the representation is
trivial with P = Q = 0 and H = any real constant Z,.
For C > 0 the spectrum of H is unbounded above
and below. If we demand that H generate a single-
valued representation of 0(2) < E, we obtain the
additional restriction, 4, = integer.
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(i) « = 1. Group SU(2)

In this case we obtain (4.1) with ¢, =d,,; =
C — A(A + 1). The special feature of this case is that
the positive operator P* 4+ Q% 4 H? is a constant
(=C). From this it follows that P, Q, and H are
bounded operators. Thus the spectrum of His bounded

and there must exist two values j and k, say of 4,
such that
M+ 1D)=C for A=)k, j2k

j— k = integer. (4.4)

From (4.4) we obtain immediately the well-known
result that for SU(2) the spectrum of H is of the form
—j, —j+1,-++j—1, j, 2j integer, and that the
nonzero elements of P and Q are given by (4.1) with

¢ =Jj(j+ 1) =22+ 1),
d,=j(j+ 1) — A4 —1).
Note that in this case we automatically obtain the

restriction 2j = integer. This is because SU(2) is its
own covering group.

(4.5)

(i) « = ~1. Group SU(, 1)

The matrix elements of P, @, and H are given by
@4.1) with ¢, = d, ., = C+ A(A + 1). The covering
group of SU(l1, 1) is infinitely connected. Hence to
obtain single- or double-valued representations we
must impose from outside the condition 24 = integer.
The possible representation can then be divided into
four classes:

(a) A = integer, C > 0,

(b) 2 = }-odd-integer, C > }.

In these two classes C + A4(A + 1) > 0 for all A
Hence representations are possible for all ¢, and the
spectrum of H is unbounded above and below.

(c) A= integer, C <0,

(d) A = half-odd-integer, C < }.

In these two cases C + A(A + 1) becomes negative
unless for some nonnegative integer and half-odd
integer, respectively, ¢ = j(j+ 1). Representations
are possible for these and only these values of ¢, and
the spectrum of H terminates either below at j or
above at —(j+ 1).

One can easily check that these four classes of
representations of SU(1, 1) correspond to the five
classes of representations found by Bargman.*

5. EXPLICIT REPRESENTATION IN THE CASE
H = }(P* + Q% + io[P, Q]

We now consider the parastatistics case. The matrix
elements of P, 0, and H are given by Eq. (4.1), with
1, + n > 0. The possibilities are restricted only by
the condition 4, real, ¢, > 0 of Eq. (4.3).
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For the general case 20 + 1 # 0 the C, are deter-
mined by the recurrence relations (3.18). Solving
these equations we obtain
e, =4 =WUy—~0—1%

X {1 =[Q2o—1D/Qo+ D"} +n+1. (51)
For ¢ >0 and ¢ < —3% the condition ¢, > 0 is
automatically satisfied. Representations exist and
the spectrum of H is unbounded above. For —} <
o < 0 the situation is more complicated. It has been
analyzed in detail in Ref. 7. The main results are that
no representations exist for general value of A4,, but
for particular values of #,, both finite- and infinite-
dimensional representations exist.

Finally, we consider the special case 2¢ + 1 = 0.
When this case leads to the case of the ordinary
quantum-mechanical harmonic oscillator, we ob-
viously obtain the usual matrix elements for that case,
namely hy=1, c¢,=d, ;1 =2n+1). For the
other possibility, the parafermi case, it is easy to see
from the discussion of Sec. 3, that we obtain the
finite matrices

o -

3 o

S0 _
M o
@ o @
F= (3t (n—Dh |-
| (n— i 0 |
o 7]
-~ 0 (@}
- 0 €
Q=1 ~@ (n— Dt |
o —(n— 1t 0

6. ANALYTICITY OF THE DOMAIN D

So far we have assumed only that D is analytic with
respect to H. We now consider the question of its
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analyticity with respect to P and Q. A sufficient
condition that it be analytic with respect to P and Q
also is given by the following lemma.

Lemma 4: The domain D is analytic for P and Q if
forallde D | Zd)| < | Hd| + c ||d), where Z means P
or Q and c is a constant independent of d.

Proof: We first introduce a set of numerical coeffi-
cients CT by the relation

n n
SCx =TJ[(x+c+r—1). (6.1)
r=0 r=0

It is easy to see that the C7 satisfy the recurrence
relation

Crin=Ct 4 (n +0)C,,, (6.2)
where it is understood that
Cll=Crl=0, (6.3)
and have the following upper bound:
cr < (") n + o). (6.4)
r

We then define Z7 to be Z,Z, - -
orQforalls=1,2,--

+Z, where Z, = P
- r, and establish the relation

(6.5)

The proof is by induction. Suppose (6.5) is true for
n=20,1,--+N. Then,

1Z¥a) < I(H + o)zNd|
< NZMH + ¢)d| + |[H, ZV)d)

N
< Z,Cfv |H"(H + o)d]| + n | Z¥d),

A SZOCI. =]

where in obtaining the first term we have used (6.5)
and in obtaining the second we have used Eq. (1.1).
Using (6.5) again, we obtain

N
1Z¥d)| < Zo{Civ IH™'d)| + (n + ©)Cy | H"d))}
N+1
= Z {CF" + (n + C}} |1H)
N+1

= gocz'm Hd]l.

Thus (6.5) is true for » = N 4 1, and so for all .
We then have

N lzlﬂ ” N Itln n . ,
;;,—HZ d|| sz—zc,, I H"d)

(6.6)

SEZMCWWM

r=0 n=r

szzw%fgfww 67)

r=0n=r I'! )
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The last expression is obtained by using (6.4). Hence,

Z Itl” ”an” < g”i’ltl’”“ (r+m+ o)

r=0m=0 ! m!
N N-r Mr Mm

<>s 4 ”’m(l +IE c)'"uH'du

IHd)|

=0 m=0 r! m!
N N-r lt'r ltlm m

<> et Hd)
rmom=0 r! m!
N—r My ™
¢ Mr ” gy my,m
Le 20 IH'd|| Z e” 1™ (6.8)

But D is an analytic domain for H. Hence d is an
analytic vector, with radius of convergence #,, say.
Hence the two series on the right-hand side of (6.8)
converge for et < ¢; = min [¢,,1]. Thus d is an
analytic vector for Z with radius of convergence
>t /e. This establishes the lemma.!* We obtain also
the following simple corollary.

Corollary: Let H = }(P*+ Q% on D, and D be
an analytic domain for H. Then if H, P, and Q
satisfy (1.1) on D, D is an analytic domain for H, P,
and Q.

Note that in the case H = }(P? + Q%) the com-
plicated expressions (5.1) for the matrix elements of
P and Q reduce to ¢, =d,,; = 2(hy + n) + 1. For
hy = % they reduce further to the ordinary quantum-
mechanical values ¢, = d,_; = 2(n + 1). The state-
ment of the above corollary can actually be weakened
by the following.

Lemma 5: Let H = }(P? + Q%) be essentially self-
adjoint, and (1.1) be satisfied, on D. Then there
exists in JC a common dense analytic domain A for
P, 0, and H.

11 1t should perhaps be mentioned that the proof just given is not
a special case of the general proof of analyticity for elements of a
Lie algebra given by Nelson (Ref. 9, pp. 577, 588). In both cases
{|z]| < ||H||, but whereas in Nelson’s case one uses information
about (ad Z)"H, here one uses information about (ad H)"Z.
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Proof: We construct the analytic domain A for H
(which certainly exists, since H is self-adjoint) and
show that it is an analytic domain for P and Q. This
will follow from the proof of Lemma 4 if we can show
that for all a € 4,

r+1
1z+all < Zo Cie |Hl, (6.9)
q=
where the C? are the coefficients defined in Lemma 4.
To prove this we show that it is true jointly with

[H,Z]a = Z,a, (6.10)

where Z, is the rth-degree monomial in P and Q
obtained by computing the same commutator on D.

To prove (6.9) and (6.10) we assume that they are
satisfied for r = 1 - - - 5 — 1. By definition,

(IH,2°V{d — Z,d,a) = 0 6.11)
whence, using (6.9) for r = s — 1 we have
(Hd, Z*a) = (d, Z°*Ha — Z ). 6.12)
Thus Z%a is in the domain of (H/D)* = H and
HZ%a = Z°*Ha — Z a. (6.13)

This is Eq. (6.10) for r = s. Further, since

Z'a e N(H), Z'a e A(Z),
and
1Z+a| < |HZ*al| + ¢ [|Z°a].

Using this equation and Eqs. (6.9) and (6.10) for
r=1---s— 1, we obtain exactly as in Eq. (6.6),

s+1
1zl < 206§+1 IH"d].

This is just Eq. (6.9) for r = 5. Thus Eqgs. (6.9) and
(6.10) are valid for r = s, and so for all 7, as required.

This lemma generalizes a result due to Dixmier,2
which states that if $(P?+ Q? is essentially self-
adjoint on D and [@,P] =i on D, then P and Q
are essentially self-adjoint on D.

12 J. Dixmier, Comp. Math. 13, 263 (1958).
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Quantum-mechanical corrections to the pair distribution function of a plasma at high temperature
and low density are calculated to order e* in the interaction, using standard diagram perturbation
techniques. Both the effects due to quantum statistics (exchange) and the finite size of a wave packet

(dynamic screening), are considered.

1. INTRODUCTION

In this paper calculations are made of quantum-
mechanical corrections to the pair distribution func-
tion (PDF) of a plasma at high temperature and low
density. Standard quantum diagram perturbation
techniques'3 are used to derive the corrections to
first order in the interaction eZ.

The pair distribution function g(r) gives the
probability of finding a particle within the distance
(r, r 4 dr) of a given particle. It is of interest because
it is directly related to experimental quantities; in
particular, to the cross section for the elastic scattering
of an “external” particle or photon from the system,
within the Born approximation.* As an asymptotic
expansion in terms of the plasma parameter A, the
PDF for a classical electron gas (in a uniform positive
background) has the form

dg(r) = g(r) — 1 = exp |:~— A e""}
Kr

~ 14 O(A*) + O(A*In A), (1.1)
where § = 1/kT, p is the density of electrons, and
k1= Ay = (4mpBe?)}, the classical Debye length,
is a measure of the sfatic screening distance in the
plasma. The plasma parameter A is given by

1

4mpll)

A= = 2m3epipt. (1.2)

For large distances r, Eq. (1.1) gives as leading term
the well-known linearized Debye-Hiickel® result

og(r) = —A(kr) e ™. (1.3)
Terms beyond the first in Eq. (1.1), of order A? and

A%In A, correspond to the Abe® correction to the
equation of state. They have been calculated by

1 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).

2 E. W. Montroll in The Theory of Neutral and Ionised Gases, C. de
Witt and J. F. de Toeuf, Eds. (John Wiley & Sons, Inc., New York,
1960).

2J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

4 L. Van Hove, Phys. Rev. 95, 249 (1954), and references.

5 P. Debye and E. Hiickel, Physik. Z. 24, 185 (1923).

8 R. Abe, Progr. Theoret. Phys. 22, 213 (1959).

Bowers and Salpeter, Hirt, DeWitt, and others,
using diagram methods”; also by O’Neil and Rostoker,8
and Lie and Ichikawa® using a kinetic equation
approach.*?

Apart from these classical terms, there are also
quantum corrections; i.e., those involving 4. Quantum
effects of two kinds persist at high temperatures:
Corrections of the first kind, exchange corrections,
are a consequence of quantum statistics, which give
distance correlations even in the absence of interac-
tions. The zero-order exchange correction to the
PDF of a Fermi or Bose gas was found by Uhlenbeck
and Gropper!! to be, at high temperatures,

bgo(r) = Fet, (14)
where the upper and lower signs refer to systems of
fermions or bosons, respectively, 4 is the thermal
de Broglie wavelength

7= h(Bjam)t (1.5)
and m is the particle mass. In the fermion case an
extra factor 4 must multiply Eq. (1.4) to take account
of the exclusion principle. The relation (1.4) is a
special case of the more general result of London!?
and Placzek™ valid for a noninteracting quantum gas
at all temperatures,

ze v/

1 . 2
dgo(r) = Fl—r | dPpemn 2V (16
2o(P) q:{(zwmap f b ﬂm} (1.6)

where the fugacity z is related to the density p by
ze B’ 12m

1
= a . 1.7
P (Zwk)sf P 1 4 ze P7iem (47

" D. L. Bowers and E. E. Salpeter, Phys. Rev. 119, 1180 (1960);
C. W. Hirt, Phys. Fluids 8, 693 (1965); H. E. DeWitt, Phys. Rev.
140, A466 (1965).

8T. O’Neil and N. Rostoker, Phys. Fluids 8, 1109 (1965).

®T. J. Lie and Y. H. Ichikawa, Rev. Mod. Phys. 38, 680 (1966).

10 There is currently some debate in the literature about one of the
terms in the expansion (1.1). For large distances r, the diagram
theories find that this term tends to infinity as A2e—«r, j.e., more
s}owl)y than the leading Debye term. (See, e.g., Ref. 9 for a discus-
sion.

11 G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932).

12 F, London, J. Chem. Phys. 11, 203 (1943).

13 G. Placzek, Proc. Second Berkeley Symp. Math. Stat. Prob.,
581 (1950).
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This formula [Eq. (1.6)] expresses the zero-order PDF
in terms of the Fourier transform of the Fermi or
Bose distribution. The next contribution to the PDF
due to exchange is of first order in %, and is evaluated
explicitly in Sec. 2. The result is

2
sext) . b

x [log (r/%) + 3 log 2y + ¥(A/r)* + O(A/r)'} (1.8)
for r » 1, and

8gr) ~ §(m/Dt l’;;f o

X [1 + (2n)-*(§) - %(%)2 + - ] (1.9)

for r & 4. The corresponding correction to the
equation of state, which is of second order in €2, is
also evaluated in Sec. 2.

The second kind of quantum correction to be
considered is a consequence of the quantum-mechan-
ical treatment of classical statistics. By this we mean
that the point charges which make up the classical
system should strictly be treated as wave packets of
spatial extent 1. These wave packets obey Maxwell-
Boltzmann statistics. The net effect of making this
correction is the appearance of a dynamically screened
interaction!* in place of the statically screened one.
In Sec. 3 we obtain the effects of dynamical screening
on the PDF up to the chain or pair approximation,
which corresponds to the result of DeWitt!s and
Montroll and one of us® for the ring contribution
to the partition function or equation of state. The
result is
8g.(r) ~ —(Be¥IN{e ™1 + ¥(A/Ap)® + O(X/Ap)]

— (M2 YL 4 OGN, (MAp)D]} (1.10)
in the region 4/Ap, K 1 K r/Z, and

8g(r) ~ — (@2} (B D1 + O(H/Ap)* + O(r/2)?])

(1.11)
when rj2 LK AfAip L 1.

The calculations in this paper are performed for
an electron gas immersed in a uniform background of
neutralizing charge. The generalization to an electron—
ion plasma is straightforward for the present contri-
butions, and the method will be indicated briefly at the
end of the appropriate sections. The system is
translationally invariant.

14 We use the terminology ‘‘dynamic screening” as a convenient
mnemonic to distinguish such quantum corrections from exchange
effects.

16 H. E. DeWitt, J. Math. Phys. 3, 1216 (1962).

16 E. W. Montroll and B. W. Ninham, ‘‘Quantum Corrections to
the Debye Formula” (unpublished). The work was discussed by
Professor Montroll at the February 1962 Baltimore meeting of the
American Physical Society.
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We use the equivalent diagram perturbation
formalisms of Montroll and Ward? (MW) or
Luttinger and Ward® (LW), since the problem has
been formulated already by these authors in a conven-
ient form for computation.

2. EXCHANGE CORRECTIONS

Exchange diagrams, of first order in the interaction
which contribute to the PDF are shown in Figs. 1(b)
and 1(c). Figure 1(a) represents the exchange term
associated with the noninteracting system, which
gives in the near classical limit the Uhlenbeck and
Gropper formula Eq. (1.4). The diagram [Fig. 1(c)] is,
in the terminology of Luttinger and Ward, anomalous,
and will be shown to yield a result of higher order in 4
than Fig. 1(b). The main term to be evaluated then is
the “crossed exchange” diagram of Fig. 1(b). The
general quantum-mechanical expression for its
contribution to the PDF is given by Ref. 2 (with an
additional factor 2 for spin weighting),

1
dgp(r) = ———
&) = Sy
x 2 [Pacm | ful-uapA®, @0
where

A(E) = 51:1 f d®p f dyl(z7%e " + 1) — zef1)

X {["7 + ‘(P)][’? + 277”1/18 + «(p + ql)]
X [ + 27i(t, + )[B + «(p + q, + q,)]

X [ + 27ty + €(p + q )1} (2.2)
and
u(g) = Qmhy™ f Pro(r)eit = 2ﬁfr2q2 2.3)

is the Fourier transform of the Coulomb interaction.
The contribution zef" has been subtracted from the
fermion function (zl¢—#7 4 1)~! which usually ap-
pears in A, (Ref. 2), since a one-toron exchange
diagram represents a forbidden process. In Eq. (2.2)
e(p) = p*2m, and the contour c is to be chosen so
that it separates the poles of the fermion function
(z7le 1 4 1)1 from those of the rest of the 7
integrand. The usual MW procedure to evaluate the

(@ b ©
Fic. 1. Exchange diagrams contributing to the pair distribution
function up to first order in the interaction ¢®. The crosses indicate
unintegrated points.
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propagator is to close the contour ¢ in Eq. (2.1) in an
anticlockwise direction around the poles of the energy
denominators which occur at

n=—e@), —ep+q)—2mt/5,---. 24

For the explicit evaluation of exchange diagrams it
turns out to be more convenient to ciose the contour
of the # integration in a clockwise direction, so that
it encircles the poles of the fermion function. For
electrons, we have poles due to (z7e = 4 1)~ at

n=—p— @+ Dmifp = -, (2.5

with residue 1/B. This leads at once to an expression
for the propagator A4(E) in terms of the single-
particle propagators

G(p, o) = [, — (@]

of the LW formalism. Thus we have

2.6)

_ 2 3 iqq-r/h 3
dgp(r) = PR e fd q,€ f d°q,u(gy)
x f &#pS(p, 4, 49, (27)
where
S= S (Il ey, — <(p + )]

t),t2,l=—00
X [Cirtyie, — € + @1 + q2)]

X [CHtg —e(p + g} (2.8)

Note that to obtain the contribution to p~}(8(k) ~ 1),
where 8(K) is the static form factor!? of the system, one
simply drops the factor (274)~3 [ d3q, exp (iq, - r/A) and
puts q, = Ak.

The sums in Eq. (2.8) can be performed with the
aid of the identity

1
5

where

eCzﬂ

‘:z"'e

= {H(«)f(€) — H(—a)f (e)}e*, (2.9)

fle) =1z + 1),

_pe (2.10
fl@=1ze+ D) =1—f(e, )
and H(x) is the step function.

Changing to new summation variables
ki=1Il+4+1t, ky=I+1t, kze=1+t+1 Q.11
and writing for notational convenience

e(p) =€, €(p+ = €,
®) P+ta)=« @12)

€P+q)==c, «p+q+q)=c,

17 D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1964), p. 73.
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we have
S = Z 6k1+k2,ka+lh(k19 kg, kg, 1)
l,kl,kg,ka
= _I_J"’ dp’ z eZwiﬁ'(k1+kg—k3-—l)/ﬁh(kl’ ko, ks, D),
ﬂ 0 l:k1,kz,ka

(2.13)

where h represents the summand of Eq. (2.8) and we
have used an integral representation for the Kronecker-
delta function. Then, using the identity (2.9) we have

1 8 TR U
S==| dp’ :
B Jo tisksks (8 — €) (&, — €)
Hly P

X &, — &) (G, — €)
ﬂ ’
=p f AB'f () f(e)f (ea)f (eg)e? errteren),

(2.14)
Finally, noting that

f(e" =z (9), (2.15)
we can perform the integration over 8’ in Eq. (2.14)
and after substituting for S in Eq. (2.7), find for the
contribution to the PDF, the expression

— __2__ 3 . piarr/h 3 3
e50) = s f Pgre f Pqyu(gs) f &p
x [f+(€1)f L(€2)f(€)f (&) —f—(€1)f—(52)f+(€)f+(53)].

(e1+ € —€—¢)

(2.16)

A more convenient form for computation follows if
we substitute for u(q) from Eq. (2.3) and introduce
dimensionless variables defined by the transformations

p=PQCm/B}; q, = Q,2m/p)},

2.
@ =~@+0Q +Qemp, 7
where now
fP=F @)= + 1% (218)
This substitution yields
— 2 pe 3 ,iQurr| g3
O81(0) = s o) (2 hw2p2) f d°0,¢ f &P
o —>L
xf “Fio oy

X {F4(P + Q)F(Q; + Q)F_(P)F_(Qy)
— FLQ + PYF_(Q, + Q)F (P)F(Qy)}
X [(P+ 09"+ (Q + Q) — P* — Q3™
(2.19)
These somewhat tedious manipulations appear to
be necessary to reduce the integral to a manageable
form. Thus far our expression for dg(r) is valid for a
system of fermions at all temperatures. In the near
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classical limit, F, (P)— 1 and F_(P) — zexp (—P?), so
that the leading term is of order z2 The fugacity z is
related to the density p through (Montroll,? p. 67)

z = §Quplmtp{l — mepipt + 0(p)}, (2.20)

where again we have inserted an additional factor }
to take care of electron spin, so that dgg(r) becomes

1 iQier
08x(r) = 75 (B f 0,60 [ op

1
x|d*Q——m——
f P+ Q, + Q)
{ e—(P’+0=*) _ e—(r+ol)”e—(ol+oa)”

X .
[P+ Q)+ (Q, + Q)* — PZ - le}
Further reduction of the integral is carried out in
the Appendix, and we find that dgz(r) has the asymp-

totic expansion for r 3> 1,

8gx(r) ~ H(Belr)e e’
x [Inr/Z + $1n(2y) + 22r* + O(4/P*] (2.22)
while for r & 4,

8gx(r) ~ ¥/ B myeter®’
x [1 4+ Qm)y /) = 30 /02 + oD (2.23)

The leading term of the large r expansion can become
larger in magnitude than the Uhlenbeck-Gropper
contribution under certain conditions.

The method of the preceding calculation can be
used to compute the corresponding correction to the
equation of state. If we join the two ciosses of the
open diagram Fig. 1(b) with an interaction line u(g),
we obtain the corresponding closed diagram, whose
contribution to In Z is

(2.21)

2 | 4
PVpo=InZqp = — =
(BPV)g N Lgg 4 (2mh)'B
X f f Py d4,d*pu(q)u(g)S(D 41, @) = El,

(2.24)

where the propagator for the diagram is given by
Egs. (2.2) and (2.8). The factor 2 arises from spin
weighting, the factor } ensures that only topologically
distinct diagrams are counted. The constant E is
given by

1 srtomp (2T L
E_—z(z P )(ﬂ)(zﬂ)%

pV(A[2rY)}

2.25
7 )5 (2.25)

with r, = me?/A%p}¥ the usual quantum-mechanical

M. DIESENDORF AND B. NINHAM

parameter, and

j d’Q, f f d’Q,
P+ Q; + Q)
—(P“+o.”) P+ e“°‘+°” 1

(P + Q)+ (Q, + Q) — P* - Q3

% w 27270
— (2m) [(n — P2 (2.26)
4 SCn+1D)I2n+1)
277 In2. (2.27)

The evaluation of the integral Iy is also carried out
in the Appendix.

The contribution of the anomalous diagram Fig.
1(c) to the PDF or equation of state can be written
downin the same manner and for the PDF has the form

— -2 -
i

X [ Pasutad [0S0 0 09, @29)
where the propagator can be shown to be
=3 1 €xp Cl+t10+ €xXp Zl+tg0+
t1,lg,1 (Zl - €)a (Zl+t1 ~€) (Cz+t2 — &)
= =B f(Df()f:(o)- (2.29)
In the near classical limit £ (€) — ze=#%"2™; £, (&) — 1,
and the contribution dgz(r) to the PDF, while
proportional to e? like dgg(r), is of higher order
O(z% in the fugacity, so that it can be neglected in
comparison with dgz(r), Fig. 1(b). A similar conclu-
sion holds for the contribution of Fig. 1(c) to the equa-
tion of state.

For a two component system in general, three
PDF’s exist, g*(r), g(r), and g*(r), where super-
scripts e, i refer to electrons and ions, respectively.
To generalize the exchange diagrams to the case of
an electron—-ion plasma we observe that exchange
diagrams can be constructed only from identical
particles. Thus each diagram of Fig. 1(b) must be
composed of particle lines which are either all
electron lines, contributing to g*(r), or all ion lines
contributing to g*(r). Contributions to the ion-ion
PDF will have the same form as dgg(r) above,
differing only in the mass, and in general, in the
magnitudes of density and temperature.

3. DYNAMIC SCREENING CORRECTIONS
In the chain (pair) approximation, the expression
given by Montroll2'13 for the PDF is
(3g (r) 2 sq xR ["_u(q)][zAz(qa t)]z'
T h)“ﬂ = 1+ 2u(9)Ag, 1)
3.1

18 S. Fujita, A. Isihara, and E. W. Montroll, Bull. Acad. Roy.

Belg. 44, 1018 (1958).
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To evaluate this expression, we use the explicit
representation of A, for classical statistics!-?

Ada, ) = A0, 0) f 'dx exp [—Bg’x(1 — x)/2m]
X exp (—2=itx), (3.2)

A0, 0) = zB(Q2mm/p)3. (3.3)

The limit of high temperature and low density is
equivalent to small e?, since from dimensional
analysis the leading correction to the perfect-gas
equation of state must involve some function of the
dimensionless parameter e?8p}. As €2 — 0, the major
contribution to the integral of (3.1) comes from the
region of small . We therefore write

As(g, 1) = A5(0,0) + 0A4(q, 1), (3.4)

where A,(0,0) leads to the classical Debye-Hiickel
PDF, and

1
SALq, 1) = —A(0, 0) f dx

x {1 — exp [—Bg*x(1 — x)/2m] exp (—2mitx)}
(3.5)
leads to quantum corrections due to dynamic screening.
If we use Eq. (3.3) we may write the denominator of
(3.1 as
w@ANg. O _ _ 4u@)A¥q, 1)

1+ 2u(@Axg, ) 1+ 2u(g)Ay(0,0)

_ 8[u(I*A%(g, A(g, 1) 3.6)
[1 4+ 2u(9)Ax0, OI[1 + 2u(g)Aq(q, 1)]

The major corrections are contained in the first term
on the right-hand side of Eq. (3.6). The second term
is of higher order in both ¢? and z and can be dis-

carded, so that to order z%?, after substituting Eqs.
(3.2)~(3.6) into Eq. (3.1), we obtain the result

where

2 B q
g = — =2 d [ J— —
g =25 f asin @i o

1
xf dx exp [—pg’x(1 — x)[2m]
x f dy exp [—fa*y(1 — y)/2m]

~2rit{aty)

xt=§be .

In this expression we have performed the angular

integration in (3.1) and have substituted for the

fugacity z the leading term from Eq. (2.20). The sum
over ¢ may be carried out at once by noting that

(3.7

2 e2mt(:c+1l)
t=—o0

2 o(x + y — m).

m=—a0

(3.8)
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The delta function implies that y = (m — x), and the
restriction 0 < y < 1 requires therefore that 0 < m —
x < 1. Since also 0 < x < 1, m = 1 is the only term
of the sum which contributes, so that

5.(r) = ———f dasin (ar/h) Ly

xf dx exp [—28q°x(1 — x)[2m]. (3.9)

Again the ¢ integral can be expressed in dimensionless
variables by the substitution p = g/fi«. Then

Bg?[2m = ap?,

-

where

() = (AfAp)* (3.10)
is a parameter which describes in a sense the degree of
“quantumness” of the system. In the near classical
limit, « is small compared to unity. Interchanging the
order of integration, Eq. (3.9) becomes

0gr) = — %——f dxf dp sin (p«r)

X exp [—2ap’x(1 — x)]. (3.11)

14
1+ p®
When « =0, this expression yields the classical
linearized Debye-Hiickel PDF

8g.(r) = — éi e

(3.12) -
which diverges for small r. On the other hand for the
quantum Boltzmann gas while the parameter « is
always small, it is never identically zero, and dg,(r)
does not diverge for small ». The asymptotic form of
0g,(r) for large r can be obtained as follows. We first
perform the p integration of Eq. (3.11) and find

dg(r) = — %‘B—r—f dx exp [2ax(1 — x)]

x {e" Erfc (£.) — e Erfc (£,)), (3.13)

where
= Roax(l — )P F xr2ax(1 — 01*  (3.14)

and

Erfc (&) = 20~} f we-t“ dt. (3.15)
&

In the near classical limit « ~ 0, and since xa % =
1/, we have for r/Z > 1

— I —_ -1
& :FZZ[ZX(I X)) (3.16)
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Hence using the relation
Erfc (— &) = 2 — Erfc (&)

and the asymptotic expansion

(3.17)

= (w3E) 1ot __1__ 4
Exfc (&) = (w26) e ( o + O )), (3.18)
we find
dg.(r) = be e""'flexp [2ax(1 — x)] dx

+ /2B f ldx[x(l -t

x exp [—r8i%(1 — x)I{1 + O[(A/r)% «l},
(3.19)

where the terms neglected are of order (4/r)?, or «,
by comparison with the second term retained. The

second integral can be evaluated as follows. We
consider

I, = ¢ [ gxlx(t — o)1 exp [ —3(rtp —L—
o 4x(1 — x)
(3.20)

an integral which can be cast into the convenient form
1 c+io0

I,=— (p — DUII(/D)

2mi

¢c—io

f [x(1 — x)]*L—d——) - 1]"’@,
Rep>0 (3.21)

by using the Mellin integral representation for the
exponential function. The x integral may be written,
with the change of variable

4x(1 — x) =y,
as

2 = oty = e

1 -
= —f yH -ty
4 Jo

_1 »p+¥d

dsnnpry PSRer<i (22
Hence,
_ 1 c+io ™ _ _Q_—ti)__ -
Ic - 27i Jo—io 4 1)' sin ﬂ.(p + %) [%(rlz) ] dp,

O<Rep=c<i% (323

For large r, we may translate the contour to the right
to get

I, = @nt Mrlt — 2(2/r)* 4 O(X/r)*]. (3.24)
= . G

AND B. NINHAM

The integral required is

I = ety (3.25)

so that substituting Eqs. (3.24) and (3.25) into Eq.
(3.19) and using the definition Eq. (3.10) we have

6gc(r) =

— (e L 4 O((AID, (AAp)D]). (3.26)

This result is valid in the region /r K 1, /A, K 1.
For very small distances it is not difficult to show
from Eq. (3.11) that

- E—f— (€L + 3(HAp)* + O(H/Ap)']

$p.2
dg(r) = — (;-’) ﬁTe {1 + 0(@) + O(r/%)?*}, (3.27)

where r/f L « K 1.

Thus the dynamic screening correction removes the
small r divergence of the classical Debye-Hiickel pair
distribution function. The leading term, one half of
whose contribution is cancelled by the exchange term
Eq. (2.23), still attains very large negative values,
under certain plasma conditions. This can easily be
seen by writing

o pet_ (mRy

22 % (2 kT
so that the small r behavior of dg,(r) given by Egs.
(3.27) and (2.23) is not meaningful in this region.

The generalization of the dynamic screening contri-
bution to the case of an electron-ion plasma is
immediate. To do this we replace Ay(g, ¢) in Eq. (3.1)
by a sum of separate electron and ion contributions.
Thus, in the numerator of (3.1),

[A(g, DI —[ALg, D) + Ala, O
=A24+2A A+ A2, (3.29)
These terms lead to contributions to dg**(r), dg*(r),

and dg*(r), respectively. In each case the denominator
of (3.1) should be replaced by ¢* + #*%<, where

@ = (e¥2h7")[A,(0,0) + A(0,0)] = 15 + «F. (3.30)
When the electron and ion temperatures are equal and
pe = pi, the quantum corrections to dg*(r) and
dg*(r) are negligible, being of order 1/M, 1/M? with
respect to dg®(r). Here M is the ion mass.

) >1; T<5x10°°K (3.28)
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APPENDIX: EXCHANGE INTEGRALS

We evaluate here the integrals of Eqs. (2.21) and
(2.26). First consider the integral of Eq. (2.21) which
can be written as

1= [eoem e g?l Q)

x exp [—(P + Qo exp [—(Q; + Q] f dy

x exp{—y[P*+ 0} — (P + Q)% — (Q, + Q»°}}.
(A1)

PuttingP + Q, + Q, = —Q;, d%Q, = d°Q,, we have

1= [#g.emn [ap[ 2

2
% e—[(P+01) +{(P+Qg) ]f dy e—21101 Qs (A2)

The P integration is
fdaP exp {—[(P + Q)* + (P + Qy)°)}

a0
= 2me—(@1*+QsY) f
0

e—(012+932)

"21Q, + Qi
x f “P dP{exp [~2(P + 3 1Q: + Qi)’]
— exp [—2(P - % |Q1 + Qa|)2]}

=2 e‘}‘o"‘o"’{Z f ” e dx
2 301 +0s]

+31Q;+Qs| 3
e % dx
—31Q1+0,!
= /2 (ntj4)e-Har-0s’,

The integral I then becomes

p? dPe—zp’ f de e 2PI+Qs |2

-1

eHlartal®

(A3)

Q3 —i(Q;—Q;)”J‘ldy e-Zva.Qa
0

@emt s [ 4
1= oo

3 ©
= @ sy f 0, dQ, sin (Q,/2)

X f wdQse‘*‘Q"W”’ j ldy f Hdz 12 Q1Qs2

1% M. Felix in Comptes Rendus de la VIe Conférence Internationale
sur les Phé & d’lonisation dans les Gaz, P. Hubert and E.
Crémien-Alcan, Eds. (Published with the support of the French
Government, Paris, 1963), Vol. I, p. 185.

( 39 B, A. Trubnikov and V. F. Elesin, Sov. Phys.—JETP 20, 866
1965).
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o 2
=G, f Q1 dQ; sin (Qyr/A)e e

~10s? (2,09
f 4Qq 2:0 Cn+DI2n+1)

(2rr) N A U )
Ar go 2n + 1)(2n + 1)

y L 40,0 11" in (0,r/%)

= 2m)¥(12r)o. (Ad)
We have carried out this integral in some detail, since,
unless the integrals are performed in the order
indicated, I is exceedingly difficult to evaluate. In
order to complete the quadrature, we need to obtain
expansions appropriate to both large and small r, and
proceed as follows. Using the duplication formula

22"(n — Pn! = 7¥(@2n)!,

we have

P s

X L d0(0%2)"Qe 29" sin (Qr/%). (AS)

Then the observation that

! fdx -t ar
n+3 Jo xJo

allows us to write
1 z
o = Km2)t f dx f 4

>N Q2" g 4g 4" sin (0111

(A6)

= }(m/2)} L = rhar

X f Q dQ e 19* -0 gjp Op/1.
0

Hence, after completing the @ integration we obtain

—rr f dx f A1 — gy} exp[ I T t)]

(A7)

(A8)
Integration by parts with respect to x gives
0= — g}f dxIn xx‘*(l - x)”‘g
x exp | —101F 1] a9)
(1 —=x)

and a further change of variable to

Y =3(/D¥x/1 — x)
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yields the convenient form

B O Y
+Iny—In [1 + 2(%)3]}. (A10)

For large r we may expand the logarithm in the
third term in the braces, and carry out the remaining
integrals to get the complete asymptotic expansion

@ = =t /IA (mhn [ (5)2] — nhin(4y)
(5

where y is Euler’s constant.
Collecting together Eqs. (All), (A4), and (2.21),
we have finally

18 _1im?
dgu(r) = 2 5 Aem

x {m /%) + 1“22”

+ AN+ O(Z/r)‘},

(A12)
which is the result quoted in Eq. (2.22).
For small r, we rewrite Eq. (A10) as

o= w(\/E/S)e”é("”zf dy yteIn [1 + (r/%)? 2L]
o y

(A13)
The integral representation
c+ioo
In (1 +x)——1- dpx—* _" ,
27ri Je—ioo psin op

—1<Rep<0 (Al4)
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gives the alternative form

/2 o 1L
8 2mi

c+io0
X f 2%(4[r)*

—~$00

g =

T [Cayeyd, (a1
psinzp Jo

where the y integral gives (p — $)!, which restricts the
contour to the region —% < Re p < 0. For small r,
we close the contour to the left and obtain

0gr(r) = é(vr/Z)%(ﬁeZ/z) —3 s/ 1)2
X [1 + r/@mti — }(r/? + OC[3)), (A16)
which is the result quoted in Eq. (2.23).

The reduction of the integral Eq. (2.26) to the form
quoted,

emt @ [~ pua
4 2 SoQn+1)!2n+1)
follows in precisely the same manner. The sum can be

evaluated by using the duplication formula and the
identity of Eq. (A6) to write

\/21,, fldxfdtz ,,_g(n %)'

n=0

Ig= (A17)

= ot J &x f d[t(1 — :)]-*. (A18)
o xJo
Integration by parts gives then the result Eq. (2.27):

2ty =~ L “dx[x(1 — O n x

= — [‘% J:x“(l —xt alxiLF_11r

=72In2. (A19)
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Solution of the Transport Equation with Anisotropic
Scattering in Slab Geometry*
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Some systematics which exist between eigenfunctions and adjoint singular integral equations arising
in the solution of the transport equation in slab geometry are illustrated. The transport equation is
shown to obey a singular integral equation and its refationship to the eigenfunction expansion-method
solution is shown. A new method for solving for the expansion coefficients in the eigenfunction expansion
method is illustrated by solving Milne’s problem. The role adjoint singular integral equations play in
finding appropriate weight functions for use in orthogonality relations between the eigenfunctions of the

transport equation is briefly discussed.

1. INTRODUCTION

In recent years, exact results to various neutron
transport problems in slab geometry have been ob-
tained in which the theory of singular integral
equations! plays a central role. In this paper we illus-
trate some of the systematics which exist between
orthogonality of functions and adjointness! of singular
integral equations encountered in the solution to the
one-speed neutron transport equation with anisotropic
scattering in slab geometry.

In particular, two different approaches have been
used to obtain solutions to problems based on the
above-mentioned equation: the eigenfunction ex-
pansion method due to Case? as presented by Mika,?
and the transform method due to Leonard and
Mullikin.* In the eigenfunction expansion method,
the independent variables of the homogeneous
integro-differential form of the transport equation are
separated and the general solution is expressed as an
eigenfunction expansion with arbitrary coefficients
over the spectrum of the separation parameter. This
spectrum consists of a discrete and a continuous part.
The expansion coefficients are determined by applying
boundary conditions and solving the resulting singular
integral equations. In some cases the actual solving of
the singular integral equations can be avoided by using
orthogonality relations between the eigenfunctions.
More recently, Leonard and Mullikin* have analyzed
a problem in a finite slab by considering a subcritical
assembly with a source incident on one face. This
scattering problem can be stated as an inhomogeneous
integral transport equation for the source function

* This work has been supported in part by the U.S. Atomic
Energy commission.

t Present address: Department of Physics, Florida State Univer-
sity, Tallahassee, Florida.

1 N. I. Muskelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953).

2 K. M. Case, Ann. Phys. (New York) 9, 1 (1960).

3 J. R. Mika, Nucl. Sci. Eng. 11, 415 (1961).
% A. Leonard and T. W, Mullikin, J. Math. Phys. 5, 399 (1964).
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consisting of the contributions from scattered neu-
trons and the external sources. By generalizing the
problem to include complex-valued sources, they were
able to show that the source function satisfies a
singular integral equation in which the space and
angle variables enter as parameters.

The singular integral equations obtained by Leonard
and Mullikin are adjoint! to the corresponding singular
integral equations for the continuum coefficient in the
eigenfunction expansion method, indicating a duality
between the two methods. To help explain this duality,
it is convenient to show that the angular flux itself
satisfies a singular integral equation in which the
space variable enters as a parameter (cf. Ref. 5). The
relationship between the two methods then follows
from the orthogonality of the eigenfunctions.

An outline of the remainder of this paper is as
follows: In Sec. 2, a brief list of the results of Mika
is given in order to show where similarities and differ-
ences exist between the present approach and the
eigenfunction expansion method and in order to
introduce results which will be used to derive the
relationship between the two methods. In Sec. 3,
the angular flux is shown to obey a singular integral
equation. This is shown by using the homogeneous
integro-differential form of the transport equation.
This singular integral equation can be solved by the
procedure outlined by Leonard and Mullikin.? In Sec.
4 the relationship between the two methods is found.
This leads to another procedure for solving for the
expansion coefficients in the eigenfunction expansion
method. We illustrate this procedure by solving
Milne’s problem. In Sec. 5 the role adjoint singular
integral equations play in obtaining weight functions
for use in orthogonality relations between the eigen-
functions is briefly discussed.

5G. J. Mitsis, Argonne National Laboratory, ANL-6768
(unpublished).
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2. EIGENFUNCTION EXPANSION METHOD

In this section we review the eigenfunction expansion
method as presented by Mika.? Here it is assumed
that the scattering function f, (R’ — ), where
[y(& —Q)dQ represents the probability that a
neutron scatters from the direction ' into a solid
angle dQ about the direction Q, can be expanded into
a finite series of Legendre polynomials:

pe-o=L13ir@.9 ey

The b, are numbers which determine the degree of
anisotropy of scattering and are restricted by the
condition f, > 0, with b, = 1. Under assumption (2.1),
the source-free, one-speed neutron transport equation
for the angular flux ¢(x, ) has the form

alp [4 y t ’ ’ ’
p=r+ v =7 3 b.Pw)| Pu()y(x,p)dy. (22)
Ox 2 n=0 -1
In the above equation x is the spatial coordinate
measured in mean free paths, u is the corresponding
direction cosine, and ¢ is the mean number of second-
ary neutrons per collision.
The eigenfunctions of Eq. (2.2) are of the form

d(v, we*", ve(—1,1) (2.3a)
and
¢(ﬂ:zj’ ,u’)e;x/z" j = 15 e, A, (23b)
where the ¢’s are the solution to the equation
[’P - y]¢(v, ”) = ‘Vk([l, ’l’), (24)

viz.,

$(v, u) = P[vk(u, v)]/(v — p) + 24300 — p),
ve(—1,1), (2.5)

Lz, 1) = [zk(u, £2))(z; F @)y j=1,",a,

(2.6)
M) =1+ P j k) 0 @1
au—v
with z, [(z; ¢ (—1, 1)] defined by
Q(+z,) =0, 2.8)

where

Q) =1+ j_fﬁ—’ s, Q@9

there being « such pairs of roots. Mika has shown that
o < N + L. In the above equations

N
ko) = = ShuPu@ha()  (210)
with
o) = f_ Pgm s Q1D
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The h, can be shown to be polynomials which obey
the following recursion formula:

( + Dhya(n) + nlcb, — 2n + Dk, (n)
+ nh,_ () =0. (2.12)
The h,, are normalized so that

ho(m) = 1 (2.13)
from which it follows with Eqs. (2.4) and (2.11) that

hy(n) = (1 = c)m. 2.14)
Equation (2.12), together with Egs. (2.13) and (2.14),
can then be regarded as an alternate definition of the
h,. The symbol P denotes that the Cauchy principal
value is to be taken in any integration involving the
term following it and (v — u) is the Dirac-delta
function.

Mika has shown that the above solutions of Eq.
(2.4) form a complete set for sufficiently well-behaved
but otherwise arbitrary functions defined on the
interval (s, 1), —1 < s < ¢ < 1. One consequence of
this completeness property is that the general solution
of Eq. (2.2) can be written in the form

w(x, 1) = 3 [a,;8(z;, we™™* + a_;¢(—z;, e

=1
+f A(@) (v, we™"" dv, (2.15)

where the a,; and A4(») are arbitrary expansion
coefficients which can be determined by applying
appropriate boundary conditions to y(x, u).

‘Mika has also shown the following useful orthog-
onality properties:

1
[nsomsomau=o, »n @16

for two arbitrary solutions of Eq. (2.4), either from
the continuous or discrete parts of the spectrum, and

[ n0.00 [ ot dndu = »56006) - @17

for solutions of Eq. (2.4) from the continuous part of
the spectrum only. In the above, Q(#) is a sufficiently
well behaved but otherwise arbitrary function and
S(») is defined by

S) = QtQ-() = [AM)]P + [=»N»)]3, (2.18)
where
N@) =k(»,») 2.19)
and
Q£(») = A(») & imvN(»), (2.20)

are the limits given by Plemelj’s formulas® of (z)
from the upper (+) and lower (—) half-planes as z
tends to v, —1 < » < 1. For simplicity, we shall
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assume throughout this paper that S(») # 0, —1 <
» < 1. The case for which this condition is not
satisfied can be treated® by increasing the index 2a,
and hence the number of discrete solutions, by the
number of zeros of S(»), —1 < » < 1. We shall also

assume that
Q(0) # 0, (2.21)
wheret
Q) =TI (1 — b ) (2.22)
n=0 2n+1

We shall view those ¢ and b,, for which the right side of
Eq. (2.22) vanishes as limits of a sequence of cases
where the inequality (2.21) holds.

For the discrete spectrum, the following norms are
found:

1
Luw(:tzj,u)]z du= tz;M;, (2.23)
where$

M; = z;N(z)[d(z)/dz],—,,. (2.24)

The expansion coefficients can be determined a la
Mika by applying boundary conditions directly to
Eq. (2.15) and solving the resulting singular integral
equation using the general theory presented by Mus-
kelishvili.! For example, in examining the critical
problem, we consider an infinite slab extending from
x = —a to x = +a and bounded by vacuum. The
critical angular flux is given by Eq. (2.15) subject to
the symmetry condition

y(x, p) = p(—x, p) (2.25)

and the boundary condition

wa, ) =0, p<o. (2.26)

Equation (2.25) expresses the fact that the angular
flux must be symmetric about the x = 0 plane, while
Eq. (2.26) states the condition that no neutrons which
migrate from the slab into the vacuum return to the
slab. It follows from the symmetry condition (2.25)
that

a,,=a_, (2.27a)
and

A() = A(—). (2.27b)
Application of the boundary condition (2.26) leads

to the singular integral equation

MA@ + P f 2k, ”’A( Ydv = W), (2.28)

 N. J. McCormick and I. Ku¥&er, J. Math. Phys. 7, 2036 (1966).
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where
Y=~ 21 ald(z;, wel™ + $(z;, —pe %]

— f 1A’(v)qS(v, —we M dy (2.29)
and ’
A'(v) = A(»)e*". (2.30)

Equation (2.28) can be reduced by standard techniques
to a Fredholm integral equation plus a set of homoge-
neous equations for the a,; for which the vanishing
of the secular determinant yields the critical condition
(see, for example, Ref. 7). The singular operator in
Eq. (2.25) is adjoint to the singular operator obtained
by Leonard and Mullikin [Ref. 4, Egs. (3.22)] in their
analysis of the critical problem. In the following
section we present another method for solving trans-
port problems which also lead to singular operators
which are adjoint to those arising in the eigenfunction
expansion method but which can be easily connected
to the eigenfunction expansion method.

3. SINGULAR INTEGRAL EQUATION

In this section, we present an alternate procedure
for solving Eq. (2.2) by showing that the angular
flux satisfies a singular integral equation. We start by
setting

P =[ PO G
so that we may write Eq. (2. 2) as
W2y =L Shp e, G
We now define
Vi) = "(T"; bvx, ») — pp(e ] v, (33)

Noting from Eq. (3.2) that

(ﬂ 56; + 1) vp(x, 7)

cu N
= "goann(V)Pn(x) + (0 — wy(x,v), (3.4)
we find

&

) Wolx, w)
¢ N
=5 2b { o)
+ L I:(V_ B [p.(5) — P, ()] dv}p,,(x). (.5)

(19" F) J. McCrosson, M.S. thesis, Virginia Polytechnic Institute
64
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Inspection of Eqs. (3.2) and (3.5) shows that if the
h,, satisfy the equation

me + 1 KD 1p,6) — P = P, 6O

then Wo(x, ) is a “particular solution” of Eq. (2.2).
This can be shown by first noting that Egs. (3.6) yield
ho(1) = 1 and hy(u) = (1 — c)u. Using the recursion
relation for Legendre polynomials, we also find that
Eqgs. (3.6) yield the same recursion formula as Eq.
(2.12), so that the &, do indeed satisfy Eq. (3.6).

The function'¥'y(x, &) then is a “particular solution”
of Eq. (2.2). To obtain the “general solution,” we
must add to Wy(x, u) a solution ¥,(x, ) of the
homogeneous equation

viz.,

W, (x, 1) = —F(u)e™", (38)

where F(u) is an arbitrary function of 4 whose form is
to be determined by appropriate boundary conditions.
Expressing the “general solution” of Eq. (2.2) as
Wolx, u) + ¥i(x, u), we write

st = [ 5B by, 5) — oyt il
: — F(e. (3.9)

Interpreting each part of the integral in Eq. (3.9)
Cauchy principal valued integrals, we find the singular
integral equation

A w(x, u) — Pfl vf(+’z) w(x, v) dv = —F(u)e™™*
(3.10)

in which x appears only as a parameter. Equation
(3.10) can be solved by a procedure very similar to
that outlined by Leonard and Mullikin* (also see
Ref. 5). For example, in the critical problem we first
find the form of F(x) by use of the symmetry and
boundary conditions (2.26) and (2.25):

f kG, —4) wa,v)dv, u>0
o v4pu
F(u) = (3.11)
f rk(v, 1) y(a, v) dv, u<0.
o v—p

At this point, we analytically continue y from Eq.
(3.9) to the complex plane of z. To do this, we define
a function f(a, z) such that f(a, u) = F(u) for & > 0

and f(a, —u) = F(u) for u < 0:
fa,z) = e ﬁ ”"f"; 2 w(a, ) dv. (3.12)
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We then get the functional equation
1

(s, 1) — [ 22D g, ) ay
-1v—2Z

{_e—a;/zf(a’ Z),
B —e"*f(a, —z), Rez <0,

where Q(z) is defined by Eq. (2.9). Recalling that
Q(z) has « pairs of zeros in the complex plane cut
along (—1, 1), we see that the remainder of Eq. (3.13)
must vanish to the same order as Q(z) at these points
in order for g(x, z) to be analytic on 0 < |z| < oo.
This gives linear constraints such as

1
_ ol vk(v, Fz;)
fla, +2) = ¢ L——v o

Rez>0
(3.13)

p(x, ) dv,

j=1,- (3.14)
for Q(z;) = 0, [dQ(2) | dz],_,, # 0. Setting x = a in
Eq. (3.13) and using the definition of fin Eq. (3.12),

we also find
fla,z))=f(a, —z), j=1,---,a (3.15)

We note that from the general theory of singular
integral equations, the solution for (x, 4) can be
expressed in terms of f(a, u). But with z = u in Eq.
(3.12), f(a, p) is defined as an integral over y(a, u).
Thus, the critical angular flux (x, u) at every point in
the slab can be determined from the emerging critical
angular flux y(a, u) at the face of the slab. A singular
integral equation for y(a, u) can be obtained by letting
x = a and restricting x > 0 in Eq. (3.10):

f vk(v, ,u)

.
’a’

e/ (a, p),
(3.16)

where use has been made of the boundary condition
(2.26). We note that the singular operator in this
equation is adjoint to the singular operator arising in
the eigenfunction expansion method. This type of
singular integral equation has been analyzed by
Leonard and Mullikin* by first treating f(a, u) as a
known function and inverting the singular operator
by a slightly modified form of the theory of singular
integral equations, finally obtaining a regular Fred-
holm equation for f(a, ). The critical condition
obtained with minor modification is that obtained by
Leonard and Mullikin 48

AMp)y(a, p) — w(a,v)dv = —

4. RELATIONSHIP BETWEEN DIFFERENT
APPROACHES

We are now prepared to show the relationship
between the approaches in Secs. 2 and 3. We do so

8 E. A. Rhodes, M.S. thesis, Virginia Polytechnic Institute (1965).
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by noting first that if we use the explicit form of
é(u, v) from Eq. (2.5) we can write the integral

[ r#trpisy a
= M[l(u)w(x,u) - Pfl

vk, 1) p(x, v) dv:|. (4.1a)
v—p

On the other hand, if we use the eigenfunction ex-
pansion (2.15) for y(x, v) and then apply the orthog-
onality relations (2.16) and (2.17), we get

f_lf‘f’(/" )p(x, ) dv
=J;1'V¢(.”', 1’){ é:l[a+j¢(zj , ,u)e_”/za'

+ a_;¢(—z;, We"*] + LA(n)qS(n, »)e M dy! dy

= uS( A", (4.1b)

Equating the equalities of Eq. (4.1a) and (4.1b), we
have ’

Kt = P [ 2 5y dy = G
(4.2)
which when we compare with Eq. (3.10), we find
F(u) = —S(w)A(u) = [f(a, p) for the critical
problem]. (4.3)

A similar procedure yields an expression for the
discrete expansion coefficients:

1
f vd(Lz;, VIyp(x,v)dv = ta,,z;M;e %, (4.4a)
-1
or

w(x,v)dv = —a, ;M.

J’ Yvk(v, +2;) (4.4b)

1 v F oz

Letting x = a in Eq. (4.3b) and recalling Eq. (3.12),
we find for the critical problem
a,;, = —f(a, £z;)/M;. 4.5)
Equations (4.3) and (4.5) reflect the relation between
the two different methods and allow one to go from
one representation to the other, i.e., substitution of
Egs. (4.3) and (4.5) into the Fredholm equation for the
continuum expansion coefficient and the set of homo-
geneous equations for the discrete coefficients in the
eigenfunction expansion method yields the critical
condition indicated in the last section, provided the
secular determinant of the above-mentioned equation
vanished (which of course is another representation
for the critical condition). The relationship between
the transform method of Leonard and Mullikin* and

the eigenfunction expansion method is obviously
similar.
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However, this relationship is more general. In fact,
the development of Eq. (4.2) can be interpreted as a
derivation of Eq. (3.10). It can also be used as an
alternate procedure for obtaining the expansion
coefficients in the eigenfunction expansion method.
We illustrate this procedure by considering Milne’s
problem for the infinite half-space medium with the
following boundary conditions:

and

lim ,,(x, p) = Bé(—z, w)e*'™, 4.7

&= 00
where z, is the largest positive eigenvalue and an
arbitrary constant B describes the strength of the
source at infinity.

From the boundary condition at infinity (4.7), we
get
a; =0, j#k

We then write the solution as

B(—z,, e + 3 a,;d(z;, we
p}

(4.8)

Yol X, 1) =

+ J:Am(v)gb(v, we = dy. (4.9)

In a procedure similar to that used in Eq. (4.2), we
obtain

1
qusw, D)9, %) dv = pS(DA (e, (4.10)

from which we write [cf. Eq. (3.10)]

k(»,
M)y .(x, @) — flvv U Z ) YulX, v) dv
— {“F(,“)e—w L ou>0 (4.11)
0, p<o,
where

F(p) = —S(uA4,(w), (4.12)
and we have used the boundary condition (4.7) to

specify that 4,,(u) = 0, u < 0. Boundary condition
(4.6) yields an expression F(u):

Lok(y, —
Fo) = Lﬁ’;—#“)wm(o, —vdv. (413)

We can analytically continue y,, to the complex plane
if we define

l —
F(z) = f "k =2) 0, —w)dv,  (4.18)
o v+4z
with which we write from Eq. (4.11)
1
0pax,2) = [ Dy ) 0
av—z
— —x/2z
={ F(z)e™®*, Rez>0 (4.15)
0, Rez < 0.
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Now for o,(x,z) to be analytic on 0 < |z| < o0,
z # —2z,, we must have

1 p—
f M wm(x, ’V) dv = Os j #k (4'16)
-1 v+ 2z

which when we let x = 0 and apply Eq. (4.5) we find
F(—z)=0, j#k. 4.17)

Since y,,(x, z) has a simple pole at z = —z,, we find

F(—2,) = 2BQ(0)X(—z) X(z)2Nz) TT (22 — 2,

(4.18)
where we have used the identity

Qz) = X@DX(—D)QU) [[ (2 — 2 (4.19)
with =
__1 HIn (QT(w)/Q (W)
@) = (1 -2z o 27i Jo u—z au

(4.20)
as the solution of the homogeneous Hilbert problem
whose boundary values along the cut (0, 1) satisfy

X' _ Xw)

X(w) @

An expression for F(u) can be obtained by con-
sidering Eq. (4.11) with x = 0:

(4.21)

1
O e L

u>0. (422)

We then define the sectionally analytic function in the
complex plane cut along (0, 1),

D(z) = ﬁ J; vk(v, z)

vV—2z

Y0, =) dv.  (4.23)

With the use of Plemelj’s formulas, we can then re-
write Eq. (4.21) as

QW) D~ (w)/Q (w) — D*(w) =0, (424
where Q+(u) are given by Eqgs. (2.20).
Recalling Eq. (4.21), we have
D)X +(u) — D~(w)/X~(u) = 0. (4.25)
We now consider the function
H(z) = D(9)/X(2) (4.26)

which is analytic everywhere in the finite plane except
perhaps for a cut along (0, 1). But from Plemelj’s
formulas and Eq. (4.25), it is obvious that H*(u) —
H-(u) = 0, so that H(z) is analytic everywhere in the
finite plane. Since we are assuming £2(o0) # O,
k(7, z) is of degree N in z. Therefore, from Egs. (4.20)
and (4.23) the behavior of H(z) at infinity is that of a
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polynomial of degree N + « — 1 at most. Hence, by
Liouville’s theorem, we find
b = X7

+a—1

zﬁl’

where the coeflicients §; can be determined as outlined
below. We note first that

(4.27)

N+a-1
F(z) = 27iD(—z) = X(—z2) 2 Bi(—2z)'. (4.28)
Therefore, from Eq. (4.17) we have
N+a—1
F(""Z,) -_— X(Zj) z ﬂ;z,, J ‘# k (4-29)
so that we can write
a N
F(2) = X(—z2) I_[(z, + 2) Zooc,,z” (4.30)
=k n=f
with
N+a—1 a N
z ﬂl(—-z)’ = H(Zd + Z)Z%Z"a (431)
1=0 FE n=0

where now only the N + 1 «, are to be determined.
One of the equations necessary to do this comes from

Eq. (4.18) which yields
N [
> (2" = 2BUDX(~ )N [T s + 2.
(4.32)

The other N equations are found by eliminating the N
moments

1
U= [0 @3
from the 2N equations
N-1
2) ;(y)(x 1)”1 U,
§=
a N
= X(-'-l:yi) H (Z, :F yi) Z an(:Fyi)"a (434)
i*k n=0

where the +y, are the zeros of N(z) and the poly-
nomials w,,;(7) are obtained from the relation

N—1
k(v, £y,) = go wii(:hyl')(:bl)j+1v,(v Fy). (4.35)

With F(z) so determined we have Eq. (4.12),

A = X0 ”’H(z,+u)zw

4.36)
S(u) i= (
We also find
1
f vk(v, 1) Yu(X, V) dv = —a ;M ,e—a/zz’ @4.37
-1y — Zj

which with Eq. (4.14) and x = 0 yields

a,; = —F(z)[M;. (4.38)



TRANSPORT EQUATION WITH ANISOTROPIC SCATTERING

5. WEIGHT FUNCTIONS

It seems appropriate to conclude with a few brief
remarks about the role adjoint singular integral
equations play in obtaining weight functions for use in
orthogonality relations between the eigenfunctions of
the transport equation. The central point here is that a
necessary condition is the weight function be a solution
to a singular integral equation which is adjoint to the
singular integral equations arising in the eigenfunction
expansion method. For example, in the case of iso-
tropic scattering, Eq. (2.4) takes the form

A — u/v)p(v, ) = ¢/2

(1 = un)p(n, p) = /2. (5.1b)

We look for the appropriate weight function ug(u)
for orthogonality on (—1, 1) by multiplying Eq. (5.1a)
by g(wé(n, u) and Eq. (5.1b) by g(u)$(», u) and
integrating on u over (—1, 1) to find

(5.1a)
or likewise

2(1fy — 1/n) Luqb(v, wWd(n, W) du

= cf_lg(,u)ﬂ’?’ wdu — ¢ f_lg(ﬂ)qg(,,, wdu (52)

If ug(u) is the appropriate weight function, the right
side of Eq. (5.2) must vanish. Using the explicit form
of ¢, we have

¢ ng(u) du

sapitn) — p[ 1E0

= const (e.g. = 1),

(5.3)

which is the adjoint singular integral equation having
the solution g(x) = 1. In this case, the weight function
is u in agreement with the previous results of Case.2
If, on the other hand, we wish the orthogonality to be
on the interval (0, 1), we find, instead of Eq. (5.2), the
equation

231w — 1fn) f ud(v, 0 $n, W) du

~c f £ ()1, 0) dpt — f G0 ) s (5.4)
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which yields analogous to Eq. (5.3) the adjoint singular
integral equation

1
g(mAi(n) — 'PI ¢ 18 du = const,
o 2p—1

(5.5)

which has the solution
pg(p) = (z, — WIXH(1) — X~(w))/27i,

in agreement with the results of Kuscer, McCormick,
and Summerfield.?

The case of anisotropic scattering is more involved.
In this case the equation analogous to Eq. (5.2) for
determining the weight function for orthogonality on
(—1, 1) has the form

(1fp = 1) [ b, 1990, 19et)
=Lg(u)k(u, v)$(n, ) du
- f_lg(u)k(u, N, w) du, (5.6)

which yields the adjoint singular integral equation

P (mg(mA(n) — Pf 71&';—”)_—1((;7”’—77)g(u) dp = h,(n),

(5.7
which has the solution g(u) = 1. This again gives the
weight function g in agreement with the results of
Mika.? For orthogonality on (0, 1) the above proce-
dure leads to rather intractable results. Perhaps a
better procedure is the use of the bi-orthogonality
results of McCormick and KusCer.® Here the weight
function ug(u) satisfies the dominant adjoint singular
integral equation

1
N
soien - P[ P gy qu =1, 59)
op—1
which has the solution

ug(w) = Qo) H (2 — W) — X~(u)]/2mi.

® I. Kuséer, N. J. McCormick, and G. C. Summerfield, Ann. Phys.
(N.Y.) 30, 411 (1961).
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A particular area-preserving mapping of a plane onto itself has been studied in detail with the aid of a
digital computer. A large number of fixed points, finite sets of points that transform into each other,
were located and classified as elliptic or hyperbolic depending on the nature of the linearized mapping in
the neighborhood. A quantity called the residue was calculated for each fixed point. This quantity can
be used to predict whether other nearby fixed points are elliptic or hyperbolic. The results showed that
there are considerable regions in which almost al} the fixed points are hyperbolic. Further calculations
were made to estimate the area enclosed by the invariant curves whose existence has been established
by Moser. The boundary of this region appeared to coincide with the boundary of the region in which

almost all the fixed points are hyperbolic.

I. INTRODUCTION

Problems in many branches of physics can be re-
duced to the study of two-dimensional measure-
preserving mappings. A most pictorial example is the
behavior of magnetic field lines in a toroidal system.!
A mapping of a cross section of the toroid onto itself
is formed by following magnetic lines of force around
the system from one intersection with the cross
section to the next. The possible containment of a line
of force within a given region for many traversals
around the system can be deduced from the behavior
of iterates of the corresponding two-dimensional
mapping. The magnetic flux through each neighbor-
hood is conserved by this mapping, so it is measure
preserving.

A more typical example is a particle in a two-
dimensional potential.>~* Conservation of energy
restricts the motion to a three-dimensional hyper-
surface in the four-dimensional phase space. Any
phase variable whose value recurs in the course of the
motion can be used to define a two-dimensional cross
section. Dynamical orbits are used to define a mapping
of this surface onto itself, analogous to that described
in the example above. Poincaré’s invariant® shows that
area, defined in canonical coordinates, is conserved
by this mapping.

The restricted three-body problem of celestial
mechanics can also be reduced to such a mapping.®?

It is most interesting to know whether these two-
dimensional measure-preserving mappings are ergodic
or not. This means determining whether or not suc-
"L, Spitzer, Jr., Phys. Fluids 1, 253 (1958).

2 G. D. Birkhoff, Collected Mathematical Papers (American
Mathematical Society, Providence, R.I., 1950), Vol. II, p. 333.

3 M. Hénon and C. Heiles, Astron. J. 69, 73 (1964).

4 P. A. Sturrock, Ann. Phys. (N.Y.) 3, 113 (1958).

5 H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Reading, Mass., 1951), p. 247.

8 J. Moser, Nachr. Akad. Wiss. Géttingen, II Math.—Physik.

K1, No. 6, 87 (1955).
7 V. 1. Arnol’d, Russian Math, Surveys 18, No. 6, 85 (1963).

cessive images of a given point cover densely a finite
area.® It appears that both types of behavior occur
in different regions for almost every mapping.
Moser®1® has shown that there are isolated closed
invariant curves, subject to certain restrictions detailed
in Sec. ITI. These exact invariant curves separate
regions of ergodic behavior. It is interesting that
similar invariants exist for higher-dimensional map-
pings but they do not separate different regions of
phase space.® The two-dimensional problem appears
to be the most interesting.

Moser’s paper proved the existence of invariant
curves but gave no indication of the area that they
might be expected to enclose. The purpose of the
work described in this paper was to find some way of
estimating this area.

The estimation was sought in terms of the fixed
points of the mapping. These correspond to closed
magnetic field lines, or to periodic orbits in a dynam-
ical problem. Such orbits may close after one, or
many, traversals through the chosen cross section.
These periodic orbits are attractive for study because
they are finite in length, and because there are many
of them. Poincaré? hypothesized that they are dense
in phase space, but that has not been proven either
way. In any event, they are thickly scattered. The hope
is that all the properties of a mapping can be under-
stood in terms of its fixed points.

The location of the fixed points is, of course, not
enough. Each fixed point must also be characterized
by the linearized mapping in its immediate vicinity.
It is the parameters of this linearized mapping that
have been studied and in terms of which the properties
of the mapping have been interpreted in this paper.

¢ D. R. Halmos, Lectures on Ergodic Theory (Mathematical
Society of Japan, Tokyo, 1956), p. 25.

® J. Moser, Nonlinear Problems, R. E. Langer, Ed. (University of
Wisconsin Press, Madison, Wisconsin, 1963), p. 139.

10 J. Moser, Nachr. Akad. Wiss. Géttingen, IT Math.-Physik. Kl.,
No. 1 (1962).
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These parameters are defined and discussed in Sec. II.

In Sec. III a scheme is described for selecting certain
fixed points for study.

A number of fixed points, for a particular simple
choice of mapping, have been located numerically
with the aid of a digital computer and the correspond-
ing parameters have been evaluated. These com-
putations are described in Sec. IV.

These computations indicate that there are regions
in which all the fixed points are hyperbolic. The image
of any given point in the neighborhood of such a point
tends to move away from the fixed point on successive
iterations of the mapping. Ergodic behavior appears
to be restricted to these regions. This is discussed in
more detail in Sec. V.

II. DEFINITIONS

The mappings considered in this paper have the
general form

x1=f(x0’y0), y1=g(x0ay0)’ (1)
or, more compactly,
(x1, y1) = T(xo, yo)- (2)

The functions f and g will be taken to be infinitely
differentiable. The condition that the mapping be
area preserving is

det ()) =1, 3

where ] is the Jacobian matrix of the partial derivatives,
= i

Jex, y) = ( ) @
8z 8y

We will consider also iterations of the mapping,

(xls_yl) = T(xo,}’o)a (x29y2) = T(xl’yl)a (5)

which can be written

(%25 y2) = T*(xq, yo), (6)

and generalized to any power of 7.

It is frequently useful to linearize the mapping
around a given initial point. This approximation can
be expressed in matrix form using products of the
Jacobian matrix of Eq. (4):

fg — X3 fl - X%
(‘ ) = J(xluyl)(,‘ )
Yo — Yo Y1i— N
.fo - xo
= J(x1,y1)1(xo,J’o)(A )’ (7)

Yo — Yo

where (x,, yo), (*1, y1), and (x;, ,) are related by
Eq. (5).
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Special attention will be focused on fixed points.
The fixed points of T satisfy the equation

(xs, ¥9) = T(xs, yy). ®

The matrix representing the linearized mapping in the
vicinity of this fixed point will be denoted by M =
J(x;, y;). It is convenient to introduce four parameters
a,b,c,and d,

a+d c+5b
Y

c—b a—d|’

in discussing such 2 X 2 matrices. Equation (3) then
becomes

at*+ bt —c?—d*=1. (10)
The quadratic form,
p=(b—c)x—x)2+2d(x — x)(y — yp)
+ G+ —y) (A

is invariant under this linearized mapping. Three of
the four independent parameters that will be used to
specify M describe this quadratic. One of these is an
ellipticity parameter,
b — & — d* 1—a°
E = = s
P+cf+d B+E+d
which is somewhat more convenient than the classical
ellipticity. When E = 1 the constant-p surfaces are
circles, E > 0 corresponds to a set of ellipses, £ = 0
to a set of parallel lines, and E < 0 to hyperbolas.
Fixed points will be called elliptic or hyperbolic,
depending on the sign of E. When the denominator of
Eq. (12) vanishes, b = ¢ = d = 0, a = £1. This will
be called the degenerate case.
Another parameter describes the orientation of the
quadratic form. Under a rotation of coordinates, a
and b, and hence ¢? + d2, are constant, but ¢ and d

vary as the sine and cosine of twice the angle. Thus we
define

(12)

6y = 3 tan™! (¢/d). (13)

The sign of b is necessary to reconstruct M from the
full set of parameters. It also affects the orientation of
the quadratic form.

The remaining important characteristic of the
matrix M is the displacement of a point along an
invariant curve. This can be deduced from a quantity
that will be called the residue of the fixed point,
defined by

R

1~ 1Tr (M),
=31 — a).

The interpretation of the residue depends on whether
the fixed point is elliptic or hyperbolic. Indeed, the

(14)
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sign of E is related to the magnitude of R, since, from

Eqgs. (12) and (14),
E=4R(1 — R)/(b* + ¢ + d?. (15)

For hyperbolic points the eigenvalues of the matrix
M are the ratios of the distances of a point and its
image when both lie on an asymptote of Eq. (11), and
they depend only on R:

A=1-—2R+2[RR - D] (16)

Note that when R is small and negative 4 is nearly
unity and the distance between a point and its image
is small.

The behavior of elliptic points is best understood
from an examination near the fixed point of iterates of
the mapping 7. The Jacobian matrix of T evaluated
at the fixed point of T is

Mo(%s, ¥) = M@ = (sin 27Quw,)/(sin 27may)

sin 27w, b+c

X cot 2nQw, + d

X ’
¢c—b sin 27w,
X cot 2mQw, — d
am
where

cos 2nwy, = a, R = sin® 7w, (18)

which can easily be established by induction. When
Quwy ~ 1, M@ is approximately the identity, and a
given point has returned to nearly its original position.
Thus w,, which will be called the rotation number, is
the average rotation of a point around the ellipse. As
with hyperbolic points, small values of the residue
correspond to small displacements.

Note that the residue is always real, while 4 is com-
plex for elliptic points and w, is complex for hyper-
bolic points.

It is obvious that, aside from the singular case
when E vanishes and & # 0 must be specified, the
matrix M is completely determined by R, E, Oy,
and sign of b. Namely,

a=1—2R,

b= +[2R(1 — R)(1 + E)/E}},

¢ = sin 204[2R(1 — R)(1 — E)/E]},
d = cos 204[2R(1 — R)(1 — E)/E}.

Henceforth these parameters will be used to describe
M.

It follows from Eq. (15) that 0 < R < 1 always
indicates an elliptic fixed point, while if R <0 or
R > 1 the fixed point is hyperbolic. Equation (16)

(19)

GREENE

shows that there are two types of hyperbolic points,!
depending on the sign of the residue. When it is
positive, the eigenvalues 4 are negative and M inter-
changes the corresponding branches of the hyper-
bolas of Eq. (11). When R is negative, the eigenvalues
are positive and M maps each branch into itself. Thus,
for small residues, the distinction between positive
and negative residues corresponds to the distinction
between elliptic and hyperbolic fixed points, whereas
for large residues it corresponds to the difference
between two types of hyperbolic points.

A quantity called the index!? can be defined for
closed curves and is useful for counting and classifying
the enclosed fixed points. Consider the set of vectors
connecting each point of a closed curve with its image
under the mapping. The index of the curve is the
number of rotations the vector makes as the initial
point traverses the closed curve, taken to be positive
if the rotation is in the same sense as the traversal of
the curve. Similarly, the index of a discrete fixed point
is defined as the index of an enclosing curve that lies in
the immediate neighborhood. It can readily be estab-
lished by repeated subdivision that the index of a
closed curve is the sum of the indices of the enclosed
fixed points. It can also be established that the index
of a fixed point is equal to the sign of the residue,
when the latter does not vanish.

Now consider iterations of the mapping, and
particularly the fixed points of T2, T3, etc. If (x,, y,) is
a fixed point of T'9, then T(x,, y,) is also a fixed point.
Thus the fixed points of 79 form families of Q
members. The quantity Q is useful as an identification
of a given fixed point. Again, matrices can be found
that represent the linearized mapping in the vicinity
of each of these fixed points. These can be expressed
as products of Q Jacobian matrices, Eq. (4), evaluated
respectively at the successive fixed points of the corre-
sponding family, following Eq. (7). Such matrices can
be analyzed in exactly the same manner as discussed
above. It follows that each fixed point of a given
family has the same residue since

MIT(xs, ¥l = )%, yIMOs, Y72 (3, p). (20)

A family of fixed points tends to lie on a ring, or a
series of rings enclosing elliptic fixed points. The
indices under T of closed curves lying just inside and
just outside such rings are almost always +1. Thus

there must be as many families with positive as with
negative residue. As we have seen above, this may

11 G, D. Birkhoff, Ref. 2, p. 111.
12 Y, Poincaré, Oeuvres (Gauthier-Villars et Cie., Paris, 1928),
Vol. 1, p. 85.



TWO-DIMENSIONAL MEASURE-PRESERVING MAPPINGS

mean that elliptic and hyperbolic points alternate,
but it does not exclude all points being hyperbolic.

I, A HIERARCHY

This section presents a scheme for obtaining an
over-all picture of the structure of any given mapping.
The approximate invariant curves given by Eq. (11)
serve as the starting point. These can be extended in a
qualitative way into the nonlinear region where they
provide a framework to discuss the mapping.

Near thefixed point the deviation from the linearized
mapping of Eq. (7) can be treated as a small param-
eter. It is thus possible to extend Eq. (11) and obtain
a formal series™ for the approximate invariant curves
y = const in powers of x — x, and y — y;. Our
primary interest is in those curves that enclose
elliptic fixed points. The rotation number w, defined
for these closed curves as the average number of
rotations around the central fixed point per iteration
of the mapping in the limit as the number of iterations
goes to infinity, depends on the value of y when the
mapping is approximated using higher powers of the
distance from the fixed point. For surfaces very close
to the central fixed point w approaches w, of Eq. (18).

The shear of the mapping, defined by

s = dw/dy, @

is very useful in classifying different mappings. For
example, higher-order terms in the expansion of y
discussed above may only slightly alter the shape of the
curves or may change their character completely,
depending on the shear. In particular, if the rotation
number w, of a fixed point is close to a rational number
with a small denominator, and the shear is higher order
than resonant nonlinear terms, the approximate
invariant curves may no longer be closed.?8°

Moser®-1% has shown that when the shear is of lower
order than any resonant perturbation there are exact
invariant curves enclosing the central fixed point.
These invariant curves have irrational rotation
numbers that satisfy the inequality?®

lo — Ifk| > e[kt (22)
for all integers / and k, where € is a constant inde-
pendent of k.

In between these surfaces, where w == P/Q (P and
Q relatively prime) would be rational if it varied
continuously, there must be fixed points of 79
according to a theorem of Birkhoff’s.}'15 In certain
special integrable cases these fixed points may be

131, Niven, Irrational Numbers (Mathematical Association of
America, Menasha, Wisc., 1956).

14 G. D. Birkhoff, Ref. 2, Vol. I, p, 673.
¥ G. D. Birkhoff, Ref. 2, Vol. 1, p. 252.
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Fia. 1. Some fixed points of the mapping given by Eqs. (23)-(25).
Two families for each of P/Q = § and & are shown enclosing tht
fixed point at (1, 1). Positive residue points are represented by O
and negative residue point by +. Also shown by - are 20 points of a
family, for which Q = 180, belonging to the third order of hierarchy
and associated with the elliptic points with P/Q = 1.

dense on a curve and so complete a set of nested
invariant curves. In such cases the residue of each
fixed point vanishes. However, in almost every
situation perturbations break up the surface; there
are only isolated fixed points of T9 and they have
nonvanishing residue.

These isolated fixed points can be identified by
their rotation number P/Q. It is possible to establish
a rotation number for this finite set of points because
the exact and approximate invariant curves impose
considerable organization on any given mapping.
Each family of fixed points will appear to lic on a closed
curve that is close to an approximate invariant curve
and encloses a central fixed point. A typical example
is shown in Fig. 1. Thus P — 1 is the number of mem-
bers of the family which lie between a fixed point and
its image. Alternatively, P is the number of rotations
around the central point when following from a fixed
point to its image through all Q members of the
family. In either case P is ambiguous to an additive
multiple of Q. A further requirement on P is that two
fixed points which lie close to each other should have
nearly equal values of P/Q, which follows from the
continuity of the approximate organization of the
mapping.

The structure of invariant closed curves and fixed
points enclosing an elliptic fixed point of T2 is similar
to that enclosing a fixed point of 7. The additional
fixed points in this structure are then fixed points of
(T9)¥. Their rotation number around the central
fixed point of 7'is the same as that of the fixed point
of 79 with which they are associated. Thus the values
of P and O (0 = P|Q, 0 = ON) are not relatively
prime for these fixed points. This structure may also
exist around hyperbolic points in certain cases.
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In order to avoid dealing with all the fixed points
and invariant surfaces as a single unit, it is convenient
to organize this structure recursively in a hierarchy.
The zero order of this hierarchy consists of the fixed
points of T. The first order consists of the invariant
curves that enclose the fixed points of 7" and those
fixed points of 79 for which P and Q are relatively
prime. The second order of the hierarchy includes this
same structure around elliptic fixed points in the
first order of the hierarchy. It is clear that there are
an infinite number of orders in the hierarchy.

Some such organization into a hierarchy is necessary
for making general statements. For example, in the
next section a connection is found between the in-
variant curves of a given order of the hierarchy and
the fixed points in the same order. If the fixed points
of higher orders were not discarded it would be
difficult to discover any meaningful relationships.
However, it has not yet been possible to develop a
rigorous definition of the concept. In particular, it is
not clear that all fixed points can be ordered in the
hierarchy.

IV. COMPUTATIONS

A. Description of the Chosen Mapping
The specific mapping chosen for study is

X, = (I/A)(xo — By, + Cyg), (23)
y1 = Ay, + Bx, — Cx}, 24
A=125 B=01, C=0J35. (25)

This mapping is symmetric around the line x = y in
the sense that if

T(cy, €2) = (¢35 €a)s (26)

T(cq, c5) = (c2, €1)- 27
It follows that if (¢, , ¢5) is a fixed point of T9, (c,, ¢,)
is another fixed point of 7¢. The mapping is also
invariant under change of sign of both x and y. (See
note added in proof.) The fixed points of T consist of
a hyperbolic point at (0, 0) and elliptic points at
(i, 1) and (=1, —1). The residue of the hyperbolic
point is R = —0.0105. For the elliptic points R = 0.168
and w;' = 7.4388.

The fixed point at (0, 0) belongs to the zero order
of the hierarchy considered in the previous section.
The first order of the hierarchy is composed of
families of fixed points of iterates of 7" which enclose
the origin. The two elliptic fixed points of T can be
considered as the innermost of these families with a
P[Q value of ¢. These families extend continuously
in P/Q from this value to % for fixed points of 72 at
[£(2.35/0.35)%, F(2.35/0.35)4]. This is a case where
the central point is hyperbolic.

then
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Most attention was concentrated on the second
order of the hierarchy, the structure around the fixed
points of the first order, in particular, around the
elliptic fixed points at (1, 1). There are pairs of families
of fixed points of iterates of T for all values of P and
Q that are relatively prime and whose ratio lies in the
range 0 < P/Q < wy. Two such pairs of families are
shown in Fig. 1.

By the symmetry of Egs. (26) and (27), one member
of most of these families lies on the line x = y. Such
points are easy to locate numerically, so effort was
concentrated on corresponding families.

Surrounding each positive-residue fixed point in
the second order of the hierarchy are families of
fixed points belonging to the third order of the
hierarchy. A part of one such family is shown in
Fig. 1.

B. Calculation of Residues

Residues were calculated for approximately 150
families of fixed points, including all those for which
P <L 11, P/[Q > (9.5, and |R| > 1074, A selected
set are listed in Table I. It can be seen from Eq. (14)
that small residues are calculated as the difference of
two numbers of order 1. For fixed points with the
smallest residues it was necessary to carry 14 to 18
decimal places in all the calculations. The two families
of fixed points for a given P/Q had residues that were
very nearly equal and opposite, especially when they
were small in magnitude. This would not be true for
fixed points with Q < 4 but none such occurred in
this system.

The behavior of the residues in the limit of large Q
can be understood by assuming that they depend
exponentially on Q. This leads to defining a function

TaBLE I. Q/P, location, and residue for a selected set of
fixed points.

Q/P QP x=y R f= @Ryl
152 7.5 0940  —1.34-10710 005818
79/10 7.9 0823  —32 -10°M 0472
8/1 8.0 0.805  —1.08-10~2  0.456
172 8.5 0727  —225-10"2  0.753
53/6 8.833  0.6948 —0.116 0.971
115/13  8.846 0.6944 0.115 0.987
62/7 8.857  0.6942 —0.254 1.0005
133/15  8.867  0.6940 0.593 1.013
71/8 8.875  0.6939 —0.5%0 1.024
151/17  8.882  0.69382 331 1.035
80/9 8.889  0.69377 —~1.41 1.044
9/1 9.0 0.658 0.229 0.980
82/9 9.111 0.621 —65.9 1.145
28/3 9333 0.611 —1.04 1.107
192 9.5 0.599 —0.888 1.143

& The positive residue family with the same value of Q/P has
been used to calculate f,
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FIG. 2. A plot of f(Q/P), defined in Eq. (28).

Iy R = «[f(P|Q)1%". (28)
A plot of fvs Q[P is given in Fig. 2, and selected values
are listed in Table I, where « has been chosen to be
equal to } to make the curve as smooth as possible.

If f were continuous it would be possible to extrap-
olate the calculated residues to large values of Q by
interpolating in /. In regions with f'greater than unity,
the residues would increase indefinitely with Q, and
with f less than unity the residues would approach
zero in this limit.

It is clear that Eq. (28) is a necessary first step to
obtain a smooth curve suitable for interpolation, but
it does not quite do the job. Apparently each fixed
point creates a perturbation in its neighborhood
which affects the value of f for neighboring points.
This is especially evident in Fig. 2 near where Q/P
equals 8, 83, and 9.

This perturbation is illustrated in Fig. 3. The loca-
tion of fixed points with Q/P = %% = 9§ are strongly

T T T T

%o

o4

+
06l %,

! 1 1 L
06 X or

FiG. 3. A plot showing the relation between fixed points with
P|Q = 3% and nearby fixed points with P/Q = 3. The elliptic 1
fixed point is denoted by [, the corresponding hyperbolic fixed
points by +, and part of one family of 3% fixed points by O.
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TasBLE II. Residues of fixed points near Q/P = 4.

n QJP R f=(4R)2Q

3 59/7 1.83 1075 0.724

7 127/15 4.56 1078 0.783

11 195/23 2.97 1079 0.829

15 263/31 1.49 1079 0.866

19 331/39 2.21 1079 0.894
23 399/47 5.63 109 0.916
27 467/55 1.65 1078 0.932

affected by their proximity to fixed points with Q/P =
2. It is reasonable that this distortion in location is
accompanied by an effect on the residues, though no
direct calculation is available. It is also reasonable that
this distortion should depend on the ellipticity
parameter E of the fixed points with Q/P = % since
this gives the shape of the invariant curves in the
vicinity.

To further illustrate the effect of distortions caused
by nearby fixed points, residues were calculated for a
series of fixed points with values of Q/P given by the
formula

QP =8+ (2 + 1/n)L. (29)

In Fig. 2, this series approaches Q/P = 8.5 from the
left. These calculated residues are listed in Table II.
It appears that f will increase beyond unity and that
for large values of n the residue will become inde-
finitely large. This confirms that the disturbance
around the fixed points Q/P = %% dominates the
behavior of nearby fixed points. Since there is nothing
special about this fixed point, it can be said with
confidence that there are intervals in every range of
P[Q where fis larger than unity.

A series of rational numbers that avoids these
disturbances can be constructed with the aid of the
series of numbers F,,,

I ..
1411’

2

F, =1, F2=1+%, Fy=1+

(30)
the partial convergents of the infinite continued
fraction with the partial quotients all unity. Table ITI

TasLE III. Residues of certain fixed points.

n Q/P R f=@Rpee
1 53/6 1.15 1071 0.97126
2 62/7 —2.54 101 1.00050
3 11513 1.15 1071 0.98660
4 177/20 1.22 101 0.99200
5 292/33 —5.54 102 0.98973
6 469/53 2.66 10~2 0.99048
7 761/86 5.77 1073 0.99014
8 1230/139 —6.03 104 0.99025
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is similar to Table II except that the values of P/Q are
chosen by the formula

QP=9—(5+F)™ 31)

In this series the values of f are rapidly converging on
a value slightly less than unity, and the residues are
decreasing.

In conclusion, there appear to be significant regions
where all the fixed points are hyperbolic. This is
evident from the following argument. In Table II it
was illustrated that values of fincrease with increasing
proximity to other fixed points. This proximity can be
measured in terms of the partial quotients of a partial
fraction expansion of P/Q. Thus values of f increase
with increasing partial quotients. Then the opposite
case was considered and a series with the smallest
possible partial quotients was given in Table III. In
this series f converged on a value that fits smoothly
into the series of points in Fig. 2. Thus a curve sketched
through the points of Fig. 2 gives a lower bound to the
values of f. This lower bound will be labeled f,,(Q/P),
a continuous function of QfP. In regions where
S > 1 all families of fixed points will have f greater
than unity, and by Eq. (28) almost all positive residue
fixed points will have R > 1. By Eq. (15) and the
discussion below Eq. (12), this is equivalent to the
statement that almost all fixed points are hyperbolic
in regions where f,, > 1.

C. Escape Calculations

Another type of calculation that was made was to
test experimentally whether a given point lay inside or
outside the outer most invariant curve of the type
whose existence Moser has proved. A rigorous test
was devised by noting that, for the chosen mapping,
any invariant curve must be symmetric around the
lines x =y and x = —y. Since invariant curves
cannot intersect, any point whose image under
multiple iteration crosses the line x = —y must lie
outside any Moser surface enclosing the fixed point at
(1, 1) but not the one at (0, 0). Hence the point must
lie outside all the Moser surfaces in the second order
of the hierarchy. Of course, it is impossible to prove
that a point lies inside a Moser surface by a finite
number of iterations. A maximum of 50 000 was used.

A more annoying difficulty was the loss of significant
figures, resulting from roundoff errors, when many
iterations were calculated. The results did not meet the
usual tests of accuracy after a few hundred to a
thousand iterations were performed. However, these
tests are more stringent than are required. They
require that if the image of a given point (xo, yo) under
the exact mapping T™ is (x,, J,), then the calculated
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{a) (b) {c)

FiG. 4. A sketch of a neighborhood of x, and y, and its image
after n and n + 1 iterations of a given mapping. The central points
in b and c represent the numerical approximation to the image of
the central point in a. The circle in b is transformed to the ellipse in c.

image (%,, J,) should lie within a neighborhood of
(X4 ¥n). However, to prove that a neighborhood of
(%95 yo) lies outside a Moser surface we only need to
know that the true mapping takes some point in the
neighborhood of (x,, y,) to some point in the neigh-
borhood of (£,,#,). As will now be shown, this
condition is much easier to satisfy.

Figure 4 illustrates the geometry used in calculating
the effect of roundoff error. The central points of Figs.
4(a), 4(b), and 4(c) are the initial point and its images
as calculated numerically after » and n 4 1 iterations
of T. A neighborhood of (x,, y,), shown shaded in
Fig. 4(a), is assumed to be transformed by the exact
mapping into the shaded regions of Figs. 4(b) and
4(c). The mapping of the neighborhood of (£,, 7,) to
a neighborhood of (£,,;, $,,1) will now be treated
in detail in the linearized approximation, utilizing Eq.
(7), to confirm the general picture.

In the linearized approximation a circle is trans-
formed into an ellipse with a ratio of major to minor
diameter of

Dmax/Dmin = [(c2 + d2 + (1 + & + dD'P. (32)
Here c, and d,, are defined by parameterizing J(£,, 7,)
as in Eq. (9). In this approximation the separation of
two points dr, is related to the separation of their
images 6r,; by
(Or,)? = {1 + 2¢ + 2d; + [(c5 + d2)

x (14 ¢ + dDP cos 2(6 — 0,)}(0r,)%. (33)
Here 6 — 6 is the angle between the line connecting
the images of the two points and the major axis of the
ellipse of Fig. 4(c), and 6y is given by Eq. (13). On
the other hand, the relation connecting the distance

between a point and a line ér* and the distance be-
tween their images dor}, is

(Orn)® = {1 + 2¢2 + 2d}, + [(c; + d7)
x (1 + ¢ + d)]F cos 200" ~ 6} (r)%  (34)
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On the average, assuming successive phase angles
are uncorrelated, the distance between two points is
increased by the factor

()=l [ (5] o

\ or 27 Jo r.

=1+ +addt (35)

while a point and a line move toward each other by
the factor

Ot forh = (1 + & + d) . (36)

This describes a situation in which every region is
being continually stretched into long thin fibers by
successive iterations, as shown in Figs. 3(a) and 3(b).

We thus see from Eq. (35) that small errors in the
distance between two points tend to grow exponen-
tially with the number of iterations so that the stringent
criterion for accuracy shows a rapid loss of significant
figures. On the other hand, small errors of the distance
from a point to a region tend to decrease exponentially.
This would apparently lead to the conclusion that
when more significant figures appear to be lost, more
confidence can be placed in the results! Of course, the
theory is highly simplified, but it should give some
credence to the results of the “escape” calculations.
These are summarized in Table IV. The first column
gives the initial value for each calculation and the
second column gives the number of iterations required
for the image to cross the line x 4 y = 0. Those
calculations that were stopped before the image
crossed this line were discarded as inconclusive.

The first set of seven points in Table IV illustrates
behavior outside all the structure associated with the
fixed point at x = y = 0.6580 with P/Q = }. In the
neighborhood of this fixed point are Moser surfaces of
the third order of the hierarchy that enclose a portion
of the line x = y. Part of this structure is illustrated
in Fig. 1. Further exploration was conducted near
hyperbolic fixed points to avoid these third-order

TasLE IV. Results of escape calculations.

X0 = Yo N

0.50 42
0.52 67
0.54 53
0.56 61
0.58 430
0.60 222
0.62 2453
0.69385 2155
0.69387 3721
0.69389 3843
0.69415 45 216
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Moser surfaces. The next three points were selected
near the negative-residue fixed point at x =y =
0.6938903 with P/Q = +%. The last point in the table
was chosen near the fixed point at x = y = 0.69417
with P/Q = s%. The residue of this fixed point is

= —0.254 (and R = 0.253 for the corresponding
positive residue family) so that the corresponding f
of Table I is very slightly greater than unity. It is
apparent that this point is close to the boundary of
the ergodic region since its image escapes only after a
very large number of iterations.

V. CONCLUSIONS

The major features, at least, of the behavior of
multiple iterations of a two-dimensional mapping can
be understood in terms of the fixed points of the map-
ping. This paper investigated the relation between
invariant curves enclosing an elliptic fixed point and the
character of related families of fixed points. These
families were identified as belonging to the same order
of the hierarchy as the closed invariant curves. It was
inferred from numerical computations that in an
annulus that contains closed invariant curves an
infinite number of the corresponding fixed points are
elliptic. Some of these fixed points have an arbitrarily
small residue. In outer regions there are no invariant
curves and all but a finite number of the fixed points of
the given order of the hierarchy are hyperbolic. Thus
there is a close relation between containment, ergo-
dicity, and the character of the fixed points.

This is intuitively a very satisfactory result. Consider
a series of fixed points for which the residue ap-
proaches zero and Q approaches infinity such as given
by Eq. (31) and Table III. Such a series of fixed points
approaches a closed invariant curve since the positive
and negative residue points become indistinguishable
in the limit as they become dense on a curve. The
limit of Eq. (31) as n goes to infinity is an irrational
number of a type!? that most easily satisfies Eq. (22),
so that this intuition is entirely consistent with Moser’s
theorem.

On the other hand, hyperbolic fixed points act as
scattering centers. Successive images of a given point
must ultimately move away from any hyperbolic point
that they approach. In a region where almost all the
fixed points are hyperbolic and they are dense or
almost dense, it would seem reasonable that only
isolated points would have correlated images. These
correlated images would be another set of fixed points.

It is useful to have some notion of the location of the
region in which all the fixed points are hyperbolic
without having to calculate hundreds of residues. It
is fairly clear that there will be extensive ergodic
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regions near fixed points for which E is distinctly
different from zero, so that the mapping is strongly
perturbed. In the computed example this effect was
strong enough to bring the boundary of the outer
ergodic region inside the fixed points with P/Q = §.
It seems reasonable that the boundary will always lie
just inside a fixed point with E greater than a tenth or
so. The well-developed, relatively fat structures
associated with these fixed points are easy to locate
and thus provide a good first estimate of the stability
region of the mapping. Increasing the shear, a quantity
introduced in Eq. (21), tends to reduce the values of
E. Thus the critical value of E will tend to be larger in
systems with small shear.

Only a few other authors have endeavored to
establish some boundary to the ergodic region. Rosen-
bluth ez al.1¢ attempted to identify this boundary with
the overlap of resonances. In the terms of this paper
this translates to the statement that in regions outside
a Moser surface of a given order in the hierarchy,
elements of the next higher order of the hierarchy
around a given point overlap with similar elements
associated with neighboring points. This is not incon-
sistent with the results of the present paper but it
seems more difficult to express quantitatively. Their
criterion depends heavily on the size and shape of the
secondary structure and thus depends on the param-
eter E of this paper. Here it is deduced that E plays
only a secondary role in determining the boundary of
the ergodic region, through its relation to R by Eq.
(15) and also through its effect on the location of
fixed points as illustrated in Fig. 3.

Roels and Hénon'? related the boundary of the
ergodic region to an approximate radius of conver-
gence of the asymptotic series! for invariant curves
that was mentioned in Sec. III. Since this series is
asymptotic, it has an irreducible error that increases
with radius. An approximate radius of convergence
of the series is a region in which this irreducible
error is sharply increasing with radius. One reason

18 M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor, and G. M.
Zaslavski, Nucl. Fusion 6, 297 (1966).
17 J, Roels and M. Hénon, Bull. Astron. Ser. 3 2, 267 (1967).
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that the error is irreducible is that the series is unable
to handle all the details of higher orders of the
hierarchy that was introduced in Sec. III. Thus it is
reasonable that an approximate radius of convergence
should occur at a point at which the character of higher
orders of the hierarchy is changing. However, it is
difficult to make any quantitative statements.

Morozov and co-workers'®-20 have noted a corre-
spondence between ergodic regions and hyperbolic
fixed points but their work has been confined to fixed
points with P = 1. Thus they do not find an.exact
correspondence. In their work the mapping is gener-
ated by integrating differential equations for magnetic
field lines. It is gratifying that they get results com-
parable to those found for the very much simplef
mapping utilized in this paper.

Note added in proof: The information on fixed
points derivable from symmetry arguments has been
thoroughly discussed by de Vogelaere.?!
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The Weyl transform is applied in quantum dynamics to derive and extend Moyal’s statistical theory
of phase-space distributions for noncommuting coordinate and momentum operators. The distinction
is made between Weyl transforms in Schrédinger and Heisenberg pictures; the general case of time-de-
pendent Hamiltonians is considered. The Wigner function for the probability distribution in a phase
space of Cartesian coordinates Q and momenta K propagates according to a conditional probability
P(t,Q,K | 1y, Q,, K;), which is exhibited as a Feynman path integral in phase space. Properties of
P(1, Q,X | 1o, Q, Ko)are developed; it is expressed in terms of the quantum generalization of the classical
Liouville operator. The Weyl transform of a Heisenberg operator propagates according to P(¢, Q,, K, |
ty, Q, K) which is also given as a Feynman path integral. An equation for the time evolution of Weyl
transforms of Heisenberg operators is obtained, according to which the transform of Heisenberg coor-
dinate and momentum operators obey a quantum form of Hamilton’s equations of motion. If the initial
density operator of the system commutes with the coordinate operator, then the state of the system
is a mixture of pure coordinate states; the spectrum of the density operator in this case is
continuous. For a Heisenberg operator A,4(t) with Weyl transform A,(¢, Q, K), the function 4(¢, Q) =
J' dKAy(t, Q, K) is the expectation at time ¢ of the dynamical property for a quantum system initially in a
pure state of coordinate Q; it is the quantum-mechanical generalization of the dynamical property of the
system along the classical trajectory in configuration space at time #. The probability amplitude for the
time dependence of (7, Q) can be expressed as a Feynman path integral with a Heisenberg Lagrangian.
The amplitude of the conditional probability P(¢, Q | £,, Q,) considered by Feynman is expressed as a
path integral with a Schrodinger Lagrangian. The velocity in the Heisenberg Lagrangian is the negative
of that in the Schrédinger Lagrangian of Feynman, but it agrees with the velocity appearing in the
Hamiltonian equations. It is the Heisenberg Lagrangian that is the Lagrangian of classical dynamics.
For a particle whose potential energy is a function of position, a quantum form of Newton’s second law
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is obtained. An extension of the formalism to non-Cartesian coordinate systems is given.

1. INTRODUCTION

Properties of the Weyl transform have been
developed in a previous paper.! It is the purpose of this
paper to apply the transform in formulating non-
relativistic quantum dynamics, by means of proba-
bility distributions and trajectories in phase space.
The probability density is given by the Wigner distri-
bution function.2 Some of the results on probability
distributions are anticipated in a paper by Moyal®
on quantum mechanics as a statistical theory. His
treatment is simplified-and extended here by use of
the Weyl transform, which permits a derivation of
Moyal’s statistical theory from Dirac’s formulation
of quantum mechanics.* It is important to distinguish
the Weyl transforms of operators in the Schrodinger
and Heisenberg pictures. With this distinction, con-
nection can be made with Feynman’s path-integral
formulation of quantum dynamics.®® Feynman’s path

1 B. Leaf, J. Math. Phys. 9, 65 (1968), additional references to the
Weyl transform are given in this article. See also the paper by
K. Imre, E. Ozizmir, M. Rosenbaum, and P. F. Zweifel, J. Math.
Phys. 8, 1097 (1967); the ‘“Wigner equivalent’’ of these authors is
the same as the “Weyl transform.”

2 E. Wigner, Phys. Rev. 40, 749 (1932).

3 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

4P. A. M. Dirac, The Principles of Quantum Mechanics (Claren-
don Press, Oxford, 1947), 3rd ed.

5 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

¢ R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill Book Co., Inc., New York, 1965).

integrals for propagation of probability are in the
Schrodinger picture; his Schrodinger Lagrangian
function differs in the sign of the velocity from the
Heisenberg Lagrangian. It is the Heisenberg Lagrang-
ian which is the quantum-mechanical generalization
of the classical Lagrangian. In the Heisenberg picture,
the Weyl transform of the coordinate and momentum
operators satisfy Hamilton’s canonical equations in
quantum form; when averaged over the initial phase-
space distribution these equations became the
Ehrenfest equations.”

In Sec. 2 the properties of the Weyl transform
which will be needed in this paper are summarized.
In Sec. 3 Weyl transforms of operators in Schrédinger
and Heisenberg pictures are discussed for the case of
a time-dependent Hamiltonian. The time dependence
of the Wigner function is determined by

P(t9 QsK I tO: QO!KO)a

the probability of the phase-space point (Q, K) at
time ¢ conditional on (Q,,K,) at #,. The time
dependence of the Weyl transforms of Heisenberg
operators is determined by P(f, Q,, K, | 1,, Q, K).
For Heisenberg coordinate and momentum operators

" See, for example, A. Messiah, Quantum Mechanics (North-

Holland Publ. Co., Amsterdam, 1961), Vol. I, p. 216.
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the Weyl transforms satisfy Hamilton’s equations
in quantum form. The properties of the conditional
probabilities

P(t’ Q’ K I to; Q()s Ko)
and

P(t(h QOs KO I tos Qs K)

are developed; they are expressed in terms of the
quantum-mechanical generalization of the Liouville
operator. In Sec. 4 the Markoffian properties of the
conditional probabilities are considered. These prop-
erties permit formulation of the Wigner function and
of the Weyl transforms of Heisenberg operators as
Feynman path integrals in phase space. Feynman’s
path integrals are in configuration space. As discussed
in Sec. 5, the transition probability considered by
Feynman is P(t, Q |, Q,), the probability of co-
ordinate Q at time ¢ conditional on Q, at #,. The
amplitude for this probability is given as a Feynman
path integral with a Schrédinger Lagrangian function.
The Lagrangian formulation of classical dynamics
does not express the time evolution of probability
distributions. It describes rather the time dependence
of the dynamical properties of the system along the
classical trajectory. For a quantum-mechanical
Heisenberg operator A;(?), a function A(¢, Q) can be
defined; it is the integral over the momentum variables
of the Weyl transform of A (f). A(, Q) is the expec-
tation of the dynamical property of the quantum
system initially in a pure state of coordinate Q at time
t; it is the quantum-mechanical generalization of the
dynamical property along the classical trajectory
in configuration space at time ¢. The relevant ampli-
tude for the time dependence of #A(?, Q) can be ex-
pressed as a Feynman path integral with a
Heisenberg Lagrangian function. The velocity in the
Heisenberg Lagrangian is the negative of that in the
Schrodinger Lagrangian of Feynman, but it agrees with
the velocity appearing in the quantum form of Hamil-
ton’s equations. For a particle whose potential energy
is a function of position, a quantum-mechanical form
of Newton’s second law is derived. Up to this point
only Cartesian coordinates and momenta have been
considered. In Sec. 6 path integrals in other coordinate
systems are discussed

2. THE WEYL TRANSFORM

Properties of the Weyl transform have been
developed in a previous paper.! In this section are
summarized the more important results which will
be needed in the present work.

An operator of quantum mechanics is expressed,

LEAF

according to the Weyl transformation, as
A= [wmsQ@BIQB, @D

where the Weyl transform A(Q, K) is given by the
inverse transformation

A(Q,K) = Tr [4A(Q, K)], (2.2)

and

A(Q,K)Ef---fdudv

x exp {2mifu- (¢ — Q) + v-(k — K)}. (23)
q and p = 2whk are Cartesian coordinate and mo-
mentum operators for which
q4:p; — Ps4; = ihd;;. (24)
Q and K are eigenvalues of q and k. Alternative forms
of the Hermitian operator A(Q, K) are

AQ.K) = f o f dv exp (2miv - K) |Q + $)(Q — 3]

=J- : -Jdu exp (—2miu- Q) [K + uXK — }ul

= exp [(i/4m)(3/0Q) - (9/3K)] IK)}K | QXQ.
(2.5)
Matrix elements of any operator can be obtained
from (2.1) and the matrix elements of A(Q, K),
(Q1A(Q,K) K')
= (Q'| K') exp [(—i/4m)(2/0Q) - (9/3K)]
X 6(Q" — Q)4(K’ — K),
(Q1A(Q.K)|Q)
= 4[Q — Q' + Q"] exp 27K - (Q" — Q)],
K" AQ,K) K')
= 8[K — }(K' + K")] exp [—2miQ - (K" — K')).
(2.6)
Also,

TrAQ,K) = 1, J'-~-fdeKA(Q,K)=1, X))

f dQA(Q, K) = 4(k — K) = KK,
(2.8)
f JKA(Q,K) = &(q — Q) = |QXQI.

The Weyl transform of an operator A(q), which is a
function of q only, is 4(Q); the transform of A(k),
a function of k only, is 4(K). Such transforms are
unchanged in the classical limit # — 0 and are there-
fore the same as classical dynamical functions of
coordinate Q or momentum P = 2#/K, respectively.
The set of components of the vectors (Q, K) specify
the coordinates of a point in phase space.
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If A and B are two quantum operators, then the
Weyl transform of their commutator is

[AB — BAJ(Q, K)
=72 f . f dQ' dK'8(Q — Q)3(K — K)

x sin {(1/4m){(3/0Q) - (9/0K") — (3/9K) - (3/0Q")]}
x A(Q,K)B(Q',K'). (2.9)

Tr (4B) = f - f dQ dKA(Q,K)B(Q,K), (2.10)

Tr [A(Q,K)A(Q',K")] = 6(Q — Q)(K — K'). (2.11)
3. SCHRODINGER AND HEISENBERG
PICTURES

A time-dependent operator in the Schrddinger
picture is written A,(). The Weyl transformation (2.1)
gives

A(l) = f s f dQ dKA(Q, K)A(1, Q,K), (3.1)

with Weyl transform
A,(1,Q, K) = Tr [A(Q, K)4,(1)]. (32)

Obviously, Q,(#,Q,K)=Q and K,(, Q,K)=K
are the transforms of the position and momentum
operators, q, and k,. The expectation of a dynamical
property A,(z) when the system is in a state described
by the probability density operator p,(?) is, according
to (2.10),

(A1) = Tr [A(Dpy(D)]
~ f . f dQ dKA(t, Q, K)p,(t, Q, K). (3.3)

The Weyl transform p (¢, Q, K) is the Wigner func-
tion.2 The density operator defined in terms of the
initial states [y,,, #,) as
Ps(to) = E wm hpm’ to)(wm’ tol’ Wm 2 0, Z Wm = O,
(3.4)
becomes at time ¢ > ¢,
pi1) = Ut t)p (1)U (1, 1). (35
The unitary operator U(t, t,) is the solution of the
Schrédinger equation,
ih dU(t, 1) | dt = H(OU(t, t,) = U(t, t)Hg (1), (3.6)

with U(ty, 1) =1. H/(t) is the (time-dependent)
Hamiltonian operator in the Schrddinger picture;
Hy(t), the Hamiltonian in Heisenberg picture.
U'(t, t,), the Hermitian adjoint of U(t, ¢,), is the
solution of the adjoint equation,

—ihdU'(t, 1)) | dt = Hy(DU'(t, 1,)
= U'(t, t)H (), (3.7)

!

with U'(t,, t,) = 1. Accordingly, by integration and
iteration of (3.6) and (3.7), for t > £,

UGt 1) = T exp [—(i/h) ft t dr s(t')jl
= T"exp [—(i/h) ft t dt’HH(t’)] . (38)

U'(1, 1) = T exp [(i/h) ft t dt’HH(t’):|

[2
= T"exp [(i/h) f dr’ s(t’):\ . (9)
to
T indicates the time-ordered product
H(HYH@"), if t'>1t"
TH()H(t") = _ (3.10)
H("H(), if ">,

T7 indicates the reversed time-ordered product for
which the inequalities of (3.10) are interchanged when
T is replaced by 7".

According to (3.5) and (3.2), the Wigner function
can be written as

ps(t, Q. K) = Tr [A(Q, K)U(1, to)p,(t)U (1, 15)]

= [+ [dQu kPt Q. K |1, 02, Ko)pito, Qos Ko
(3.11)
where the probability of (Q, K) at ¢ conditional on
(Qo, Ky) at 7, is the real quantity
P(ta QaK, tO, QO’ KO)
= Tr [AQ. K)U(t, t)A(Qy, KQU' (1, 15)]. (3.12)
Like the Wigner function, P(f,Q, K |7, Q,, K,) is
not everywhere nonnegative.

Since P(1, Q,K | 75, Q,, Ky) plays a central role,
its properties are now considered. From the expres-
sions for A(Q, K) given in (2.5), various forms are
readily obtained, as for example,

P(t, Q9K | t09 Q07K0)
= exp {(i/4m)[(9/9Q)- (3/0K) — (3/9Qy) - (9/IKy)]}
x exp [27i(Q, - Ky — Q - K)]
X (QI U1, 15) |Qo)(Ky| U(2, 1) [K). (3.13)

According to the Weyl transformation (2.1), from
(3.12),

U(t, t)A(Qy, Ko U'(1, 1)
= f - f dQ dKA(Q, K)P(t, Q, K | 15, Qp, Ko),
(3.14)
U'(t, t)A(Q, K)U(1, 1,)

_ f .. f dQ, dKA(Qy, Kp)P(1, Q,K | £, Q, Ky).
(3.15)
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Therefore, from (2.11),

f - f dQUKP(1,Q.K | tp, @', K)P(1, QK| 15, @', K")
= 8(Q' — Q)IK —K), (3.16)
f- [0y aKoP(, @, K] 10, Q0. K

X P(t’ Q”s K”I to, Q09 Ko) = 6(Q’ - Q”)(S(K, - K”)'
3.17)
From (3.14) and (3.6),

f . f dQ dKA(Q, K)2P(t, Q. K | 1y, Qy, Ko)/ot
= —(i/DHOU, t)AQy, KU (1, 1)
— U(t, 1)A(Qy, K)U' (1, 1 H, (D)),

so that the Weyl transformation gives

aP(t: Qa K | IO’ QO’ KO)/at
= —(i/h) Tr {[AQ, K)H,(f) — H,()A(Q, K)]
x U(t, t)A(Qq, Kp)U' (1, 1)}

= —(ilh) f o f dQ' dK'P(1, @', K'| 5, Qy, Ko)

x Tr {A(Q, K)[H(DA(Q', K') — A(Q', K')H (1)].
(3.18)
But, from (2.9) and (2.11),
Tr {A(Q, K)[H,(DA(Q', K') — A(Q", K)H, ()]}
= £,(, Q, K)6(Q — Q)(K —K), (3.19)

where the quantum-mechanical Liouville operator
£.(¢, Q, K) is defined as

£(, Q. K) = Zif : °fdQ" dK"6(Q — Q")4(K — K”)

x sin {(1/4m)[(0/0Q") - (3/0K) — (3/0K") - (3/0Q)]}
x H(t, Q",K"). (3.20)
Therefore,
3P(t, Q’K l tos Qo’ Ko)/at
= _(l/h)ﬁs(t5 Q, K)P(t: Q: K I t09 QO’ KO) (321)
Since initially, according to (3.12) and (2.11),
P(tO’ Q’K | ty, QO’ KO) = 6(Q - Qo)a(K - KO)’
(3.22)

integration and iteration of (3.21) gives the solution,
for t > t,,

P(t: Q’ KI t(b QO’ KO)
13
— Texp [—(i/h) f arer, Q, K)]

(Q — QK — Ky). (3.23)
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According to (3.11), the Wigner function becomes
ps(t, Q, K) t

= Texp [ ~(/n) [, 411, @B |0, Q)

(3.24)

a solution of the differential equation for the time
evolution of the Wigner function,

Ip((t, Q. K)/ot = —(i/ )L (1, Q, K)p(t, Q,K), (3.25)

which is the Weyl transform of the quantum-mechan-
ical von Neumann equation for the density operator,

dp,ldt = —(i/D[H(Op,(t) — p(DH(D)]. (3.26)
Alternatively, from (3.15),

J" * 'fon dK,A(Qy, Ko)dP(t, Q, K I t, Qo, Ko)/0t

= (i/ )[Hg(OU (1, 1)A(Q, K)U(t, 1)
— U'(t, ) AQ, K)U(t, 1) Hg(1)],
so that
aP(t, Qa K | to: QOa KD)/at
= (i/h)f- : -fdQdesP(z, QK| 1, Q) K))

X Tr {A(Q,. Ko)[Hu(DA(Qs, Ky)
— AQq, K)Hu(D]}.  (3.27)
But (3.19) gives
Tr {A(Qo, Ko)[H 5(DA(Q5, Kg) — A(Qq, KO)Hp(1)]}
= £x(1, Qo, Kp)d(Qo — Qo)(K, — Ky),

where
Cu(t, QK) = 2i f - f dQ" dK"8(Q — Q)3(K — K')

x sin {(1/4m)[(9/0Q") - (9/0K) — (3/0K") - (9/0Q)]}

X Hy(t,Q",K"). (3.28)
Therefore,

aP(t’ Q, K I t09 QOa KO)/at
= (l/h)ﬁﬂ(t’ QO! KO)P(t’ Q, K l to, Q07 Ko), (329)

with solution, for ¢ > f,,
P(t’ Q)KI to’ QO’ KO)
t
= Texp [(i/h) f Aty (t, Qu, Ko)]
X 6(Q — QK — Ky).

If the Hamiltonian is indepéndent of time, then
H,= Hy = H, so that the quantum Liouville

(3.30)
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operators of (3.20) and (3.28) are the same:

£3(Q’ K) = szH(Q, K) = £(Qa K)

In this case the two expressions in (3.23) and (3.30)
become, for ¢ > ¢,

P(ts Q’ K ' to; QO’ KO)
= exp [~ (i/M)( — 1)L(Q, K)]16(Q — Qo)oK — Ky)
= exp [(i/A)(t — 1)L(Qy, Ke)10(Q — Qo)(K — Ky),

(3.31)

(332)
and
P(t, Q9 KI th QO’ KO) = P(’O: Qoa KO l t9 Q’ K)
(3.33)

Equation (3.33) is equivalent to Moyal’s equation
(9.10)® for conservative systems; but it is not valid
when the Hamiltonian is time dependent, because of

the time-ordering operations in (3.23) and (3.30).
A Heisenberg operator Ay (?) is defined as
Ag(t) = UT(t, t)A()U(2, ty). (3.39)

In particular, according to (3.5), the Heisenberg
density operator is

PH = Ps(to)’ (335)

independent of time. The Weyl transform of A (2) is
Ay(t, Q,K) > Tr [AQ, K)U' (1, to) A()U(t, 15)]
= f . f dQy dK,Ay(1, Qo, Ky)
X Tr [A(Qy, K U(t, 1) AQ, K)U' (1, 1,)]
- f - f dQy dK,Ay(1, Qy, Ko)
x P(t, Qy, Ky | 10, Q, K). (3.36)

The Weyl transform of the Heisenberg density
operator is time independent

PH(Q, K) = ps(t(la Q, K)

The expectation of the dynamical property given in
(3.3) becomes

(3.37)

(A = f " f dQ dK dQ, dKyA(t, Q, K)
X P(t, Q’ K I to: QO ) KO)Pg(ta QOa Ko)
- f " f dQy dKoA (1, Qo, Ko)ps(Qy Ky)

= Tr [Ax(Dpxl (3.38)
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From (3.36) and (3.30)
AH(ts Qa K)
= Texp [(i/h) f et Q,K)}As(t, Q,K). (3.39)
From (3.36) and (3.17)
A1, Q,K)
= f o f dQy dKoAz(t, Qp, K)P(t, Q. K | 10, Qo, Ko),
(3.40)

so that, according to (3.23), the transformation inverse
to (3.39) is

As(t’ Q’ K)
= T exp [—(i/h) f dregr, Q, K)}AH(t, Q.K). (3.41)

The change from £ in (3.39) to £, in (3.41) should be
noted; for conservative systems (3.31) applies, so
that this distinction disappears. Equation (3.39) is a
solution of the differential equation

d4,(t, Q, K)/dt
= Texp [(i/h) f et Q, K):|8As(t, Q. K)ot
+ (l/h)ﬁH(ta Q9 K)AH(t’ Q’ K): (342)

which is the Weyl transform of the quantum-
mechanical Heisenberg equation for the operator
AH (t)a

dAy(H)]dt = 044 (t)[0t + (i[h)
X [Hg(Au(t) — Ag(OHy (D). (3.43)

In addition to (3.21) and (3.29), two other expres-
sions can be derived for 0P(f, Q, K| t,, Q,, Ky)/0t.
If H(t) is replaced by U(t, ty)Hg(H)U'(z, 1) in the
equations leading to (3.18), it is found that

aP(t’ Q’ K | t()’ QOa KO)/at
= —(i/h) f e f dQ dKP(t, Q. K| 15, Q) Ky
x £u(t, Qp, Kg)d(Qy — Qp)d(K, — Kg). (3.44)
Similarly, replacement of Hy(t) by

UT(t, tO)Hs(t) U(t, tO)
in the equations leading to (3.27) gives

aP(ts Qs K l t{)» QO’ K(l)/at
= (i/#) f o f dQ' dK'P(1, Q. K’ | 15, Qy, Ky)
x £, @, K)3(Q — Q)O(K —K). (3.45)
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From (3.44) and (3.11), that
p,(t, Q, K)/0t dAg(t, Q,K)/0Q

= —(i/h)f---fdoo dK,P(t, Q. K | 5, Qy, Ko)

X tIl(t! QO, KO)pH(QO: Ko)’ (3'46)
an alternative to (3.25). From (3.45) and (3.36),

0Ag(t, Q,K)/ot
=f---fondKoP(t, Q. Ko | 10, Q, K)

X [aAa(t’ QOa KO)/at + (i/h)ﬁs(ts QO: Ko)Aa(t> Qo: Ko)]’
(3.47)
an alternative to (3.42). According to (3.40), the
right-hand side of (3.46) is in the form of the Weyl
transform of a Schrodinger operator; according to
(3.36), the right-hand side of (3.47) is in the form of
the Weyl transform of a Heisenberg operator.
Equation (3.47) is particularly suitable for com-
paring quantum-dynamical relations with those of
classical dynamics. Substitution of the time-evolution
equation for the Wigner function (3.25) into (3.47)
gives the quantum form of the Liouville equation,

0pn(Q, K)/0r = 0, (3.48)

in agreement with (3.37). The time-rate of change of
the Weyl transform of the Heisenberg Hamiltonian
is determined by the explicit time dependence of
H(t, Q, K); (3.47) gives

OHg(t, Q, K)/0t
=J’ : fon dKoP(t’ QD’ KO l Ly, Q’ K)

x 9H,(t, Qy, K)ot (3.49)

Similarly, (3.47) gives the quantum form of Hamil-
ton’s canonical equations,

aQH(t’ Qs K)/at
=J“ . ‘fon dKOP(ta QO) KO I tO’ Q’ K)(‘?'Trh)—l

X aHs(t) QO’ Ko)/aKo

- f s f dQy dK,P(t, Qo Ko | 1o, Q, K)(27h)™

x 0H (1, Qy, Ky)/0Q,. (3.50)

The Ehrenfest equations’ for d(Q(¢))/dt and d(K(¢))/dt
follow directly on averaging over the initial phase-
space distribution, with the use of (3.38) and (3.37).
It will, in fact, be shown at the end of Sec. 4, by the
use of the phase-space path integral form of (3.36),

=f---fondKoP(t, Qs Ko | 15, Q, K)

X 04,(t, Qo> Kp)/2Qs,
945(t, Q, K)/K ’ (3.51)

=f- . -fondK,,P(t, Q. K, | 4,Q,K)
X aAs(t’ Ql)’ Ko)/aKO

so that (3.50) takes precisely the canonical form,

0Qg(t, Q, K)/0t = (2#h)9Hy(t, Q, K)/7K,
Ky (1, Q, K)ot = —2nh)y10Hy(t, Q, K)/2Q.
(3.52)

In the classical limit,! according to (3.28), the
Liouville operator £4(f, Q, K) becomes

La(t, Q, K) — (if2m){[0Hy (¢, Q, K)/0Q] - (3/0K)
— [0Hy (1, Q, K)/0K] - (3/0Q)}
= (B/i)}{[0Kx (¢, Q, K)/01] - (9/0K)
+ [0Qx (1, Q, K)/0r] - (9/0Q)}.

In (3.30), the operator becomes

(3.53)

T exp [(i/h) ﬁ Ao, Q. K)
—-T expftdt'{[aKH(t’, Q, K)/ot'] . (9/9K)
+ [0Qu(r, Q, K)far]- (a/aQ)}} (3.54)

a displacement operator along the classical trajectory.
If the coordinates along the trajectory at time ¢ are
defined as

Q) = Texp {ﬁ'dr'[aQH<r', Q.K)or] -(a/aQ)}Q,

K(f) = T exp { f ARy, Q, K)J3r'] - (a/aK)!K,
to
(3.55)
then, in the classical limit,
P(t, Qo, Ky | 75, Q, K) = 8[Q(2) — QJo[K(2) — Ko,
(3.56)
so that, from (3.36),
AH(t, Q; K) - As[’s Q(t)s K(t)],

the classical dynamical variable for the system along
its trajectory in phase space at time £ In (3.55),
initially, Q(z,) = Q and K(#)) = K.

3.57



WEYL TRANSFORM IN NONRELATIVISTIC QUANTUM DYNAMICS

4, MARKOFFIAN PROPERTIES AND
PHASE-SPACE PATH INTEGRALS

When the Hamiltonian operator is time dependent,
two forms can be distinguished for the operators
U(t, t,) and U'(t, t,); these are given in (3.8) and (3.9).
It is convenient to designate the forms in which H,
appears as U,(t, t,) and U](t, t,), the forms in which
H; appears as Ug(t, to) and UL (1, t). If t > t; > 1,
then

Us(ts to) = Us(t> tl)Us(tls to),
t t t (4.1)
Us (t: to) = Us (tlw tO)Us (ta tl)-
But
Uh(t, to) = Ug(t, )U(ty, to),
Un(t, ty) = Uglty, 1) Ug(t, ty).
From (4.1) and (3.12),
P(ts Qs KI toa QOa KO)
= TI' [A(Q, K)Us(t: tl)Us(tl, to)
X A(Qo, K UJ (1, 1)UL (8, 1,)]
= Tr [U] (1, )AQ, K)U(1, 1)
X Uty 1)A(Qos KU, (11, 10)]
=f- : -fdQl dK,P,(1, QK| 1, Q:, Ky)
x P(t,, Q,, Kll to> Qo Ko). (4.3)
On the other hand, from (4.2),
P(t’ Q09K0| th Q’K)
= Tl’ [A(QO ’ KO)UH(tl ’ to) UH(t’ tl)
X AQ, K)UL(t, 1)U (11, 1))
= Tr [Ux(t, t)A(Qo, K)U (s, 1o)
X Un(t, DAQ, K)U(t, 1,)]
=f- : -fdol dK,Py(t, Q. K, | 1, Q. K)

X PH(tl’ Q09K0| tOs QI’KI)- (44)

(Here, P, designates a quantity containing U,; Py, a
quantity containing Ug.) For a sequence of times,
t=1t,>1t, ;> t;>t,andwithQ,=Q,K, =K,

P(1, QK| t5, Q,, Ky)
=J" . ‘fdQl dKl T dQn-l dKn——l

(4.2)

n—1

X ,I;Io Pt1, Qui, Kia | 1, Q,.K),  (45)
P(t, QoaKol t, Q,K)
=J\. . ‘fdQl dKl vee dQ“_l dKn—l

n—1

X }_.!; Py(tya, Q;.K; I t;, Q1. Ki). (4.6)
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According to (4.5) the propagation of probability
in phase space is a Markoffian stochastic process®®
which can be written as a continuous product of
unitary transformations; from (3.11),

ps(t, Q,K)
= lim f : -fon dKq - dQ, , dK,
n—1
X ;l:[o Py(ts1, Qi1 Kjn l t;,Q;, Ky)p(to, Qo Ko)-

(4.7)

According to (3.40) the transformation from Heisen-
berg to Schrodinger pictures proceeds by the same pro-
cess; in (4.7), p,(t, Qq, Ko) can be replaced by py(Q,,
K;). On the other hand, the inverse transformation
from Schrédinger to Heisenberg pictures goes by way
of (4.6); from (3.36),

AH(t’ Qa K)

= lim f . f dQ, dK, - - dQ,_, dK,_,
n—1
X H Pg(t1,Q;,K; l 1, Q15 K DAL Qo Kp).

(4.8)
Equations (4.7) and (4.8) appear as weighted
averages over all paths in phase space connecting
(Qo, Kp) at £, with (Q,K) at ¢, analogous to the
Feynman path integrals in configuration space.® The
weight attached to each path is the product of con-
ditional probabilities for infinitesimal displacements

n—1

1:! Py(t;415 Qurs Kppy I t;,Q;,K))
in (4.7), or

n—-1

H Py(tyn, Qs Ky ty, Qupa, Kyy)

in (4.8). In the limit as n — oo, the largest time
interval ¢,,, — t; vanishes. Accordingly, in each
factor only terms to first order in ¢, ; — ¢; need be
retained. From (3.23) and (3.30), to first order in

Lin— 1
Py(tis1> Qur, Kini | 15, Q5. K
= exp [l [ a6, Qu, K, |
X 8(Q;1 — Q)H(K,;, —K)),
Py(tsn, Q;, K, I ty, Qi1 Kppa)
= exp [0 [ a4, Quun K |
X 0(Q;1 — QK — K).

’ 9"4?;/; C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
1 .

(4.9)
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In the classical limit, £(z, Q, K)// remains finite in
(3.23) and (3.30), as seen, for example, in (3.53). The
corresponding phase in the Feynman path integrals
in configuration space diverges along all paths except
the classical dynamical path where the action is
stationary. In the classical limit, £(¢, Q, K)/i becomes
the classical Poisson-bracket Liouville operator,
which contains only first derivatives with respect to Q
and P = 2##K. Quantum effects arise from the
higher-order derivatives in the quantum Liouville
operators (3.20) and (3.28). According to (4.9), these
effects persist, to first order in 7,,, — ¢, along the
infinitesimal portion of the phase-space path between
(Qj41, Kyyy) 2nd (Q;, K)).

The proof of (3.51) follows from the need to retain
only terms to first order in the infinitesimal time
intervals, ¢;,, — #;,. As Feynman has pointed out,
contributions from higher-order terms vanish in the
limit n — co. From (4.8) and (4.9)

24(t, Q, K)/0Q
= lim f e f dQy dK, - - - dQ,_; dK,_(9/2Q,)
X exp [(l/h) ) dtltH(tly Qn ’ Kn):l
in—1

X J(Qn - Qn—l)a(Kn - Kn—-l)
X exp [(i/h) f " Al Qur, Kn_l)}

X 6(Qn—1 - Qn—z)a(Kn—l - Kn—-z) the As(tv Q(h Ko)

(4.10)
To first orderin ¢, — ¢, 4,

@@ e [ dtta(r, Q.. K)]
X 6(Qn - Qn—l)a(K'n - Kn—l)
tn
= €Xp [(I/ﬁ) dt'[:H(t', Qna Kﬂ)](a/aQn)

tn-1
x 6(Qn - Qn—l)a(Kn - Kn—l)’ (4'11)
since differentiation of the exponential gives a factor
t, — t, ;. Therefore, an integration by parts with
respect to Q,,_,, gives

2A45(t, Q, K)/2Q
—lim f f dQ, dK, - - - dQ,_, dK,_;

n— o0

in
X exp [(l/h) dt’tH(t” qu Kn):l

tn1

X 6(Qn - Qn-—l)a(Kn - Kn—l)(a/ aQn—l)
X exp [(i/h) "t Qs K)]

tn_2

X d(Q'n—-l - Qn—z)a(Kn—l - Kn-2) to As(t» QO ] KO)
(4.12)
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Repetition of this process moves the differential down

the chain until (9/0Qy)A4,(?, Qy, K,) is produced at the
right-hand end; (3.51) is proved.

5. COMMUTIVITY OF pgy WITH q, AND
FEYNMAN PATH INTEGRALS

A case of special interest arises when the density
operator in Heisenberg picture pz; = p,(¢,) commutes
with the coordinate operator q. Since py is independ-
ent of time, the commutativity is time independent.
In this case, for any two eigenkets of q, |Q) and

1Q°,

Q') paq — 4pr 1Q) = (Q — QNQ'| px Q) = 0.
G.1)

Therefore, the matrix elements of py have the form

Q'lrr Q) =pa(QBQ -Q), (52

so that

pr = f e f dQ dQ' |Q) px(QHQ — QXQ|
- f dQ Q) p(Q)(Q

- f dQp(Q)¥(q — Q). (5.3)

px is a function of the operator q only. According
to (2.8),

pr = [+ dQ dKpr(@8Q.B)
so that pz(Q) is the Weyl transform of py when py

commutes with q. According to (5.2), px(Q) is an
eigenvalue of pg,

px Q) = f Q' |QXQ'] p5 1Q) = p(Q) Q) (5.4)

so that the spectrum of pg is continuous. Since pgy
is a function of q only, the inverse Weyl transformation
(2.2) gives

pr(Q) = Tr [pyA(Q, K)] = Tr [p5d(q — Q).

By definition, the last equality,

(5.5)

Tr [px6(q — Q)] = f dQ Q| pz Q) (5.6)

since in the continuous spectrum only the diagonal
matrix element Q' = Q contributes to the trace,
because of the d-function singularity of the matrix
elements (5.2).
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For any operator A, the Weyl transform gives,
with (2.5),

A=f--~fdeKA(Q,K)

X fdvexp Qmiv-K) |Q + 3vy(Q — 3v]

- f . f dQ' dQ” dKA[KQ + Q*),K]
x exp 27K+ (Q' — Q"] 1QXQ"|
= f s f Q' dQ" |Q'XQ"| AIKQ + Q)

(i/2m)(9/0Q)1(Q" ~ Q). (5.7)

If A commutes with q, its Weyl transform is 4(Q),
so that (5.7) gives

A= f o f dQ' dQ" |QXQ'|
x AKQ + QOIHQ" — Q)
= f dQ |QAQXQ!. (5.8)

If A commutes with k, its Weyl transform is A(K),
so that (5.7) gives

A= f e f Q' dQ” |QXQ’|
| x A[(i2m)(3/6Q")8(Q" — Q')
- f dQ | Q)A[(1/271)(3/BQ)Q] (5.9)

Equation (5.3) is a special case of (5.8) where the
operator A which commutes with q is py . Just as
pu(Q), the Weyl transform of py , is given by (5.5), so
in general, if A commutes with q, its Weyl transform
is

A(Q) = Tr [4d(q — Q)]. (5.10)

Equations (5.8) and (5.10) are the Weyl transformation
and the inverse transformation for any operator which
commutes with q.

As shown in (5.3), if py commutes with q, then,
in general, it is a mixture of pure coordinate states
|Q)Q| with weights py(Q). The weights are non-
negative, and they are normalized to unity, since

f dQpu(Q) = f dQ Tr [pyd(q — Q)] = Tr pyy = 1.

(5.11)

In this case, according to (3.38), the expectation at
time ¢ of any observable A(?) is

(A(t) = f dQA(t, Q)px(Q), (5.12)
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where

A(t,Q) = f dKAx(t, Q, K). (.13)

In a Heisenberg pure state for which py = é(q — Q"),
pr(Q) equals 4(Q — Q'), and (A(1)) = #(, Q).
A(t, Q) is, therefore, the expectation at time 7 of the
dynamical property of the system in the pure state
pr = 6(q — Q). From (2.8), (3.36), and (3.12),

A(1,Q) = Tr [Ax(1)d(q — Q)]
=f- --fondKoAs(t, Q0. Ko)

xdeP(t,Qo,-K.,lto,Q,K)

= QUL )4V 1) 1Q.  (5.14)
If A,(t) commutes with q, then according to (5.8),

#A(1, Q) =fdQl)As(t’ Qo) [(Qo] U(t, 1) |Q)>.  (5.15)
If 4,(t) commutes with k, then according to (5.9),

A(1, Q) = f dQy QI U'(t, 1) 1Qw)

X Aft, (1/2mi)(9/0Qe)K Q0] u(t, 1) 1Q).  (5.16)

Consider the case to which (5.15) applies, when
A,(t) commutes with q. According to (5.12), if py
also commutes with q, then

(A@) = f o f dQy dQA(t, Q)
X |(Qol UCt, 1) 1Q)]F pu(to, Q)
= f dQALL, Q)p(t, ), (5.17)
where

Pt Q) = f dQ, QI U(t, 1) |1Qu)[* pulte, Qo)

= Tr [p()8(g — Q)] (5.18)

the reduced Wigner distribution function for con-
figuration space. Comparison with (3.11) shows that

if the probability of Q at ¢ conditional on Q, at ¢,
is defined by

P(t:QI tO’ Q())
EJ'. : -de dK,P(t, Q,K | t5, Qp. Ky), (5.19)

then P(z, Q| ¢y, Q,) is the nonnegative quantity in
(5.18),

P, Q[ 4, Qo) = [(QI Ut %) Q2. (5.20)
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This is the transition probability considered by
Feynman.’

The probability amplitude (Q| U(?, ¢,) |Q,) can be
exhibited as a Feynman path integral. From (4.1),
wjtht:tn>tn—l>“'t1>t()’andQn=Q:

(01 Ut 1) | Qo)
f. . -fdQl-- - dQ,

= lim
1

x ..jl;.!; <Q1+1l Us(tl+19 tj) 'Q]) (521)

Now,

<Qj+1| Ua(tj-H’ tj) IQ})
= (Q,} exp [27ik « (Q1 — QIIU(1141, 1)) |Qp

= Q] exp {(i/rz) f AL, Q) (5:22)

to first order in t,.; — #;, where the quantum-
mechanical Lagrangian operator is defined as

L,It, Q;(9)] = 2nhk - Q,(t) — H(1),

Q1) = Qua — Q) (tpa—1t). (529

The matrix element (5.22) can be evaluated by the
use of Weyl transforms. To first order in #;,, — f;,

Uftsrr 1) = 1 — (ifB)(t;0 — 1)H(1)),
with Weyl transform,
1 — (i[B)(t11 — tPH(t,Q, K)

= exp [ (n aH(, QK]

(5.23)
with

Accordingly, to first order in #,., — f;, from (2.6),
(Qial Us(ty41, 1) 1Q))

- f e f Q' dK'(Q,1 A(Q, K) |Q))
X exp [‘(i/h)j o dr'H, (1, Q,K')
t

(7E8
- f 4K exp {—(i/h) f drH,It, HQ, + Q) KJ}
x oxp 27K + Q1 — Q). (5.25)

The result of the integration on K will be a function
of 3(Q; + Q,.,) and Q,(#,). It is Feynman’s postulate®
that this function has the form

Q) U(ts41,1)1Q))
241
= atexp {(i/h) f drLt, Q). KQ, + Q,+1)]},

(5.26)
where « is a comstant, and L,(f, Q,,Q,) is the
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Lagrangian for the classical path joining Q, at ¢, to
Q,,, at ¢,,,. The postulated form is readily obtained
if the Hamiltonian is quadratic in K. For example, if

H, = 2nik)}[2m + V (9), 527

for a particle of mass m and potential energy V,(q),
so that, from (2.5),

H/(Q, K) = exp [(i/4x)(3/0Q) - (3/0K]
x (K| QXQl 4, IK)
= 2ahK)*[2m + V,(Q),
then, from (5.25), to first order in At = t,,, — t,,
(Qual Us(ts11, 1) 1Q))
= exp {—(I/V.[HQ, + Q;)]AL}

x f dK exp {(i/ [27HK + Q11 —~ Q)

— (2nHK)? At[2m]}
= (mfi2mhAn} exp {(i/ALIQ, (1),
3Q, + Q. IA}, (5.28)

where the Lagrangian is

L1Q,(t), ¥Q, + Q;.1)]
= (m[2)Q2(t;) — V,[3(Q, + Q;0)], (5.29)
in agreement with Feynman.®
On the other hand, in (5.15) and (5.16), the relevant
amplitude is (Q,] U(t, %) |Q), not (Q] U, %) |Q).
(Qy] U(, t,) |Q) can also be exhibited as a Feynman
path integral. From (4.2), with

F=1,>1t,> 1>,

Q,.=Q,

and

(Qol U, 10) |Q)

f~-fd01~-do,..1

n—1

X LI Q)| Un(tyys, t:) 1Qsyn) (5.30)

= lim

7 0

n~1
=li_{n . 'JdQl o ote dQn—1 g (QA

x exp (/) [ areatr zenie) 30
where

Ly(t, Q}"(t) = 2nhk » Q;’(t) — Hg(t), (5.32)
with
Q1) = (Q; — Qu)/(tya — 1)) = ~Q,(t). (5.33)
Evaluation of the matrix element

Q1 Ug(trr, 8 1Qy40)

? Reference 5., Eqs. (20) and (28).
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by means of Weyl transforms gives, to first order in
Ly — 1y,

(Q,l Ug(ts1, ) Q41
- f JK exp {—(i/h) f " A H I, 3Q, + Qm),xl}

x exp [2miK - (Q; — Q)] (5.34)

The result of integration on K is a function of
3(Q; + Q,,,) and Qj(#,). Feynman’s postulate (5.26)
may be modified to require that this function take
the form

Q] Ug(ts415 1) 1Qys0)
= ot exp {("/’”Lm drLalt, Q5(1), H(Q, + Qm)]}.

(5.35)

If the Hamiltonian is time independent, then Hy =
H, = H, and (5.25) gives

<Qj+1| Us(ta'+ls tj) IQ,>
= f dK exp {—(i/B)(t;1 — ) HHQ; + Qup), K]

+ 27K - (Qz41 — Qp},
while (5.34) gives

Qi Un(tia, 1) 1Qi40)

= j dK exp {—(i/i)(ty1 — t)HHQ; + Qurp), —K]
+ 27K (Q;a — Q}.

When H(Q,K) is an even function of K these two
matrix elements are equal, and

Lg[Q; (1), 3(Q; + Qi) = L,[Q,(1), 3(Q; + Q;11)).

This is the case in the example of (5.27) for which,
with At = ¢, — t,,

Q1 Un(tyis, 1) 1Qyp0)
= (mfi2nhAf)}
X exp {(i/h)LH[Qj_(tj)i 3Q; + Q)AL (5.36)
where
LH[Q;(IJ)’ $Q; + Q,1)]
= (m2)(Q)*() — V,[3(Q; + Q;.0)], (5.37)

equal to L,[Q,(?,), $(Q; + Q,,1)] in (5.29).
Return now to the expression for A(z, Q) in (5.16),
the case in which A,(f) commutes with k, From
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(5.30) and (5.34),
A1, (1/27i)(0/0Q0)] (Ql U(t, 1) Q)
~lim f s f dQ, -+ dQ, f[ Q) Ug(t2,1) 1Q1)

x At (1/270)(3/2Qy)] f K
X exp {—(i/h) f ‘drHglt, 1(Qy + Q). K]
+2wiK-(Qo—Ql)}=1im f-o'fdol---dq,,_l

n-> o
n—1

X };Il (Q)l Unltsr, 1) Q410
x A{t, [2mi(t, — 1)]79/0Q5 (o)}
X f dK exp [—(i/}i) L :ldt'{HH[t’, $#Q, + QK]
~ 201K Q1)) |

According to the modified Feynman postulate (5.35),
the last K integration can be expressed in terms of
the Lagrangian Ly, so that

Alt, (1/2711)(8/2Qq0)] (Qol U, %) 1Q)

. n—1
=’]l1_)n:0 f : 'fdQl" +dQ, 1 1;]; Qi Ug(tina, t)1Qu40)

X As{t9 (llznh)aLH[to ’ Qo_(to)’ QO]/aQO_(tO)}
X (Qol Ugi(ty, o) |Qy)-
#(t, Q) in (5.16) therefore becomes

A(1,Q) = f dQuP(t, Qults, Q)

x A{t, (1/2mR)Ly(to, " 5(1), Qul/0Q5 (1)}, (5.38)
with
P(t, Qo l lys Q) = |<Qo| U(t: to) lQ)P
According to (5.15), if A,(f) commutes with q, then

4(t,Q) = f dQuP(t, Qy | to, QAL Q). (539)

In the example of (5.27) for which the Lagrangian
‘L is given in (5.37),
401, Q) = [ 4QuP(, Qs . @)

X A lt, mQy(t)[2mh], (5.40)

according to (5.38) when A,(¢) commutes with k. For
the momentum operator p = 2n#k, A(#, Q) becomes
T(t, Q), where

50, Q) = [ dK2=HK (1, Q. K)

= f dQuP(t, Qy | 1o, QmQy.  (5.41)
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The first Hamiltonian equation (3.50) gives, in this
example,

30(1, Q, K)ot = f = f dQ, dK,

X P(t, Qo, Ky | 1, Q, K)27HKo/m.
Therefore, with the definition

at, Q) = f dKQu(1,Q,K),  (542)

aa(t, Q)fot = f . f dQy dKy(2rHKy|m)
xdeP(t, Q0. Ko | 10, Q. K)

= [4QuP(, Q4] 1, @G, (5:43)
according to (5.14),.(5.16), and (5.40). According to
(5.41),

(¢, Q) = mda(t, Q)/ox. (5.44)

The second Hamiltonian equation (3.50) gives, in this
example,

9(t, Q)fot = — f s J' dQ, dK,

x f dKP(t, Qp, Ko | 1o, Q, K)V,(Qy)/2Q,

- f dQuP(t, Qo | 1o, Q)IV(Q)/0Q,

(5.45)

(5.44) and (5.45) give the quantum-mechanical form
of Newton’s second law,

md*Q(t, Q)/ot
- j dQuP(t, Q| 15, QOV,(Q0)/0Q,

- f dKaVy (1, Q, K)9Q = —aU(r, Q)f0Q. (5.46)
It is clear from this example that the velocity of the
system along a path in configuration space must be
identified with Q—(¢) in (5.33), and not with Q(?) in
(5.24). Furthermore, the classical Lagrangian corre-
sponds to the quantum operator Lgl[t, Q;(?)] in
(5.32), and not to the operator L,[z, Q;(#)] of Feynman
in (5.24).

6. OTHER COORDINATE SYSTEMS

The discussion in the previous section has been
based on the case for which the density operator
pu = ps(t,) commutes with the coordinate operator q.
The system is prepared initially in a state which is a
mixture of pure coordinate states, as given in (5.3).

LEAF

#A(t, Q) is the expectation at time ¢ of the dynamical
property of the system initially in the pure state
ps(te) = 6(q — Q). Generalization is readily made to
other initial states. Suppose py commutes with a
complete commuting set!® of observables, j=
{j1,Jja* - - jn} with common eigenvectors |J) specified
by the set of eigenvalues J, so that

I =50 — ) =1 (6.1)

Then

pr = 2Z;13) prI) Jl,  pa(Jd) = Tt [pgd( — NI
(6.2)
The expectation at time ¢ of an operator A(f) is given

by

(A(D) = Z; A(t, Npp(J), (6.3)
where
A(t,J) = Tr [Ag(0)6( — )]
= JI Ut t)A,(OU(, 1) 13).  (6.4)
If 4,(¢) also commutes with the set of j, then
A = Z; [T A8, D) I, (65)
Ayt J) = Tr [4,()d( — D], '
so that
A(t, J) = E_,DAS(t, JO)P(t, Iy | t,J), (6.6)
where
P(t, 3y | 15, 3) = [To| U, 1) 1D, 6.7

the probability of J, at ¢ conditional on J at #,. The
probability amplitude can be written as a Feynmann
path integral,

(Jol U1, 1) 13>
n—1

=lim Xy, --- X5, , I](; Jl Ug(tir, t) 150 (6.8)

n=*ao

For example, if p; commutes with the momentum
operator Kk, then

A(,K) = Tr [A(08(k — K)] = f dQAx(t, Q, K)
= K| U'(t, t)A,(0U(1, 15) IK), (6.9)

corresponding to (6.4) and (5.14). In momentum
representation, (5.15) and (5.16) become

A(1K) = f dK, K| U' (1, 1) [Ko) A,[1, (i/27)(0/0Ky)]
x (K| U(t, 1) [K), (6.10)

if A,(t) commutes with q, and
A(1,K) = f Ko A(t, Ko) [ol UGt 1) (KO, (6.11)

10 Reference (4), p. 57.
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if A,(*) commutes with k. The probability amplitude
&K, U(t, t,) |K) can be written as the Feynman path
integral,

&y U1, 1) [K) = lim f o f dK, - dK,

n—1

X !_:](; K| Ug(tis, t) K (6.12)
n—1

= lim f » f 4K, - K, TT Kl exp {—(i/h)

x f W) + q- 2wh1'(;(t')]} K), (6.13)
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with
K;(tj) = (K; — K;)/ (2 — 1). (6.14)

Evaluation with the use of Weyl transforms gives,
to first order in ¢, — ¢;,

Kl Ug(tjp1, t)) 1K)
tiv1
=fdQ exp [——(i/h)J dt'{HH[t’, Q. 4(K; +K,,)]
2]
+Q- 2@1’(;(:’)}], (6.15)
a function of (K, + K;,,) and K;(t,-).
VOLUME 9, NUMBER 5§

MAY 1968

New Field-Theory Approach to Singular Potentials

H. H. ALy
Department of Physics, American University of Beirut, Beirut, Lebanon

AND
J. G. TAayLor*
Mathematical Institute, Oxford, University of Oxford, England

(Received 9 June 1967)

An approach similar to the methods of renormalization of the Green'’s functions equations of quantum
field theory is adopted to the singular potential in the Lippman-Schwinger equation. The close relation
between our approach and the one used in field theory gives a method to be applied to nonrenormalizable
field theories. The physical implication of this approach is discussed.

1. INTRODUCTION

One of the outstanding problems in high-energy
physics is to give a consistent theory of nonrenormal-
izable interactions (e.g., weak interactions, spin-1
electrodynamics, etc.) beyond the lowest order of
perturbation theory.

Various attempts to solve this problem® have been
made without complete success. However, due to the
difficulties inherent in this problem, attention has
been focused on the study of the quantum theory of
singular potentials, although results for such singular
potentials can at most hint at the actual properties
of nonrenormalizable interactions in quantum field
theory. Of course, singular potentials have an intrinsic
interest and do indeed raise many interesting questions.

In this paper we wish to describe a new approach to

% Department of Physics, Queen Mary College, London, England.

11In the case of quantum field theory see, for example, J. G.
Taylor, Suppl., Nuovo Cimento 1, 857 (1963). In the study of
potential theory see A. Bastai, L. Bertocchi, G. Furlan, S. Fubini,
and M. Tonin, Nuovo Cimento 30, 1512 (1963); W. Giittinger and
E. Pfaffelhuber, ‘‘Generalized Lippman-Schwinger Scattering
Equations for Singular Interactions,” CERN Report 65/1211/5,
Th 586; and W. Giittinger, R. Penyl, and E. Pfaffelhuber, Ann.
Physik 33, 246 (1965).

singular potentials which is intimately related to the
methods of renormalization of the Green’s functions
equations of quantum field theory. This intimate
relation allows us to hope that properties similar to
those we find for singular potentials will also occur in
nonrenormalizable field theories.

For several years the formulation of renormalized
Green’s functions equations for renormalizable inter-
actions has been understood.? The crucial steps for
renormalization of masses and coupling constants is
achieved by a differentiation and integration procedure
on the external momenta entering the propagators
and vertex functions. We wish to set up equations for
nonrelativistic potential scattering to which such a
renormalization procedure may be applied success-
fully. In the field-theoretic case we deal only with
scattering amplitudes (connected parts of time-order
products), so that we expect it to be necessary to do
the same for singular potentials.

We restrict our discussion to two particles scattering
through real velocity-independent potentials. The

% J. G. Taylor, Suppl. Nuovo Cimento 1, 857 (1963), papers I, II,
and III.
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situation is described in field theory by the Bethe-
Salpeter equation (BS).

The potential-theory analog of the BS equation is
the Lippman-Schwinger equation (LS). Our approach
consists in discussing the renormalization of the LS
equation in a manner as similar as possible to that
used for the BS equation.®

In Sec. 2 we first discuss the renormalization of the
potential analog of the A¢* theory (or other renormaliz-
able interactions). We then show that this renormaliza-
tion may be extended to more singular potentials,
with the LS equation being generalized to a linear
integrodifferential equation. The solutions to this
equation depend on a finite number of additional
parameters, which cannot be specified a priori. In
Sec. 3 we discuss the partial-wave separation of our
extended LS equation. In Sec. 4 we discuss and
summarize the results and indicate the physical
implication for nonrenormalizable field theories.
We also raise a number of related questions which we
have not been able to solve.

2. EXTENSION OF THE LS EQUATION

Let us first review briefly the relation between the
BS equation and potential theory. We recognize three
classes of field-theoretic interactions:

Class I: only finite quantities appear;

Class II: renormalizable interactions; only those di-
vergences appear which are removable by absorption
into masses and coupling constants;

Class III: nonrenormalizable interactions.

The BS equation is given by

M(p,p’; q)
= V(p,p'; ) + f &V (p, k; OM(k, p'; q)

x [(k + g)* — m"T{(k — @* = m*T, (1)

where g2 is the invariant total energy, ¢ £ p, ¢ + p’
are the initial and final momenta of the particles,
and ¥V(p, p’; 9) is the relativistic potential.

Class I corresponds to potentials which tend to
zero for large momentum transfer and external
masses. For Class II (for spinless particles) the
potential is constant. In Class III, the potential may
increase either (a) as a power or (b) at least exponen-
tially in momentum transfer or external masses. We
remark here that the BS equation is a well-defined
integral equation under iteration for potentials of
Class L. This is not the case for potentials of Class II
or II1.

38 Reference 2, papers Il and V.
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F1G. 1. Diagrammatic comparison of the three classes
of LS and BS potentials.

We use the symmetric differential operator
4
‘:D =Z piua/apius
Z,u=1

where p,, are the components of the external momenta
P1sPesPssPs=¢q £ p,q + p’. Weapply DD to both
sides of Eq. (1) for a BS potential ¥V(p, p’; ¢) arising
from a renormalizable field theory (of Class IT). The
resulting equation is now a differentio-integral
equation containing the ambiguity arising from D1,
i.e., the value of the scattering amplitude at zero
momenta for all particles. This equation is now well-
behaved under iteration for BS potentials of Class II,
as has been carefully discussed in the work of one of
us.® The value of the scattering amplitude at zero
momenta cannot be determined from the differentio-
integral equation, but plays the role of the renormal-
ized charge.

It may be possible to discuss BS potentials of
Class IlIa by means of D" applied to both sides of
Eq. (1) and the integration by means of D~" (where
n — 1 is the power dependence of the “potentials” on
momentum transfer and external masses). However,
we may remark that it is not known if such procedure
can, in fact, be done completely, nor is it known if such
a discussion can be extended to the complete set of
Green’s functions equations in this case. We wish to
see if we can carry through such a procedure for the
LS equation.

The LS analog to the BS potentials again may be
divided into three classes:

Class I: regular potentials behaving as does r™
(¢ < 2) when r - 0;

Class II: V(r) =r%, (2« =2),asr—0;

Class III: (a) V(r) = r (x> 2)asr—0; (b) V(r)
has a singularity stronger than a pure power at r = 0.

Previous work leads us to compare Classes II and
II of the LS potentials with Classes II and III of BS
potentials.

In Fig. 1 we present a diagrammatic form of the
situation. In the first column we describe the nature
of the class. In the second column the LS equation
for each class is indicated. In the third the BS equation
for each class is indicated.

3b Reference 2, papers 1, II, and V.
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We may relate corresponding classes horizontally
by the standard method. We have made step (1),
extending the BS equation from Class I to II by
means of D1D. We conjectured that we can make
step (2), extending it further to Class III by use of
DD" for n > 1. We wish to show here that it is
actually possible to make both these extensions,
steps (3) and (4), for the LS equation.

The LS equation is

f(p,p, k)

~ P(p — ) + f Pl — ql)f((k“;"’ ))ds, @

where

7o) = v . )
We may also use the relativistic energy (k? + m?)t —
m in place of k*/2m in the LS equation (2) if, at the
same time, we replace d°q by the invariant measure
dq/(q? + m®}. This gives the same high-energy
behavior as (2), so our further discussion is the same
for either case. We will explicitly keep to (2).
The asymptotic behavior of F(|p|) as |p| — oo is

V(IpD) ~ [pl*, “4)
where all logarithmic dependencies are neglected. We
insert the behavior of Eq. (4) in Eq. (2), where we see
that the equation is well-defined under iteration for
a < 2. When « = 2, we find logarithmic divergence
on iteration. This may be removed exactly, as was
done for the BS equation, replacing the operator D
by the operator d defined as acting on any function of
the three-vector p by

@, N)p) = [@/dD)fD))imipy s
where p = p/|p| is the unit vector along p. Similarly,
dpf)(p) = [(@"[dA™) f(4p)],_p; - Then Eq. (2) becomes
f. 0. K= V(p —p) = 7(pD + £, p’, k)

" [deP (B — aDf(a,p, k%)
2l Ze L ) 3
+ L d [ T ]Mpd 4 (5)

We define
U, ») = P(lp — p')) = P(p'l) + fO, p). (6)
Since d,U(p, p) = 4,7(lp — ql), we may rewrite Eq.
(5) as
f(p. P, K%
In
’ U@, 9f(q, P’ 2)
= U(p, +f da
(P, p) ®© — o)
We may regard the replacement of ¥ [in Eq. (5)]

by U [in Eq. (7)) as a renormalization of the LS
potential in a manner analogous to the charge

Q)
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renormalization for n—m scattering discussed prev-
iously.®

It is evident that iteration of Eq. (5) for Class II
potentials (e.g., r~%) is convergent at every step.
This is due to the differentiation acting on Z(p” — q))
under the integral sign of Eq. (7) together with inte-
gration over a finite range of the A variable. Thus we
regard Eq. (7) as the correct equation which extends
the LS equation to the r—2-type potentials in a manner
as similar as possible to the renormalized BS equation
for Ad* theory.

We would like to remark that we now have an
integrodifferential equation in place of the integral
equation structure for the LS equation. This means
that we no longer expect many properties of the LS
equation to remain valid for our extended equation.
We shall return to this point later.

It is now possible to see how to generalize our
extended LS equation to apply to nonrelativistic
potentials of Class IIla (e.g., 7%, « > 2). This may be
achieved by the use of the integrodifferential operator
d—D g+ where M (as in the relativistic case) is
equal to 1 plus the singular power of the potential
and for any integrable function of p:

|p}
@) p) = f dif(Ap).

We see now that the form of Eq. (2) becomes
f(p. 9, K

= V(o ol K T e ke
[)

{dMV(Ip" - qI)f(q, . k)
&* — )

where
V’(p’ pl’ kz) = V(‘P - pll) + z (drf)l’=° s

where only the derivatives of fin (d’f),_, are evaluated
atp=0.

We immediately see that Eq. (8) is not finite under
iteration for the corresponding Class IIla potentials.
We may remedy this as follows. We take the expansion

V(ipD) =3 a,pl" + W(lp)), )
=0

where W(y) = O(y™) as |g| — . An expression of
the form of Eq. (9) always exists for Class Illa
potentials when we restrict (x — 3) to being a non-
negative integer N. If, in addition, @, = 0 for n odd,
then d@y*'7(jp — q) = & W(lp — q))* Thus, in

4 This restriction is not as severe as it sounds, since, if V(r) =
e"#rr~n, we have formally that V(|p|)—4-rrj'°° exp (—ur)ri-n

sin (| p| )/|r| is an even function of |p}. It is natural to preserve this
evenness, even under the ambiguity of the definition of 7 at » = 0.

} v 1 ©)
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this case, Eq. (8) becomes

fo.p'. &)
. [P| iy Ay
=V(p, k) + f dﬁlf diy- - f dAys
0 (] [1]
@)YV (10" — af(q. P, k%)
X %a.
] o |4 a0

Then iteration of (10) will be finite at each step,
since

Vip,p, Ky ~1plY as [pl~ oo

flq,p, K)~|g" as [q] ~ oo,

the last term on the right of (10) is finite for finite
|p} and behaves as |p|¥ as [p| ~ oo (to within logarith-
mic behavior, which we neglect). Thus we see that
we have a denumerable set of the extended LS equa-
tions, each one corresponding to a certain class of
singular potentials, i.e., these behaving as r3V as
r -+ 0, with the coefficients a,, vanishing for odd n.

Each such extended LS equation has a number of
free parameters, and we may insure unitarity by
choosing these parameters as real.

Since we have not altered the factor (k% — ¢!
entering in the kernel of Eq. (10) by our differentiation
and integration procedure, we expect that the discus-
sion of the existence, uniqueness and other general
properties will apply exactly as for the original LS
equation. We also expect that analyticity will be
unchanged.

It is necessary to discuss briefly the ambiguity in the
definition of the Fourier transformation of the r—*
potentials for « > 2.

This ambiguity arises from the singularity character
of r~= at r = 0. We may define the singular potential
r~* by means of the pseudofunctions.® .

The ambiguity in this definition is that of a linear
sam of derivatives of d(r).® These derivatives are of
order o — 3. This will give an added polynomial of
degfee « — 3 in P(lp}). We see no natural way to
reduce this ambiguity except to enforce the condition
that a, = 0 for odd n. Thus we add further arbitrary
constants to the solution of our extended LS equation.
So we see that there are two sources of arbitrary
constants for our solution to Eq. (10) in addition to

5 L. Schwartz, Theorie des distributions (Hermann & Cie., Paris,
1947).

8 The general approach to the ambiguity in r=% ar r = 0 is to de-
fine a function (such as a distribution on the subspace of indefinitely
differentiable functions of compact support in r which are zero)
together with all partial derivatives of order less than (n — 2) at
r = 0. The extension of such a distribution to all indefinitely differ-
entiable functions of compact support involves additional terms
which are derivatives of 8%r) with arbitrary coeflicients, as mentioned
in the text.
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those arising in the potential. These are (1) the
differentiation—integration procedure and (2) the
Fourier transformation of the singular potentials.
It has been shown’ that the explicit solution of the
radial Schrodinger equation with the potential r—4
has four arbitrary constants.

We hope to discuss elsewhere the relation between
the solution of the extended LS equation and the
Schrédinger equation in this and other cases.

3. PARTIAL WAVE ANALYSIS

We now investigate the partial wave analysis of our
extended LS equation. We do this in detail only for
Eq. (5).

Our method evidently extends to the more general
equation (10). (We shall proceed in manner very
similar to that used in Ref. 3.) We use the expression

S0 B, K) = Z 21+ DP, (05 ., il 1] K,
with

1 +1 -
Pl 19D = 3 [ P(c0s ,,)7(lp — ) dicos B,.,)

and the recurrence relation between the Legendre
polynomials to obtain

£(pl 'L KD )
= Vinl I+ | "’1;‘% [ (%i——i) Vs ol la)
2143
-~ (2——-———, i 1)Vm(z Iol, lql)]
fl('qL ‘pr', kg) 3
et (11)

[We note the similarity between Eq. (11) and the
corresponding equation (25) in Ref. 3, No. 5.} In
Eq. (11) we see that the different partial waves are not
coupled to each other, and thus the partial wave
separation is sufficient to decouple separate partial
waves.

However, partial wave projections of the potential
which arise in the kernel of Eq. (11) are different
than in the inhomogeneous term. Such is not the case
for the BS equation (as was discussed in Ref. 3). We
attribute this to the difference between the D and d
operators. In particular, D depends on the internal
and final momenta, while d does not.

4. SUMMARY AND CONCLUSIONS

We may summarize our results by saying that the
extended LS equation, Eq. (10), is the formulation
which should be used in the discussion of singular

7 H. H. Aly and H. J. W. Miiller, J. Math. Phys. 7, 1 (1966).
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potentials in order to come as close as possible to the
renormalization process in renormalizable field theory.
This completes steps (3) and (4) of Fig. 1. We use this
to give some indications of the results obtained after
making step (5). In other words, we can speculate
about the general nature of the structure of non-
renormalizable field theories. We see that these
theories are expected to be of two classes with
properties similar to Classes IIla and IIIb of LS
potential theory. The solution belonging to interac-
tions of Class IITa will, in general, depend on a finite
number of additional parameters occurring in the
potential. For those of Class IIIb we cannot really say
anything, since we have not been able to write a
suitable extended form for the LS equation which is
convergent under iteration. It is possible that our
restriction to an integro-differential equation which is
finite under iteration is too restrictive. However,
without this restriction it is difficult to say anything
rigorous using the present mathematical tools.

We may surmise that, in the case of Class Illa field
theories, only a finite number of differentiations and
integrations will be necessary to transform the
complete set of Green’s functions equations to a form
convergent under iteration. We may also expect that
the solutions to Class IIIb field theories will very likely
depend, in general, on an infinite number of arbitrary
constants (however the solutions are obtained).
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We hope that weak interaction of the current-
current form are of Class ITIa.

In this short paper we have left many questions
unanswered—and even unasked. In particular, we
would like to know the following.

(a) What is the nature of the set of bound states?

(b) What is the relation of solutions to our equation
to those for the Schrodinger equation?

(c) We would like to know the properties of the
linear operators which are the kernels of our
extended form of the LS equation. In particular,
are they completely continuous ? Is the Fredholm
alternative valid? And, finally, is it possible to
give a general existence theory for the solutions?

(d) Is the Levinson theorem valid? It has been
shown® that, at least for the two classes of
singular potentials like (sinh wr)=2 or r—*, the
Levinson theorem is violated in the non-
relativistic limit; it is possible that all singular
potentials violate it.
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operators P also contain the inverse radial momentum (9/9r)~*, but do not involve any square roots.
Moreover, only two-component spinors are required for spin-} particles.

I. INTRODUCTION

The problem of covariance in quantum theory is
rather different from its classical counterpart.! In
classical theory, the dynamical variables have numer-
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ical values which are equal to the observable values
of these variables, and covariance can easily be ascer-
tained if the dynamical variables transform in a
definite way (e.g., as tensor components) under the
appropriate group.

On the other hand, the dynamical variables of
quantum theory are linear operators acting on some
Hilbert space. The state of a physical system, as seen
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ical values which are equal to the observable values
of these variables, and covariance can easily be ascer-
tained if the dynamical variables transform in a
definite way (e.g., as tensor components) under the
appropriate group.

On the other hand, the dynamical variables of
quantum theory are linear operators acting on some
Hilbert space. The state of a physical system, as seen
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by a set of observers,? is not specified by ascribing
numerical values to the dynamical variables of that
system (as in classical physics), but is now represented
by a ray in Hilbert space. A different set of observers?
will attribute to that state a different ray. The problem
of covariance is to find the relationship between these
rays.

If the two sets of observers are physically equivalent
(e.g., related by a Lorentz transformation) this
relationship is a unitary one.? In the important case of
infinitesimal transformations, this unitary transforma-
tion can be written as

U=1+ ieGy, )
where the ¢; are the infinitesimal parameters which
characterize the transformation from one set of
observers to another (j=1,---,10 in the case of
inhomogeneous Lorentz transformations), and the G;
are Hermitian operators, which are called the gener-
ators of the transformation group. They satisfy well-
defined commutation relations, depending only on
that group. The problem of covariance is essentially
solved when these- generators have been constructed
explicitly 4

However, not every realization of the Hilbert
space, and hence of the Poincaré group generators, is
useful. For the purpose of correspondence with clas-
sical physics, we are often interested in taking the
quantum-mechanical Hilbert space for a system of
particles, as the set of square integrable functions over
the classical configuration space of these particles.
Moreover, again for the purpose of correspondence
with classical physics, we wish to interpret the
operator x; as the x coordinate of the kth particle.
This implies that (x;),, must transform exactly as the
classical coordinate x;,, at least under transformations
which map the configuration space onto itself. The
latter requirement is a stringent constraint on the
generators G;: Those generators which map the con-
figuration space onto itself must involve only geo-
metrical quantities, while the dynamics of the system
is represented solely by the other generators.

Now, the configuration space of a system of
particles is the direct product of the individual

2 Even in classical physics, the state of a physical system must
always be referred to some set of observers (and not to a single
observer). For example, the familiar formulas for Lorentz trans-
formations relate coordinates xyzt and x’y’z’t’ in two synchronized
Lorentz frames. (Ignoring this important point leads to ‘‘paradoxes,”
such as the twin paradox, which actually are not at all paradoxical
when properly interpreted.)

8 E. P. Wigner, Ann. Math. 40, 149 (1939).

4 As pointed out by E. Kazes, Phys. Rev. 157, 1309 (1967),
‘‘unless the ten generators of the inhomogeneous Lorentz group can
be realized, we may be dealing with an empty formalism.”
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configuration spaces of each particle,® and the latter
are usually taken as ¢ = const hypersurfaces in space-
time (with the same ¢ for all particles). In this case, the
generators P (space translations) and J (space
rotations) have simple forms, and are additive for
several particles, while H (time translations) and K
(Lorentz boosts) convey dynamical meaning and have
complicated forms (even for a single particle).! In
particular, they involve the nonlocal operator (p? +
m}, where p = —iV.¢

However, it was pointed out long ago by Dirac’
that it might be more convenient to take, as the one-
particle configuration space, a hyperboloid (or
possibly a light cone) invariant under homogeneous
Lorentz transformations. In this case, the “simple”
geometrical generators are J and K (which are
additive for several particles) while H and P are the
complicated dynamical generators. Some advantages
of this formulation were pointed out by Thomas.®

The classical generators H, P, J, and K, satisfying
the Lorentz-group Poisson-bracket relations, were
constructed explicitly by Dirac? for a single particle,
in terms of the canonical variables p and q. The pur-
pose of the present paper is to derive a quantum
realization of these generators, in the special case
where the configuration space is a past light cone.®1°

This is done in two steps. In Sec. II, we construct
J and K, satisfying

(V> Jn] = l€pnels, (2)
Um, K,] = i€y K, 3
[Km ) Kn] = _iemnst ’ (4)

for particles of arbitrary spin s, whose wavefunctions
are given on a past light cone.

Sections III and IV are then devoted to the con-
struction of the Hamiltonians of spin-0 and spin-}
particles, respectively. Once H is known, P is readily
obtained from

[H,K] = —iP. %)

5 Or can be reduced to it by a suitable coordinate transformation
(no reasonable alternative is known to the author).

§ Locality can be restored only at the expense of adding redundant
components, so that a spin-s wavefunction has 22*+! components
(with suitable constraints) rather than 2s + 1. This artifice leads to
the aesthetical feature of y satisfying a manifestly covariant wave
equation. (Such wave equations are often misinterpreted as being
the essence of quantum theory.)

7 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

8 L. H. Thomas, Phys. Rev. 85, 868 (1952).

*® The generators for a future light cone are simply obtained by
reversing the signs of K and P.

10 Possibly, the use of a past light cone might obviate to what I.
Bloch [Phys. Rev. 156, 1377 (1967)] calls ‘‘some relativistic oddities
in the quantum theory of observation.” In his paper, Bloch points
out that some contradictions ‘‘could be avoided if the transition
from pure state to mixture somehow took place along a light
cone ...” See also W. C. Davidon and H. Ekstein, J. Math. Phys.
5, 1588 (1964).
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However, it is not at all trivial to construct H,
because we must satisfy all the other commutation
relations, namely

(H,J]=0, ©
[Pm, K;] = —i0,,H, M
[H,P] =0, ®
Vs Pl = depnsPs, ®
[Pm,P,) =0. (10)

While (6) is satisfied by any rotational scalar, (7)
implies that H satisfies

[Km’ [Kna H]] = _amnH’ (11)
and (8) leads to the nonlinear condition
[H, [H, K,]}] =0, (12)

the fulfillment of which is the main difficulty of our
problem.

Equations (9) and (10) are consequences of the
preceding ones and of the Jacobi identity.

Finally, Sec. V is devoted to a brief discussion of
our results, and of possible generalizations. Some
auxiliary formulas are listed in an Appendix.

Throughout this paper, we use natural units:
h=c=1.

II. THE HOMOGENEOUS LORENTZ GROUP

In this section, we construct J and K. We consider
first the case of spinless particles, and use polar
coordinates, so that the state of a particle is described
by a wavefunction y(r, 0, ¢).

Rotations, generated by J, are transformations of
6 and ¢ leaving the quadratic form d9? + sin? 6 dg?
invariant, They are generated, as usual, by

L,= i(sin ¢5aé + cotfcos ¢ %), (13a)

L,= i(—cos (paa—e—i— cot fsin @ a%), (13b)

0

L,=—-i—,
g
with J = L for spinless particles.

More generally,  will have (2s + 1) components,
and then

(13c)

J=L+S, (14)

where the S are (numerical) spin matrices.!?

11 L, 1. Schiff, Quantum Mechanics (McGraw-Hill Book Co., Inc.,
New York, 1955), p. 75.

12 The sum (14) is reducible, but its irreducible parts are not local,
and we shall not consider them.
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We now turn to Lorentz transformations proper.
On the past light cone r = —t, we have

ds? = dt* — dr? — r¥(d0* + sin® 0 dg?)

= —r¥(d6? + sin?® 0 dg?), 15)

so that homogeneous Lorentz transformations, which
keep ds? invariant, induce conformal transformations
of the unit sphere.!3-14

Taking the special case of an infinitesimal boost
in the z direction, we have (omitting spin)

x' = X, (163)
y' =y, (16b)
=z—vt=2z+vr (16¢c)

We thus see that dz = vr is generated by rp,, i.e.,
K, =rp,. More generally, it is easily seen that
K = rp satisfies Eqs. (3) and (4) and hence is the
solution of our problem for s = 0. (The Hermiticity
problem will be discussed at the end of this section.)

To generalize this result for nonzero s, it is con-
venient to separate, in K = rp, radial and angular
variables by means of the identity

rx L =r(r-p)—rp. amn

We define

n = r~'r = (sin 0 cos ¢, sin 0 sin @, cos 6),

(18)
and further define p as being the Hermitian part of
n-p [it will be given explicitly in Eq. (23), after we
derive the form of the Lorentz-invariant scalar
product].

Classically; we have

K=rmp=nmp—nxL, (19)
from which we guess
K=4(rp+pm+3iIxn—nxJ). (20

It is now a matter of routine to verify that (20)
indeed satisfies Eqs. (3) and (4) for any s, and there-
fore is the solution of our problem. Some auxiliary
formulas have been listed in the Appendix.

To complete this section, we still have to define a
Lorentz-invariant scalar product, i.e., to find the
weight function p(r, 6, ¢) in

(o | ) = f pl(r, 0, P)uulr, 0, P)p(r, 6, ) dr d6 dop,
1)

such that <1p1|1p2> will be invariant under proper
homogeneous Lorentz transformations. To this
effect, we note that both r?sin 0 dtdrdfdy and

13 R. K. Sachs, Phys. Rev. 128, 2851 (1962).
4 A. Komar, Am. J. Phys. 33, 1024 (1965).
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0(z2 — r?) are Lorentz scalars, and therefore their
product is a scalar. Integration over ¢ then shows that

22

is the desired weight function, up to a multiplicative
constant (rather than 2 sin 6, as usual).

The result (22) can also be derived by noting that
mere rotational symmetry implies that p = f(r) sin 6.
Then, direct use of (16) shows that r sin 6, dr df and
dp are separately invariant under boosts in the z
direction. Q.E.D.

It follows from (21) and (22) that all the components
of L and hence of J are Hermitian. Likewise

{0 1
P= _l(ar+ 2r)’

p=rsinb,

(23)

is also Hermitian, and therefore all the components
of K, Eq. (20), are Hermitian.
It is also convenient to define the Hermitian
operator
g = §(rp + pr) = —i(9/or)r, (24)

in terms of which we can readily write down the

Casimir invariants
J:K=J-ng, (25)
and

EoK=J-n2—g— L (26)

We thus see that ¢ and J-n are invariant under
proper homogeneous Lorentz transformations.

III. THE SPIN-0 HAMILTONIAN

The next, and much more difficult problem, is to
find an H satisfying (6), (11), and (12). In the classical
case, with Poisson brackets instead of commutators,
it was shown by Dirac” that

2 2
2 P rpr

This expression is Hermitian, but, unfortunately,
satisfies neither (11) nor (12) in quantum theory
(the right-hand sides are of the order of #°).

The correct expression for H can however be
easily found, by seeking the “‘missing terms” necessary
to satisfy (11) and (12). It is

1 m?
- 5(p i p+ (irpr)
from which we derive
= —Hn + K@ — if2rpr), 29
= —}(&n + nH) + 3Kr? + r-K) + (n/drpr).
(30

@7

J 41
rpr

), (28)
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[The correction terms in (28) and the last term in
(30) would have /2 factors, if we had not set /i = 1.]
Some auxiliary formulas are given in the Appendix.

IV. THE SPIN-} HAMILTONIAN

The preceding results are valid only for spin-0,
because, when substituted in (12), the right-hand
side of (12) is proportional to n- J, which vanishes
only for spin-0.

A possible approach to get a Hamiltonian for
spin-} particles is to transform the Dirac equation to
coordinates r, 0, ¢, and u = r + ¢, and to set H =
i0/ous

We first go over to the equal time polar coordinates
trBe. The Dirac equation then reads?®

iopldt = —ia (Oy[Or) + in 6" - Ly + fmy, (31)

where «, = o - n and the ¢’ are 4 x 4 block-diagonal
matrices, the blocks of which are Pauli’s ¢ (in the
representation where f is diagonal, the blocks being
I and —I). We now introduce the null coordinate
u = r + t and Eq. (31) becomes

i(1 + o,)(0p/0u) = (x,p, + iar~fk + fm)yp, (32)
where!®
py = —il(9/dr) + r], (33)
and
k=P -L+1). 34)

Note that k¥ commutes with r, p,, «,, and 8, and that
k=J+ 1
We now define two projection operators

P, =31+ o), (35)
satisfying P% = P, and P,P_ = 0, and write
Y=yt vy, (36)
where
Yo = Py G7
Noting that &, = P, — P_ and that
P.f = fP=, (38)
Eq. (32) becomes
2i(0y,[0r) = p,(ps — p-) — ir*Bk(y, — v-)
+ Bm(y. + ). (39)
Multiplying on the left by P_, we obtain
v = (p) 7 plm — ir )y, (40)

15 This method does not work with the Klein-Gordon equation,
presumably because of different normalizations of . Actually, even
the Dirac y does not satisfy the normalization (21), and the success
of this method for spin-} particles may be just a lucky accident.

18 Reference 11, p. 334.
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On the other hand, multiplying (39) by P, yields
2i(0y, [ou) = py, + ir ' Pky_ + pmy_, (41

= py, + (m + irk)p;Hm — irtk)y,. .
42)

From the above result, which is exact, we guess?’

H = }[p + (krt — im)p~(kr! 4 im)], (43)
2 2 1
=1(p+m_+'£ﬂ._ﬂ)_ (44)
2 rpr rppr

It is now a matter of tedious, but straightforward,
calculations to check that (11) and (12) are satisfied.
Details are given in the Appendix.

Moreover, from Eq. (34), we note that & is block
diagonal, the blocks being +(o « L + 1). Hence H is
reducible, and it is obviously possible to retain only
one of the blocks, e.g.,

k=¢-L+1=06.J—1, (45)

so that two-component spinors are indeed adequate
for spin-§ particles (in conformity with Sec. II).
This result is the main advantage of the present
formulation of quantum mechanics.

The two possible forms of the Hamiltonian,
corresponding to opposite signs of k, may be inter-
preted as pertaining to particles and antiparticles,
respectively.

Finally, we write the explicit form of the momentum
operators:

P=4}[—mp+r'K+ Krt — (kr! — imnp!
X (kr7! + im)],
= —3mH + Hn) + (K + Kr)
+ (n/4rpr) — mo x n(rp + pr)fdrppr. (47)
V. OUTLOOK

There is a striking similarity between Egs. (28-30)

which give H and P for spin-0, and Egs. (43-47),

which refer to spin-}. However, there are also impor-

tant differences, and there is no obvious generalization

to arbitrary spin. More powerful methods will there-

fore be needed in order to obtain A and P for higher
spin.

Another important problem, which we have not

discussed, is that of interactions.""”® It was pointed

(46)

17 Note the difference between Eqs. (23) and (33), and see Ref. 15
above.
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out by Dirac? that the “point form” of quantum
mechanics (of which the present work is a special
case) might possibly be more suitable than the more
familiar “instant form” to discuss relativistic inter-
actions between particles. Further calculations will
clearly be needed to investigate this point.

ACKNOWLEDGMENT

It is a pleasure for the author to express his gratitude
to Professor J. Weber for the warm hospitality shown
to him at the University of Maryland.

APPENDIX

The following is an assortment of formulas which
were useful in our calculations. We recall that J is
given by Eq. (14) and K by Eq. (20).

IIxn—nxJ)=Jxn—in=—nxJ+in,

(A

= $i[J%, n]. (A2)

[, (J X 1)y] = i(8ap — ngha), (A3)
[(V x n),, (J x n)l = —iey.J,, (A9)
[n,,J+n] =0, (AS)
(K, 1] = i(ngn, — 8,), (A6)
K, 1] = in/r, (A7)
[K, p] = inp, (A8)
K, (rpr)™'] = in/rpr, (A9)
K, p7'] = —injp, (A10)
(X, (rppr)~'] = 0, (A1)
K., 0,] = i(n,06, — 6,0+ 0), (A12)
[K,sm-0] =0, (A13)
[p', r ] = —ilrppr = —ilprrp, (Al14)
[r2, (rpr)72] = if(rpr)?, (A15)
k=6-L+1=0-J—1, (A16)
[Ke» k] = il}eqneo0n (rp + pr + i) — nk], (A17)
(14, k] = ieg,00m,, (A18)
[Kas [Ky, k]l = —6,k, (A19)
(K., k[r] = iege0unep, (A20)

[k2, [k, n]] = kn + nk. (A21)
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The element z = log e%e”, which is known to be an element of the Lie-algebra generated by x and y,
is expressed as a commutator series in x and y with coefficients given in terms of certain fixed poly-
nomials. The result is given explicitly to sixth order. Useful recurrence relations are obtained. The
method is based on certain properties of higher-order commutator products, particularly their idempotent

character.

I. INTRODUCTION

The problem of compounding exponentials of
noncommuting quantities is of interest in various
fields of mathematics' and theoretical physics,? for
instance: in group theory, perturbation theory, trans-
formation theory, and statistical mechanics. The
problem has its origin in group theory where it led
to the Baker-Hausdorff theorem:

If e%¥ = ¢*, then z is a Lie element generated by
x and y; that is, z is a sum of repeated commutators
of x and y (including x and y itself).?

The theorem was proved by Baker* and Hausdorffs
by a recursive construction of z. A simpler proof has
been given by Magnus® by means of a characterization
of Lie elements found by Friedrichs.®

The present investigation was stimulated by the
need of an explicit commutator expansion for practical
use. The author found only scattered results available
in the literature, except the systematic approach due
to Goldberg.” His expansion, however, is not an
explicit commutator expansion, but an expansion in
terms of the monomials

1, x, y, x%, xy, yx, ¥, x3, x%y, xyx, etc.,

which are linearly independent elements (basic ring
elements) in the free associative ring generated by x
and y. The coefficient for any specified monomial is
expressed by Goldberg as an integral over a product
of certain fixed polynomials.

1 W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).
2 K. Kumar, J. Math. Phys. 6, 1923, 1928 (1965).
3 To be precise, x and y should be considered as free generators
of an associative ring R over the field of real numbers. Then the
element z in R defined by e* = eev is a Lie element.
¢ H. F. Baker, Proc. London Math. Soc., Second Series 3, 24
1904).
( 5 F. Hausdorff, Ber. Verhandl. Sichs Akad. Wiss., Leipzig, Math,
Phys. K. 58, 19 (1906).

8 K. O. Friedrichs, Commun. Pure Appl. Math. 6, 1 (1953).

7 K. Goldberg, Duke J. Math. 23, 13 (1956).

One of the main results of the present investigation
is a commutator expansion, with coefficients which
are closely related to those of Goldberg. There is a
new feature in the commutator expansion compared
to the expansion in terms of monomials; namely,
while the manifold of monomials by definition are
linearly independent, the corresponding commutator
products are not. Consider, for instance, the mono-
mials xyxy and xy%x, which are linearly independent
elements in the free associative ring. The corresponding
commutator products, however, exhibit linear de-
pendence. In fact, we have the identity

[[[xay]’ x],)’] = [[[x,)’], }’], x].

This means that one and the same result can be
expressed in numerous ways depending on which Lie
elements are chosen as a basis.

A problem of special interest occurs when one of the
generators, say y, is considered as ‘“‘small,” for
instance, when y is attached to a small parameter.
Then we may be interested in a commutator expansion

z=zptzpny+ -+t

where the terms are of increasing degree with respect

_to y. For this situation we have obtained a recurrence

relation connecting z(,, with a certain part of z(,_;.

The starting point leading to the results above is a
study of the structure of higher-order commutator
products. In Sec. II we prove various properties of
these products, particularly that the so called “curly
bracket operator” is essentially idempotent when
applied to a homogeneous function of the generators.
This idempotency has been proved earlier (and
independently of each other) by Dynkin,® Specht,? and
Wever,'° using methods which differ somewhat from
the one employed here.

8 E. B. Dynkin, Dokl. Akad. Nauk. SSSR! 57, 323 (1947).
® W. Specht, Math. Z. 51, 367 (1949).
10 F, Wever, Math. Ann. 120, 563 (1947-49).
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II. COMMUTATOR-IDENTITIES AND
LIE ELEMENTS

A. Definition of Curly Bracket Operator and
Left-Ordered Commutator Product

Let fand g be elements in the ring generated by the
operators X;, X;,"**, Xy, and let ¢; be an element
in the field of coefficients. Following Magnus' we
define a curly bracket operator { } with the properties,

{c} =0, (1a)
{x3 = x,, (1b)
e e xnd =[x X}, %, (Ic)
{af + g} = alf} + ofg) (1d)
The following consequences are obvious:
{xx,;} = [x;, x,] = —{x;x} (ANTISYMMETRY), (2)

{xoxx} + {xxx} + {xexx;} =0
(JACOBI IDENTITY),

{xt‘xi ttt xkxl} = [[ o [xi’ xj]’ Y xk]’ x;]-

A3)
@

A repeated commutator product of the last type,
with all brackets [ standing to the left, will be called a
left-ordered commutator product (German: links
normiert). The transformation from a left-ordered to
a right-ordered product is trivial:

[[' o [xla xa]’ Tt xn—l]’ xn]
= (—1)"—1[)6", [xn—ly R [x2» xl] ot ']]

The above definition of the curly bracket operator
is unique, provided we know which elements are
considered as basic arguments in the commutator
operation (the elements x;, x,,- -, xy above). In
the following we need to introduce various sets of
arguments with respect to which the curly bracket
operator is defined. In order to avoid clumsy notation
we take the risk of introducing the following conven-
tion: A curly bracket without index means that the
arguments of the commutator operation are a certain
specified set of generators (x;, x,, - * -+, xy in the rest
of the present section). If the curly bracket is equipped
with one or more indices, say » and v, then « and v
appear explicitly as arguments in the function and
are considered as basic and independent arguments in
the commutator operation.

An example will make the point clear. Let # and v
be the elements u = x;x,, v = x3x,. Then we have

{uv} = [[[xl ’ xz]’ X3], x1],

{uv}u = [[x1x2’ X3], xl]’

{uv}y , = [x1x2, X3%,].
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B. Properties of the Curly Bracket Operator

Let f, g, and h be elements in the free associative
ring generated by x,, Xp, ' * -, Xy, and let F, G, and
G, be the elements

F={f}’ G={g}’ Gn={gn}:

where g, is the nth-degree part of g. Then, if the
zeroth-degree part of f'is zero, the following identities

are true:

{f gt =1{F glp, &)
{f G} =IF, G, (©)
{fGh={fG hqg, O]
(Ga B} = n(G, h)g . ®

For proof see the Appendix.

For h = 1, the last equation reads

{Gu} = nG,, ©)
{{gn}} = niga}. (10)

Thus the curly bracket operation on a homogenous
function is an essentially idempotent operation.

From the idempotency property we deduce the
following statement.:

Let r, be a homogenous function of nth degree.
Then {r,} = 0 if and only if there exists a function g,,
such that

Fa = ga — (1n){g.}. (11)

Proof: If (11) is true, we have {r,} = {g,} —
(/m{{g.}} =0 If {r,} =0, we put g, =r,, and
(11) is true.

Some examples of vanishing curly brackets for the
case of two generators are given below. In order to
be in agreement with the notation in the Baker-

Hausdorff formula, the generators are denoted by x
and y:

(x" =0, n=2,3,4,-, (12a)
{xy +yx} =0, (12b)
{xy(xy — yx)} =0, (12¢)
{xyx(x?y — 2xyx + yx%)} = 0, (12d)
{xyGxyxy = 3yxpx + y°x* — x%%)} = 0. (12¢)

C. Application to Lie Elements
The Lie elements (or Lie functions) with respect to a
set of generators x,, X,, ‘-, xy are defined recur-
sively as follows. The commutator product [u, v] of the
Lie elements u and v is a Lie element. Any linear
combination (finite or infinite) of Lie elements is a

Lie element. The generators are Lie elements (of
degree one).
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The following theorem is of importance in connec-
tion with the Baker-Hausdorff formula.

Theorem: An element L is a Lie element if and only
if there exists an element / such that

L={I (13)

Proof: If L is a Lie element of first or second
degree, the existence of the element / is obvious, since
x; = {x;} and [x;, x;] = {x,x;}. According to Eq. (6),
the commutator product of two curly bracket expres-
sions is a curly bracket expression. Hence, from the
recursive definition of Lie elements, it follows that
any Lie element may be written as a curly bracket
expression. The reverse statement, that Eq. (13)
implies that L is a Lie element, is an obvious conse-
quence of the definitions of the curly bracket operator
and of the Lie element.

We can now formulate the following characteriza-
tion of a homogenous Lie element:

A homogenous element L, of nth degree is a Lie
element if and only if

{L,} = nL,. (14)

Proof: If L, is a Lie element, then by Eq. (13) there
exists an element /, such that L, = {/,}. Hence,
{L,} = {{I,}} = n{l,} = nL,. Conversely, if Eq. (14)
is true, L, can be expressed as L, = (1/n){L,}, which
by Eq. (13) implies that L, is a Lie element.

Consider a Lie function L which is written as a
sum of terms of increasing degree,

L=>L,. (15

n=1

Then, by means of Eq. (14),
(L} = SnL,. (16)

n=1

III. THE BAKER-HAUSDORFF FORMULA
A. Some Symmetry Properties

Henceforth, the generators are x and y. They are
arguments in the curly bracket operation when
nothing else is denoted.

As is well known,b*® the function z defined by

e = e, z=f(x,)) a7

is a Lie function of x and y. By means of the inverted
equation exp (—z) = exp (—y) exp (—x), we obtain
the symmetry property

z=[f(x,y) = —f(=y, =%). (18)
If we make the decomposition
z=S+ A, S ODD DEGREE, A EVEN DEGREE, (19)

ERIK ERIKSEN

the symmetry property (18) tells us that the odd part
is symmetric (with respect to permutation of the
arguments), while the even part is antisymmetric:

z=f(x,)) =8+ 4, f(y,x)=S—A4. (20
Next consider the equation
W3 — Vet — oTplet — exp (e‘“ze”)
from which we extract
Sy, x) = e"zé". @n

By means of a well-known commutator expansion,
we get in our notation

S(y; x) = {ze*},, (22
That is,
S — A = {Se"}g + {de™},,
{Ae® + D}y = {S(1 — ). (23)

This equation can be solved with respect to 4 by
multiplication from the right by (¢* + 1)71, followed
by curly bracket operation

A = —{Stanh (x/2)}g. (24a)
By permutation of x and y,
A = {Stanh (y/2)}5. (24b)

These are useful relations, by which A4 can easily be
obtained to one degree higher than S. They exhibit a
peculiar property, viz., that A can always be expressed
in such a way that (say) y is to the right in the curly
bracket.

Combining the last two equations, we get the
interesting relation

{S(tanh (x/2) + tanh (y/2))}g = 0. 25

The author has not been able to utilize this relation
to obtain a recursive solution for S.

B. Expansion of z = log (¢%") in a Commutator
Series

The idea of the present method is to utilize the
properties of Lie functions with respect to the curly
bracket operation. If the Lie function z is known as an
expansion in terms of basic ring elements (monomials),

[ o]
z=1z, (z,, TERMS OF DEGREE h),

n=1

(26)

then, by Eq. (14), z can be expressed as an explicit
commutator series,

z = 21(1/'1){2"}'

An expansion of the first type was, in fact, found by
Goldberg,” who attacked the problem from a combi-
natorial point of view. The present derivation of

(27
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Goldberg’s result is based on an integral representa-
tion, and is presented here because of its simplicity
and to exhibit some intermediate results.

If we imagine that z is written as & sum of mono-
mials, it is obvious that we can make a unique
decomposition,

z = xé(x, y) + yn(x, ), (28)

into terms x£(x, y) beginning with a power of x, and
terms y7(x, y) beginning with a power of y. From
Eq. (18), we get the symmetry transform #(x, y) =
&(—y, —x) by which z can be expressed by one of the
parts, say

z = x&(x, ) + y&(=y, —%). 29

The result of curly bracket operation is

(2} = 3 nz, = (xE(x. )} + (E=y, =0} (30)

Hence, if £(x, y) is known as a power series in x and
¥, z, may easily be expressed as a sum of repeated
commutator products.

Our starting point is the identity

1
2 =f0 ¢(z p) dp. 31

The function
gz, p) == D1+ 1~—p[? (32)

is of fundamental importance in the present paper, as
well as in Goldberg’s. Making use of the notation

b=e"—1, f=1—¢",
and introducing e* = e in the integral (31), we
obtain

z = (e’ — 1) L I+ (% — 1)1 — I dp

a=¢e"—1,

= (" — &) f [ + (" — e )1 — p)] ™ dp

=@+ p) j [l —a(p— 1) — Bpldp.  (33)

From this result we select terms beginning with a
power of x:

xE(x, ) = a f U= a(p— 1) — BpI™ dp (34)

1 )
=a) dp zola(p — 1) + BpI"

1
- f dpS (p — 1y pa"Ba® - (a v p)'m,
(35)
T=8+5+", co=s5+5§5+""".

The symbol a v 8 means a if m is odd, and § if m is
even. The sum is taken over all positive integer values
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of m and s;, such that the possible terms in the sum are
a%, 031532’ a’lﬂ’ﬂa‘s, ‘e

with the exponents running independently over all
positive integers.

From Eq. (35) we could proceed by first performing
the integration. This would result in an expansion in
powers of a and §:

x&(x,y) = 2 (—1)'B(r, 0 + 1)a"1f*a"- - - (a Vv f)'™
(36)
The function B is the Beta function:
1
B(u, 0) = B(v, u) = f (1 — pytdp
0

= I'(W)'@)/T(u + v).

This and other expansions can be made by starting
from Eq. (34) or Eq. (35). However, we shall proceed
along the following lines. In Eq. (35) we sum over
S15 89, ",8,, keeping m constant. Then, by the
symmetry property

g(=y,1 —p) = —g(,p),

the result can be presented as

(37

0 1
xé(x, ,V) = z:l 0 dp pm'(p - 1)m"g(x, P)g(y, P)

x g(x,p) - [gx, PV g(y, p], (38)

where m’ = [m/2]and m" = [(m — 1)/2]. The number
of g functions is m.

For the sake of completeness we also give the
formula

0 1
yi(,y) =3 | dp p™(p = D™ 8y, P)(x, p)

x gy, p) - [y, PV g(x, pl, (39)

which is obtained from Eq. (38) by a symmetry
transform.

Following Goldberg,” to whom we refer for further
details, we introduce the polynomials G,(p), n =
1,2, -, defined by the generating function

g(x, p) = i;lcn(mx". (40)

Then, from (38) and (39) we obtain Goldberg’s
result:

x&‘(x,y) = 2 Co(S15 82,00+, Sm)XoLyExss o <« (x v p)em,
C3))
<., Sm)yslxsgyaa e (y v x)Sm,

(42)

}’77(3"}’) = ZCU(SI, S2’ *
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cw(sl » 82, %% % sm)

= (_1)ﬂ+1c"(s1, Sgy "%y Sm)
- f dp p™ (@ — ™G, (DG (0) - G, (P),

n=s 4S8+ +s,. 43)
The summation is over all positive integer values of m
and s,.

Now, the sum of (41) and (42) has the extremely
well-hidden property of being a Lie function, the
property which can be made explicit by the curly
bracket operator:

(s} = 31z = (a5 ) + (om0}

From the definition of the curly bracket operator it is
obvious that terms like {x®1y*-- -}, s, > 1, are zero.
Thus, from Eq. (41)

{xé(x’ y)} =X + z c:c(l, s2’ trey, Sm)
m>1
X {xyszxss. .o (x \ y)sm}‘
By means of the symmetry property (29), our result
may be expressed as

z=x+y+ {xp(x, )} + {ye(—y, —x)}, (44)

‘P(x,y) = zb(rl’ Fgy®*- ,rm)})rl-x’"l e (y v x)rm’
(45)
where the coefficients are given by

m —1
b(ry, 1z, )rm) = (1 + _eri) el ry, 19,005 1,)
=
(46)
and the sum is taken over all positive integer values of
mand r;.

It should be emphasized that an expansion in terms
of commutators may be expressed in an infinite number
of ways. This is due to the linear dependence of the
commutators, see Eqs. (12, a—e). For instance, we
know from Eqs. (24) that the antisymmetric part
A of z can always be expressed as the curly bracket of
a function whose last factor is x (or y). The expansion
which is given above has a supernumerary number of
higher-order commutators. It seems rather difficult to
obtain an explicit expansion such that z,, is expressed as
a curly bracket operating on the fewest possible number
of basic ring elements. To sixth order we have obtained
the results:

n=x+y, z, = ¥H{xy},
zg = @)Xy — )} 7= -G},
zs = (73a){xy(x® — 2xy + 6xyx — 6yxy
+ 2% — ),
zg = (tdo){xy(x® — 2x% + 6xyx — xp® + 2%x)y}.
47
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C. A Recursive Solution

Various recursive solutions may be written down.
The following one is relatively simple, and well
adapted for practical use.

We start with the identity

(€Y + ez = (e — e )z coth (z/2), (48)

which is easily shown to be true by multiplication
with e” from the left. As usual we consider x and y as
arguments and z as a function of them. The curly
bracket operation gives the result

{2 +y — %)z} = {(x + y)z coth (z/2)},
which is true due to the fact that terms starting with
x" or y*, n > 1, are annihilated by the curly bracket
operator. With the notation u =x+ y, v =x — y,
the result reads

{z} = ¥z} + {u(z/2) coth (z/2)}.

That is, we have a recursive solution,

nz, = Hvz,} + {ul(z/2) coth (z/2)],_1}.
(50)

The index n — 1 denotes the (n — 1)th-degree part
of the term. We can take advantage of Eq. (7), by
which any of the Lie functions z; may be considered
as an independent argument in the curly bracket
operation. For instance,

(49)

iy =u,

{vz'n—l} = {vz'n—l}z,,_l = [U, zn—l]'
In the usual commutator notation the first recurrence
relations read:
zl =u,

2z, = }v, z,],

323 = %[U, Z2]’

424 = %[D, Zﬂ] + (‘112')[[14, 22], 21],

525 = }[v, z,] + @DI[w, 23], 221 + ), z3), z,).

(5D
D. Expansion in Powers of y

We shall derive a recurrence relation which gives
Z as a commutator series

z=zgtzZy+  t Zm+ (52)

of increasing degree (n) with respect to y. The function
2, is obviously a Lie function for all n, and z, is the
element x. By the symmetry property, z = f(x, y) =
—f(—y, —Xx), the expansion above can easily be
translated into one of increasing powers of x.

If we let the parameter ¢ be attached to the generator
¥, z becomes a function of ¢,

e’ = e,

(33)
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and Eq. (52) becomes an expansion in powers of 7,
We shall obtain an expression for the derivative Z
with respect to 1.

In general one has the expansion

Y = 6% L e Aw(e®” — 1)/W)so.e

+ TERMS OF HIGHER DEGREE,
which gives the formula

dev[dt = e [i(e® — 1)[w}y. (54)

We take the derivative of Eq. (53) with respect to ¢,
and multiply from the left by ¢~* The result is the
equation

{#e* — Dfz};, =y,
which may be solved with respect to Z:

Z={yz(e® — 1)}, = {yz(e* — 1)71}.
We put ¢ = 1 and get

(55)

The expression z(e* — 1)~ is related in a simple way
to the function &(x, y) [and to the function #(x, y)]
defined by Eq. (29). If we write z in the form

z = ("’ — 1)(ef — 1)1z
= (¢° — De¥(e* — 1)z + (e¥ — 1)(e* — 1)1z,
we find the relation
(& — 1)z = e7¥x(e® — 1) 2¢(x, y).
That is

inz((n, = {yz(e* — 1)}

r=1

(56)

Zﬂm; = {yx(e” — 1)¥(x, y)}, 57

which gives a recurrence relation of formally simple
structure,

nZiy = {yy(e” - 1)_15()‘:’}")(1;—1)}' (58)

The main difficulty in application is, of course, to
select the term &(x, ¥)(,_y) from z(,_,.
The first step goes as follows:

Zigy = X, i.e., 5(0) = 1,

Zay = {yx(e® — Y} = y + él(ann Diyx"} (59)

(B, BERNOULLI NUMBER),

For the next step, consider a term like {yx"},n > 0,
The term starting with p is yx", and the term starting
with a power of x is

{yx"} — yx" = —-kéx{ yx"F)xE (60)
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Hence,
xE(x, Yy = {px(e* — D7} — yx(e* — D7, (61)
E(x, Yy = — 2 :l(Bn/n!){yx‘""‘}x"‘l, (62)
2y = Hyx(e® — D7EX, Y} (63)

We shall not proceed any further with the iteration
process. It should be pointed out that Eq. (57) can be
solved by one of the previous results, for instance,

by Eq. (34),
X = 07509) = [ dplt — atp — 1) = po1™

(a=e~—1, f=1—¢").

This gives the equation

0 1
Z:I”Zm) =1, dp{yl1 —a(p — 1) — ppI"'} (64

from which z, may be obtained by the expansion
technique which we have previously used. The result
is essentially of the same type as previous results in
the present paper.

APPENDIX: PROOF OF THE IDENTITIES (5)-(8)

Because of the linearity property (1d) in the defini-
tion of the curly bracket operator, it is sufficient to
prove the identities for the case that f, g, and 4 are
monomials. Further, we note that the identities are
trivially true when g is of degree zero, ie., G =
{g} = 0. Thus we let f, g, and % be the monomials:

= XXy "X, (DEGREE > 0),
(DEGREE > 0),
{DEGREE > 0),

8= XXyttt Xy
ho= X%, X,

ho=hy (DEGREE ZERO).

1. Proof of Eq. (5): {fg} = {Fg}y: From Eq. (4),
we have (as a matter of notation)

(g} = {xxp -+ - XXX 0 Xy}
=[-[Fx]- 5 xl
= {Fx;" " x}p = {Fglp.

2. Proof of Eq. (6): {fG}= [F, G]: The equation is
true when G is of first degree, that is when G =
{x;} = x,. In that case we have from Eq. (5)

U = [F, x)] = {Fx;}p.

The general proof goes by induction, assuming the
equation to be true when G is of nth degree. We put
G = [G,, x,,] and get
G} = {fGoxy} — {fXnG}

= {fGn}xm - xm{fGn} - [{fxm}’ Gn]

= [F, G,]x,, — XnulF, G,] — ([F, xm], Gn]

= [F, G., xm}} = [F, Gn+1]~ Q.E.D.

or
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3. Proof of Eq.(7): {fGh} = {fGh}g: From Egs. (6)
and (1c),
{fG} = [F, G] = [{f}, G] = {fG}q.

Thus, Eq. (7) is true when # is of degree zero. Now,
let 4 be a monomial of positive degree. Then, from
the last equation, we get by repeated commutator
multiplication with the factors in A,

[ [fG} x,1, x ], -+ -5 %]
=[-- [[{fG}Ga xp]’ xa]: ttt, xr]'

{fGh} = {fGh}y. QE.D.
4. Proof of Eq. (8): {G,h} = n{G,h}g,: We first

That is
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prove the equation {G,} = nG,, which is obviously
true for n = 1. The proof is carried out by induction.
We assume the equation to be true for G,,, and express
G .1 as the commutator G, ,; = [G,,, x,,]. The result

is
{Gra} = {Gpxp} — {xGp}
= {G}xm — Xu{G,} — {xnGila,
= nG.x,, — X,nG, — x,G, + G, x,,
=@+ D[G,, xp] = (n + 1)Gpyy.
Thus, Eq. (8) is true when 4 is of degree zero. The
generalization to the case that h is a monomial of

positive degree is obvious in light of the technique
used in the proof of Eq. (7) above.
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demonstrate how this function may be used to construct the Faddeev three-body kernel. In the process
the apparent paradox of the indefiniteness of the Coulomb 7 matrix on the energy shell is resolved.

The question of off-shell unitarity is discussed.

I. INTRODUCTION

Recent work! on the three-particle problem has
used the off-energy-shell scattering amplitudes of the
two-body subsystems in the construction of the
resolvent for the three-particle system. It is reasonable,
therefore, to expect that the Coulomb Green’s
function can supply the necessary two-body informa-
tion for the solution of atomic three-body problems.

It is easy to obtain the Coulomb scattering ampli-
tude from the Coulomb Green’s function in all the
necessary generality. Unfortunately, the Coulomb
scattering amplitude is not a very simple function in a
two-body Hilbert space, with the result that applica-
tion in a three-body Hilbert space involves some
mathematical difficulty. The primary problem associ-
ated with the off-energy-shell Coulomb 7T matrix is
that, in the momentum representation, it has a
regular singularity of imaginary exponent lying
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1 For example, L. D. Faddeev, Zh. Ehsp. Teor. Phys. 39, 1459
(1960) [Sov. Phys.—JETP 12, 1014 (1961)]. :

squarely on the energy shell, thus making it impossible
to define for ““physical” scattering.?
We can illustrate these comments by solving
G,T =GV
for the Coulomb T matrix, where G, is the free-
particle Green’s function, T the desired T matrix, G

is the Coulomb Green’s function, and ¥ the Coulomb
potential.® For an attractive potential the result is
(ks | T(K®) [y

& 1

2772 Ikg - kllz

4iy ; 1
X |1 =— | dtt?®* —+—|, (1
[ e —1 fc., el — 1) — 4t:l 0

where
9 2 _ E(E — k2
v=ﬁ"i, k® = 2mE, €=(k 2k1)(k 22).
k? k* |ky — Kol

E is the energy appearing in the Green’s function.

2 W. F. Ford, Phys. Rev. 133, B1616 (1964); J. Math. Phys. 7,
626 (1966).

3 L. Hostler, J. Math. Phys. 5, 591 (1964); J. Schwinger, J. Math.
Phys. 5, 1606 (1964).
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t plane

'i

Fic. 1. Analytic configuration of the integrand in Eq. (1).

The integration contour C, starts at 7 = 1, slightly
above the real axis. It moves to the origin and around
the origin once in the positive sense. It finally moves
to ¢ = 1, slightly below the real axis. C, can be de-
formed as shown in Fig. 1, into the unit circle ex-
cluding the one pole of the integrand lying within
the unit circle.

The integrand in Eq. (1) can be factored into two
simple poles, one lying inside the unit circle and the
other outside:

(kq] T(K?) |ky)
LA S
27° |k2 - k1|2

4iy 1 £
X [1 Tl 1 fc.,dt (t— t)(t — t_)}’ &)

where 1, = t7 = [(1 — &} — 1)/[(1 + &)} + 1].

If we take 7, to lie on the principal sheet with
argt, = 0, t_lies on the lower sheet with argz_ = —6.
If we denote by C, the contour taken around the unit
circle in the positive sense, and by C, the contour
about 7, in the negative sense, we have by Cauchy’s
theorem

( f dt — f dt — f dt) e 3)

Co Cy Cq (=)t —1 )

The energy-shell condition is given by
ki=k*=ki, (4)

for which e and therefore 7, vanishes. The energy
shell can be approached in two ways. If £, lies on the
principal sheet in the ¢ plane, the value of the Coulomb
T matrix approaches the value at the energy shell
discontinuously as 7, squeezes out of the contour C,
and moves to the branch point. If, on the other hand,
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t. does not lie on the principal sheet, there is no
contribution at all from C, and the value at the energy
shell is approached continuously. On shell, then, we
take only contributions from C; .

For small € the integrand in Eq. (1) can be expanded
in a series, uniformly convergent on the unit circle.
Thus the term in the square bracket in Eq. (1) becomes

r —iv—1 _ 21
4iy f dtt [1 _ € t):l
e — 1 Joy 4 4t

2ni

e
—tv—1
27rv — 1 f dtt

X [1 4 }e(t — 24+t + O(e¥)]
= }e(1 + A7 + O(). (5)

We have the result that the value of the Coulomb
T matrix in the momentum representation is zero on
the energy shell. This result is quite useful in the three-
particle Hilbert space but should not be interpreted
as a physical result in the two-particle Hilbert space.
This apparent paradox is resolved by observing that
momentum eigenstates are not acceptable asymptotic
scattering states for the Coulomb potential. A brief
look at time-dependent scattering theory will make
this clear.

In the remainder of this paper we shall show how
the physical scattering amplitude is obtained from
formal scattering theory using the momentum
representative of T given by Eq. (1). This will be
followed by a derivation of the off-shell unitarity
condition for T. Finally, we shall examine the series
for the amplitude for elastic scattering of a particle
by a bound two-particle system developed in terms
of the Faddeev three-body kernel. Taking a repre-
sentative term of this series we use the results of the
off-shell unitarity condition to express this term in the
proper asymptotic representation.

1+

=1+

1I. COULOMB SCATTERING

According to formal scattering theory, the physical
scattering amplitude is obtained by letting the energy
variable in the 7 matrix approach the real axis from
above. In our case, where the T matrix is given by
Eq. (1), this would correspond to giving k% a vanish-
ingly small imaginary part. From this point of view
we should be able to obtain the physical scattering
amplitude from Eq. (1) by expanding (k,| T(k?) |k,)
about the energy shell and taking the limit as k% and
k2 approach k2 continuously.

Unfortunately, this approach is not possible in the
case of the Coulomb T matrix because as we have
seen, it does not approach its value on the energy
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shell continuously. For ¢, small but not zero, we find
that the path of integration over the parameter ¢ along
C, can be deformed into an integral along the con-
tours C; and C,. The contribution from C, is just the
residue at £ = ¢, . For e sufficiently small we have

(6)

I, ~ %e,
and
(ky| T(K%) |Ky)
_ e 1 e 1 e_2 1

- - - ¥4
2tk — k221 + 9% 7 |k — kol

1 l:(k2 — kD(k® — k3)
e — 1| 4kPIk, — kf?

—tv
X ] + 0(&®. (D)

Clearly, the second term in this equation approaches
no limit continuously as k? and k3 are made to ap-
proach k? for v real.?

This difficulty can be easily straightened out by
taking a look at time-dependent scattering theory.
We will not develop all the results quoted below but
we will refer the reader to a standard treatment of
time-dependent scattering theory whenever the result
is not obvious.

The amplitude for scattering of a particle from
an asymptotic é-function-normalized initial state to an
asymptotic é-function-normalized finalstate is given by

Sy = lim (@] U(t, 0)U(0, —1) |Dy), ®

=0
where the asymptotic state vectors are time-independ-
ent, and U(¢, 0) and U(0, —¢) are unitary operators
which in the limit approach the (not’ necessarily
unitary) Moller operators. If we express the asymp-
totic state as a wave packet composed of momentum
components clustering about the value k, ,,

195 = [k | 2,91, ©®)
we can usually replace the asymptotic states [®;) and
|®,) by momentum eigenstates. The physical scattering
amplitude is then accurately given by

Sy, = tlim k| U1, 0)UO, —1) [ky).  (10)

In order that Eq. (10) may be substituted for Eq.
(8) we require that (k | ®, ;) be (1) sharply peaked
about the values k, and k,, respectively, and (2)
(k| ®; ;) be well-behaved.* The requirement that
(k| @, ;) be well-behaved arises from the requirement
that if (10) is to replace (8) it is necessary that terms

4See S. S. Schweber, An Introduction to Relativistic Quantum
Field Theory (Row, Peterson, Evanston, Illinois, 1961), especially
Sec. 11c.
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like
lim | dk exp [+i(E, — E)tl(y, | )k | ),

= o
E,—E. <0 (11)
vanish by the Riemann-Lebesgue lemma. The states
|w,) are bound eigenstates of the system. There are
similar terms arising from the continuum states which
must also vanish but it is sufficient for the purpose of
this argument to consider only the terms like (11).

If we are considering a Coulomb-scattering problem
we surely may expect to find asymptotic states which
are strongly peaked about some momentum eigen-
state. On the other hand, the momentum representa-
tive of the asymptotic Coulomb state is not at all
well-behaved.

A glance at the asymptotic Coulomb modified
plane-wave states will make this clear. These states are
obtained from a result of Guth and Mullin® which
gives the momentum representation of the Coulomb
scattering state:

k' ] ’/’k)j
= 2m) f dr e, F\(Fiy, 1, i(kr — k - 1))

= lim 8(k' — k)(1 + in){[k"® + ( — ik)*)/n"}"

n—0
— (2172)—1{[,(/2 + (,'7 — ik)2]1——4'v}—1
x {20k[[n* + (k' — K)*|"*"}. (12)

The last term is easily interpreted as a diverging
spherical wave times the physical Coulomb scattering
amplitude. The first term is the desired Coulomb
modified plane wave for which the asymptotic region
is defined by k' ~ k. Approaching no definite limit
asymptotically and with an infinite phase, the asymp-
totic Coulomb state does not qualify as a test function
which would allow (11) to vanish by the Riemann-
Lebesgue lemma.

In order for these asymptotic Coulomb states to be
suitable for use in Eq. (8), they must have d-function
normalization. The normalization constants are easily
determined to within a phase factor by

NN* J AKS(K — k(K — k)(1 + in)(1 — iv)

x {[k"* + (1 — ik)"Y*}*{[K" + (g — ik))n"} ™
= 6(1(1 - kz), (13)
for which a possible solution is
N=(10+ (14)
Thus, the asymptotic Coulomb-scattering states
appearing in Eq. (8) are
& | Dy, )" = 8(ki — k){[ki* + (n — ik)*) "},
(k3| D)™ = Ok, — k){[k:* + ( — iko)*Y"} ™. (15)
5 E. Guth and C. J. Mullin, Phys. Rev. 83, 667 (1951).
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The + superscripts are to signify that these states
correspond respectively to a diverging or converging
spherical part in the total scattering eigenstate.

We now take the momentum representative of the
Coulomb-scattering amplitude in the region of the
energy shell and allow it to approach the unitary axis
from above. From Eq. (7),

(k3| U(o0, 0)U(0, — o) [ky)

2 2 2
- -217:'6("—1 - l‘—’;) (— e—)——l——-z
2m 2m 27/ ik; — kg
y [(k';‘ + (= KK+ (n — ik‘)z)]-“
4k® [ky — ksl®
x e ™| + iv)|® + 0(e).
Thus, from Egs. (8), (15), and (16),

(16)

Supw, = f dk, dk;, (b, | k)

X (k3| U(o0, 0)U(0, — o0) [ki)k; | @y,)

— —2mis( X _ ﬁ)l— < ———1———}
2m 2mj| 27 |k, — Ko[**
x VBT 4 i) e, a7

The term in the curly brackets can be compared
with the Coulomb-scattering amplitude by multiplying
by —4x’m and we get exact agreement. The infinite
logarithmic phase factor can be thought of as belong-
ing to the normalization of the asymptotic Coulomb
states; hence it should be absorbed in N. The re-
maining factors are recognized as arising from the
normalization of the complete Coulomb-scattering
states. If Eq. (12) had the conventional normalization
they would not appear.

By displacing the energy from the real axis with a
positive imaginary part, and taking the Coulomb T
matrix in the proper asymptotic representation, we
have shown that the Coulomb 7 matrix yields the
correct Coulomb-scattering amplitude.

ITI. UNITARITY

The Coulomb T matrix given by Eq. (1) can be
derived from the following familiar equations

T(E) = V + VGy(E)T(E)

=V + VG(E)V. (18)
G(E), the Coulomb Green’s function, satisfies
G(E) = Go(E) + Go(E)VG(E)
= Go(E) + G(EYVG(E). (19)

799

Using Egs. (18) and (19) we can derive an off-shell
unitarity condition for T(E):

T(E + in) — T(E — in)
= V(G(E + in) — G(E — in)V
= 2in¥(l + G(E + in)Go(E + in)
X Go(E — in)(1 + VG(E — in)V
= T(E + in)(Go(E + in) — Gy(E — in)T(E — in),

(20
where

K'[ Go(E + in) ~ Go(E — in) k")
= —2mid[E — (K22m)ld(K’ — K"). (21)

The limit implied by E 4 in means that arg k == 0 or
, respectively. Combining Eqs. (20) and (21), and
taking matrix elements we have the result:

(k| T(K?) ky) — (ko T((—K)® |ky)
= —2mi f K’ (k| T(K?) |K) S[(k%/2m) — (k’*2m)]
x &'| T(—k)®) k). (22)

If we substitute Eq. (1) for (k,| T(k?) |k,), we see that
the & function on the right-hand side of Eq. (22)
requires that

(K = kDO — k%) _ (K — KK — k)
K |k, — K'|2 k2K — ky)®

=0. (23)

Under these conditions we find that

kel T Iy = — & — L
: v 2’“’"“1“‘2]2

27l

iv ¢ ;
x |1+ dtt™ 1| =0, (24
[ ezn _— 1 J;o-' :' ( )

so that the right-hand side of Eq. (22) vanishes identi-
cally. Thus, from the form of the off-shell scattering
amplitude in Eq. (2),

(k| T(K?) |ky) — (ko T((—K)®) (ko)
- _(i_ 1 4iy 1J' iy 1
270 |ky — Ko)2 ¥ — 1 € Joo (t—t)(t—1t)

‘+TZ4—”——1J P T
e~ — 1eJoo t—t)t—1t)

C, can now be deformed into the two contours C, and
C,. The contribution to the ¢ integral from C, can be
evaluated by expanding the integrand in a series
uniformly convergent within the unit circle as long as



_f 4yt 1 f
2 kg — kolP 2+ 1€ o

t——iv—l tiv—l
x { eZﬂv —1 +

! 1
14+ —t—(t+-=
—1][ ti+1( t)
P (_t__) (t+1)+...],
th+1 t

In any term of the series, say, the one with (r 4 17%)",
there is a symmetry between the positive and negative
powers of . That is, for every power ¢™ there occurs a
power ¢~™ with the same coefficient. For every term
proportional to

e~—2ﬂv

27¢

4iy ¢ dt iviEm 4ivy
>
BTV — 1 Jero —iv+m
there occurs one proportional to
4i’V e dt tiv—l—m _ 41"’
—27v 1 0 = .
e — 1) iv—m

for m, a positive or a negative integer. Thus the con-
tribution from the contour C; cancels term by term.
We are left with the result

et 1 I: 4iy 1 J‘ i
—_ ) dt ———— -~
28 |k, — k)P —leJo, (F—t)(t—1t)
4iy 1 e
—_— f——— 1 =0. (26
+ e —lejo, (t—1t)(t— t,)] (26)

Equation (25) tells us that there is no discontinuity in
the momentum representative of the off-energy-shell
Coulomb 7" matrix along the unitary axis. In particu-
lar, Eq. (26) shows that there is no discontinuity
arising from that contribution coming from the
contour C,.

It is difficult to see how Eq. (26) can be satisfied
identically for all points along the unitary axis unless
the contribution from C, vanishes identically. This
occurs if in some way we can continuously deform
the contour C, into the contour C; without passing
over a pole lying inside the unit circle and on the
principal sheet. If k% approaches the unitary axis in
such a way that the pole inside the unit circle moves
off the principal sheet, then C, can be deformed into
C, . We shall see an example of this in the next section.

IV. THREE-PARTICLE SYSTEMS

For a three-particle system, the amplitude for the
elastic scattering of particle 2 by a bound subsystem
composed of particles 1 and 3 can be iterated in
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terms of the Faddeev kernel as follows®:
T=T1+T3+TlGoT3+T3G0T1+' (27)

G, is the free-particle Green’s function operator for
three particles, and 7T; is the two particle 7" matrix for
scattering of particles 2 and 3, etc. If these particles
interact via the Coulomb potential, the momentum
representative of Eq. (27) can be written down, to
any order of iteration, in terms of Eq. (1). Consider,
for example, the first term:

(kykoKs| Ty [kikoks) = (Kas| Ty(kD) 1kis) 6(P, — P1)-
(28)
The notation is explained as follows: the vector k;, is
the momentum of particle i; kg3 is the relative
momentum of particles 2 and 3; p, is the momentum
of particle 1 relative to the center of mass of particles
2 and 3; k2 is notk, - k; but rather 2ugE — (u23/11)p5 5

oz = Myiy| (Mo + my),
oy = my(my + my)[(my + my + my),

and E is the energy of the three-particle system.

When dealing with three particles we have two
additional manifolds which describe the system just
as well as (kq3, p,). They are obtained by permutation
of the particles. We shall signify them by the obvious
notation (k;s, ps) and (kg , ps).

Unfortunately, the momentum representative of
Eq. (28) is not very useful. Again we must take inner
products of Eq. (18) with the correct asymptotic
scattering states in order to obtain a physically
interesting three-body scattering amplitude. If we
assume that the (1, 3) system is bound in the Bohr
energy level with 1 for the principal quantum number
in both the initial and final states, the asymptotic
wavefunctions are

(K3, P2 l P2¥100) = (815)1}5(1’2 — pp)/ (ks +

(29

12)2
(30)
where A2 = u,3¢? is the reciprocal Bohr radius.
For the first term in the three-particle elastic-scat-
tering amplitude we are lead to the integral

815 dk,,l dks,
12)2 f( + }'2
x 3(py — ) (kos| Ta(KD) |Ki), (31)
the trivial integrals over p, and p, having been carried

out. The integral over k;; also becomes trivial if we
use the identity

P — P =Ky —k

— [myf(mg + m))(p; — p2)-
(32)

¢ H. Ekstein, Phys. Rev. 101, 880 (1956); C. Lovelace, Phys.
Rev. 135, B1225 (1964).
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The next step is to express the Coulomb T matrix
given by Eq. (1) in terms of the three-body variables,
and in particular, the variables in the (kg , p;) mani-
fold. We have the identity

ko3 — k33 = —py + Pz — [maf/(my + my)l(py — pD)

= —p+ P2, (33)

the last equality resulting from the é function in (31).
Thus,

N
Ip: — pil®

fdt
1Jee

2
Koa| Ty(k2) |K}g) = — ——
(Kgs| Ty(ky) 1Kas) ot
t—ivl

el — 1) — 4t

4iy
X [1 - 27v :
e 1
where

], (34)

2 4
23€

2 °
ki

=

2
7, =

K2 = 2upsE — "—(k - (35)
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m, pz
20
my + m;

E = —([2u3) + (P3/20),
and where we have used the identity

(36)

P = Ky — [my/(m3 + my)p,
in the equation for k2.
€, is given by
€ = (ki — ki)(ki — ki
ki |p: — pil
=(@§w;+mmﬁ+ﬂ)
Ha Klp—pal®
In the second equality we have used the identity
E — (2u) 7Pt — (2pta5) k33
=E — (Qu)"'p3 — (Qpa) k5

(37

= —(2u) (X + k3. (38)
The integral (31) can now be put in the form
_ &8 dks 1
2 7 ) (kg + (ks + 297 Ipe — pal?
x [1 — _din f ait— ] 39
™M — 1Je, (1 —1t)? — 4t

where kg, —Kkgy + [m,y/(ms + m;)1(p. — p3).

As shown in the Appendix, the integral over kg,
can be made into a contour integral by extending the
range of integration from 0 < k3 < 0 to — o0 <
ks, < co. By this device we convert the integral along
the positive real axis into an integral around the
various singularities of the integrand lying in the
upper half-plane.
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The singularities contributing to the integral are of
the following possible types: (1) poles occurring in
the asymptotic wavefunctions at kj; = id and k;, =
il; (2) if the potential in T, is attractive, poles arise
from each of the possible bound states of particles
2 and 3.

In case a branch point should occur at k, = 0, we
would have to include an integral of the discontinuity
along the cut. We saw that the unitarity condition
gave us zero for this discontinuity. It is instructive,
however, to see just how the integral representation
of Eq. (2) eliminates the contribution to the T matrix
arising from the contour C, when k,; lies on the
unitary axis.

The pole in the ? integrand, from which we get the
contour C,, we have called 7, :

t,=1"=[(1 +e)f — 1)/[1 + &) + 1. (40)
Thus,

[(1+ )t — 1[0 + ) — 13}
It = { ; . }
[+ et + 10[1 + ) +1]
- [I(l + eoil? +1—2Re(l + el)*]* 1)
(1 4+ e*lP+ 1 +2Re(d +¢)?
so that [£,| < 1 for Re (1 + &) > 0 and
argt.,
=arg[(1 + &) — 1] —arg [(1 + &) + 1]
- Im(1 + &)
n
{Re [(1 + &)t — 111 + [Im (1 + i1}
- Im (1 + )
({Re[(1 + &)? + 1]} + [Im (1 + &)}
(42)

Clearly,

argt, >0,

(m(1+eP>0 and Re(1+ )t >0 (43a)
{Im (1 4+ e) <0 and Re(l + ) <0, (43b)

argt, <0,

'{Im(1+<1)%>0 and Re(l + )} <0

if

(43c)
Im(1+¢)*<0 and Re(l + ¢)} > 0. (43d)

We shall assume that when E has an infihitesimal
positive imaginary part, #, lies on the principal sheet
of the ¢ Riemann surface. As k;, moves to + oo, we
find that k, and therefore ¢, become infinite. argk,
then equals 477 — 6, where d is an infinitesimal positive
angle. Under the condition that ks, is infinite, Eq. (37)
shows us that (1 + €)? is proportional to k,. If we
call the position k3 = + oo point 1, we see that

if
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t plone

ks, plone

®

0]

Fi1G. 2. Trajectory of ¢, as ks, is continued into the upper half-plane.
The trajectory of s is obtained from r_ = #71,

conditions (43a) are met and point 1 maps into the
point shown in Fig. 2.

As kg, moves from point 1 along a semicircle in
the upper half-plane, argk, quickly increases past
47, with the result that condition (43a) goes over into
condition (43c). At this point £, and 7_ change places.
We now have 7, lying outside the unit circle and
t_ inside the unit circle. We denote this point by 2.
As we move along the semicircle in the upper kg, plane
we come to a point at which arg k; = = 4 8, which
we call point 3. At point 3 we obtain conditions (43b)
where ¢#_ moves once more onto the lower sheet but
remains within the unit circle. As we move down the
cut, around the branch point and up the other side
of the cut, z_ remains inside the unit circle without
once crossing the contour C;. We have taken the
discontinuity across the unitary cut to be the difference
between the T matrix evaluated at a point on the
physical sheet with argk, = 6, and the T matrix
evaluated at a point just below on the unphysical
sheet with arg k, = = + 4. This demonstrates how
we are able to eliminate the contribution from C,
when k2 lies on the unitary axis in accordance with
Eq. (26).
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Turning to the pole singularities in the upper ks,
plane, we consider first those coming from kg, = il
and kg, = iA. From Eq. (37) we see that we are now
interested in the region around €, = 0. Using Eq. (5)
in (39) we get

_ e 8).5(:23) 1
47® 7* \pgt/ |y — pil*
J‘ dk,, 1
X
(k5 + )kt + A9 i + 2

Equations (32) and (35) allow us to integrate this
expression by the Feynman method. One must be
careful to take only the residues at k2, + 42 = 0 and
kg + 22 =0, but avoid the poles at k2 + A2 = 0.
The latter belong to-the set of poles coming from the
Coulomb bound states.

The poles at the bound states occur whenever iy is
a positive integer, say 7. In this case the branch point
in the ¢ integrand becomes a pole of order n. We
deform the contour C, continuously into a small circle
about the origin. Thus, we have the simple result for
the ¢ integration:

(44)

f dtt™" ———1——
Co (t—t)(t—1t)

__2mi (3 1
(n— 1)‘(at) —) lt=0
= th = i” (45)

If, in addition, we use the representation

L "—"’(—i+2( H* 2;”1"2), (46)

v

™ — 1 2mi
the contribution to (39) coming from the bound-
state poles is

e 8).5 J‘ k2
dQ dk 3L
4n? m e f . k2 + /12)3(k + 2%
2 8(”’1) (=Dre™ it — 1"
Vo -t
k31

dS)
f fc Tk 4 ADkE + AD°

i

n* kf + (lz/n Vi, —t_ “7
C, is taken to be a small circle in the kg plane
enclosing the pole at k} + A2/n? = 0.

By taking the sum of (44) and (47) we are able to
express (31) in terms of more or less elementary
integrals. It does not appear to be practical to try to
evaluate these integrals in general. However, they have

X k

16).5 2
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been done for particular systems where simplifying
approximations can be made. The same methods can
be used to simplify the higher-order terms in the
iteration series (27); the extension is fairly obvious.

Coulomb effects in three-body systems have been
studied by Schulman? where two of the particles
interact via a Coulomb potential, but the remaining
pair of interactions are of short range. This approach
does not seem to allow itself to be generalized to
systems of three charged particles.

It is these systems of three charged particles that
we hope to be able to handle through the results of
this paper. In particular we have studied systems
such as electron-hydrogen scattering and positron—
hydrogen scattering. In either case we can assign
m, and m, the values of the electron mass, and mj,
the proton mass. In expressions such as Eqs. (32),
(33), and (35) we can neglect terms of order m,/m,
and m,/mg to a high degree of accuracy. The resulting
integrals can be easily evaluated and can be expected to
realistically represent the scattering amplitude within
the limitations imposed by truncating the series (27).

Because the evaluation of the integrals (44) and
(47) is most easily done when they are restricted to
particular physical systems, we will reserve a discussion
of these results for a more appropriate journal.

V. CONCLUSION

In spite of the mathematical complexity of the
momentum representation of the off-shell Coulomb
T matrix, we have shown how it is useful in calculating
physical scattering amplitudes. For two-body scat-
tering we obtain the physical amplitude by using the
correct representation of the scattering states. The
well-known on-shell singularities of the momentum
representation do not arise. Again in the case of
three-body scattering amplitudes, the proper asymp-
totic states and the unitarity condition allows a
simplification of the off-shell two-body T matrix.

ACKNOWLEDGMENT

The author gratefully acknowledges the helpful
comments and discussions contributed by Dr. J. D.
Garcia during the course of this work.

7 L. Schulman, Phys. Rev, 156, 1129 (1967).

803

APPENDIX

Consider an integral of the following form:
Jr s~ at

27 1 o
=f quf d(cos 0)f k* dk f(k® 4 a® — 2ka cos 6).
(i} ~1 0
(A1)

We change the variables of integration k, cos 8, to
new variables k" and cos 6”:

k= —k', cosf = —cosb’ (A2)

Thus,

f dk f([k — af®) = L "ds : d(cos 6"

x f KK f(K + a® — 2k'a cos )

0

- fo " i f_lld(cos 0

0
X f K2 dk f(k'® + a® — 2K'a cos 0). (A3)

Averaging Eqs. (Al) and (A2), and dropping the
primes on the dummy variables k" and cos 6’ we get

fﬂﬂm—ﬂ%

1 2r 1 0 . .
-2 L dé Ld(cos 0) f_mk dk f(Ik — a]’). (Ad)

This result can be generalized to integrands in-
volving more than one vector. For example, the range
of integration of integrands of the form

g(k — al*; [k — bJ?)

can be expanded from0 < k < wto —0 <k < ®
in a way similar to the method just given. In addition
to the changes of variable (A2) we must change the
azimuthal angle as follows: ¢ = ¢’ + =, where both
¢ and ¢ have the range 0 to 2=
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Nonexistence of Finite-Energy Stationary Quantum States
in Nonlinear Field Theories*
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A simple proof is given which precludes the existence of any finite-energy stationary quantum-state
solution to the Schrodinger equation for a physically interesting Lorentz-covariant self-interacting

scalar theory.

Supplemented with suitably smooth prescribed ini-

tial data, the nonlinear c-number field equation

6 — V20 + m*0 + 1gp |0|"%60 =0 1)
for a scalar function 6 = 6(x,¢) (either complex
valued or real valued and C? for x and all ¢ > 0) has
a global solution if 2 < p < 6 with m® and g non-
negative constant parameters.! However, it has been
shown that the classical field equation (1) has no
global solutions which are localized in space and
periodic in time with g > 0 and p > 2.2 Does the
nonexistence of localized periodic solutions to Eq. (1)
evince a corresponding nonexistence in the quantum
field theory? That is, are stationary quantum states
of finite energy generally precluded in self-interacting
scalar field theories based on a Lagrangian density

C=[0" = IVO* — m* |0 — gl (2)
of the form associated with Eq. (1)? Our purpose is
to report a proof which shows that no finite-energy
stationary quantum states exist for model theories
based on a Lagrangian density of the form (2) with
g >0 and p > 2; hence, the vacuum and all other
stationary states have an energy which is patently
infinite.

To prove the nonexistence of any finite-energy
stationary quantum state for a theory based on (2)
with g >0 and p > 2, let the 6 (boson) field be
diagonalized for all values of x at a fixed instant of
time and consider the energy functionality?

E=E{¥) = f PEHPD() / f WEDEO) ()
associated with a state functional ¥ = ¥'[0], where

H= f (n*m + VO* . V0 + m?6%0 + g(6%0)”'>)d’x,

I:,.,.* S ..A_’ h ._6_ ,
2 80*

‘1 for 6 real 1

N =

2 for 6 complex

T= —i—h—

T G
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1 K. Jérgens, Z. Math. 77, 295 (1961).

2 G. Rosen, J. Math. Phys. 7, 2066 (1966).

3 G. Rosen, Phys. Rev. Letters 16, 704 (1966).

is the Hamiltonian operator derived from (2) and
D(0) is a (real nonnegative displacement-invariant)
measure for the functional integrations over all fields
0 = 0(x). Both ¥ and D(6) are defined to within
normalization factors independent of 8; it is assumed
that the numerator and denominator in (3) exist as
finite quantities, E being finite for the ¥’s under
consideration here. The energy functionality (3) is
stationary with respect to variations in ¥ about a
physical state functional, by virtue of the Schrodinger
equation. In particular, for a variation in ¥ induced
by a transformation of the field 6 — 8,

¥ = wio] ¥ = P,

T = wie), )
we have
E(¥} = f Pro1HE[6]D(6) / f (612 D(6)
= f S+ aT01D6) / f (P01 D)
- f PAYD(6) / f (P2 D), (6)

provided that D(6) and D(H) only differ in normaliza-
tion and where H is the Hamiltonian operator (4)
expressed in terms of 6 and the associated #. It
follows that

E(P) — E(¥) = f V(A — HYPD(6) / f |2 D(B)

= (H — H) @)

vanishes to first order with respect to transformations
of the field & — 0, provided that D(6) and D(6) only
differ in normalization. Two such transformations
of the field are of special importance.*

1. Dilatation induced: 6(x) = 6(Ax), #(x) = 27 (Ax),
A real and positive.

We find

= f (Br*m + IV6* . VO
F A mR0%0 + A3g(0*0))d’x  (8)

4 Such transformations have also been considered by H. Schiff,
Proc. Roy. Soc. (London) A269, 277 (1962).
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by changing the dummy integration variable (2x) — x.
Hence, since (7) vanishes to first order about 4 = 1,

@A)y = f Gr*m — VO* . VO

— 3m%*0 — 3g(6*6)"Dd’ = 0. (9)

2. Scale induced: O(x) = £6(x), #(x) = &ln(x), &
real and positive.
We find

a= f (E2n*m + EV6*. V0
+ E2m%0*0 + £7g(6%0)"%)d%k, (10)

and hence
@H)[08),y = f (—2m*m + 2V0* . VO + 2m%6*0
+ pa(0*6P™d* = 0. (1)

JOURNAL OF MATHEMATICAL PHYSICS
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Now by adding £ of Eq. (9) to Eq. (11), we obtain
f #V6* - Vo + (p — 2g(0*0)d’x = 0, (12)

a relation which implies the necessary condition p < 2
for existence of a finite-energy stationary state with
g > 0. Therefore, all stationary states have an
infinite energy in a quantum field theory with g > 0
and p > 2. Conditions for a local essentially nonlinear
scalar field theory [based on a Lorentz-invariant
Lagrangian density more general in form than (2)]
to admit stationary quantum states have been reported
elsewhere.®

5 G. Rosen, Phys. Rev. 160, 1278 (1967); 165, 1934 (1968); 167,
1395 (1968).
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Improved Method for Quantum-Mechanical Three-Body Problem. III.
Use of Sturmian Functions
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We extend previous work on the ground state of the symmetric three-body problem by expanding the
two-body orbitals g(k, «) or @(k, ») (one and three dimensions, respectively) in a set of Sturmian func-
tions. This retains the advantages of the previous expansions, and gains several new ones as well. Among
these are a simplification of the equations and a transparent way of estimating convergence. The one-
dimensional problem is reduced to an infinite set of coupled integral equations in one variable and the
three-dimensional one to a doubly infinite set. As an application and a test of convergence we have solved
the one-dimensional equations numerically in successive truncations. We find that keeping only the
first term of the set yields results typically accurate to a fraction of a percent.

L. INTRODUCTION

In previous papers by one of us,~* we have treated
the quantum-mechanical problem of three identical
particles bound by identical interparticle potentials.
In the first of these we pointed out the advantages of
writing the wavefunction in a special way, as a sum of
three parts or, as we called them, “two-body orbitals,”
one part for each interparticle distance. This idea
proved fruitful for the bound-state problem and it
was also applied by Mitra,® Fadeev,® and others to

* Part of this research was in partial fulfiliment of the requirement
for the Ph.D. degree in physics at Northeastern University.
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3 L. Eyges, Phys. Rev. 121, 1744 (1961).

4 L. Eyges, J. Math. Phys. 6, 1320 (1965).

5 A. N. Mitra, Nucl. Phys. 32, 529 (1962).

8 L. D. Fadeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. Phys.—
JETP 12, 1014 (1961)]; Dokl. Akad. Nauk SSSR 138, 561 (1961);
145, 301 (1962) [Sov. Phys.—Dokl. 6, 384 (1961); 7, 600 (1963)].

three-body scattering problems. Now these two-body
orbitals derived their name from the fact that they
satisfied an equation that resembled a two-body
equation, and this observation made it natural to try
to expand them in a complete set of two-body func-
tions. This was done in Ref. 4. As we emphasized
there, the most advantageous two-body set to use was
not that generated by the interparticle potential that
entered the three-body equation, but rather that for a
potential of the same shape, but with enhanced
strength. Even so there remained one problem. This
(or any other ordinary two-body set) has both a
discrete spectrum of eigenvalues and a continuous
one, and with it one is faced in principle with the
nasty problem of treating the continuous eigenfunc-
tions. In this joint paper then, we get around this final
difficulty by expanding the two-body orbitals in a set
of two-body Sturmian functions. This is a set which
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is complete, but which has no continuum. It has
been exploited by Rotenberg? for three-body scattering
problems, and is discussed below. In addition to
doing away with the continuum, the Sturmian set has
several other advantages that will appear later.

The method works for particles in any number of
dimensions. It is then convenient to start with three
bodies in one dimension, since the equations contain
the essence of the method without the somewhat
superfluious complications that three dimensions
brings.

II. GENERAL THEORY

The basic equation for the one-dimensional three-
body problem is Eq. (3) of Ref. 4 for ¢(k, «), the
Fourier transform of the two-body orbital. This
can be written

ok, k) = —[2m(k? + 3 + KT f f v(x){qa(k', )
X eiz(k'—-k) + ¢(!§:’ kK — 2K)
% [eim(k'—k—fk) + eiw(—k’—k+§x)]} dk’ dx. (1)

It is convenient now to make a minor change in
notation, and show explicitly both that the inter-
particle potential v(x) is negative and that it has a
length a associated with it; instead of Eq. (4) of
Ref. 4, we write

v(x) = —vgu(x/a).

Then Eq. (1) becomes, with x/a = z,

) = i +;x= + A ﬂ “(z){"’(k" %

x ek 4 <p(;, k' — 2K)

< [eu(k'—k—ix) + eiz(—k"'H*"’]} dk’ dz. (2)

Now k and « are dimensionless, as are the energy
parameter 2 and potential-strength parameter w:

B2 = m|E|a®[R2, w = mVya?h.

Our problem now is to extract 42 from Eq. (2) as a
function of w for the ground state. Consider then
@(k, «) as a function of k. Much as we have done
before,* we want to expand this dependence in a
complete set of functions; as we have remarked we
shall take this to be a Sturmian set corresponding to a
two-body potential. This set is described in detail
in the Appendix: suffice it here to say in general how

? M. Rotenberg, Ann. Phys. 19, 262 (1962).

J. R. JASPERSE

it arises. If we consider a two-body problem involving
a potential® Wu(z) and corresponding energy parameter
B, then one ordinarily considers the spectrum of
eigenvalues f§;, f,, B; - -+ for a fixed w. We can turn
this around however, and imagine § fixed, and then
ask for the set of eigenvalues W, and corresponding
eigenfunctions. This set is the Sturmian set.

For the ground state of the three-body problem for
which @ is an even function of k, we need the even
functions of this set in momentum space; we call
them T,(k).° From the Appendix we take two basic
properties of these functions. First, they satisfy the
Schrodinger equation in momentum space for f§
fixed and W, considered as an eigenvalue:

~

w * * n tz(k'— ',
T(k) = m f_ ) f_mu(z)T,(k e E 0 47 dk’;
~ 3
second, they satisfy the orthogonality relation
[+ pricom =i @
With these functions then we expand (%, «)
@(k, ) = gl T (k) fi(x), )

and put this into (2) to get
2 ']
(k2 + %f— + ﬂz) PICYE

- f f u(z){e“‘k'-“ 3 10100

+ [eiz(k’—k—8x/2) + eiz(—k'—k+3x/2)]
x 3 Tl(kz) fik' — 2K)} k' dz. (6)
=

We multiply through by T¥(k) and integrate with
respect to k to obtain

f [Tt(k)(kﬂ M3 Tz(k)ﬁ(x)] dk

w

27
+ 5‘1’_ f f f u(z)T:(k)[ oK —R=3k/D) et‘z(—k‘—k+3k/2)]
T

Ji”‘ U(Z)T:(k)ei’(k'—k){ng(k’) f,(x)} dk' dz dk

x { ET,(%) F(k — 2K)} dk’ dz dk. )

=1

We can then simplify this equation considerably as
follows. For the left-hand side we define constants

8 As before, we shall generally use the tilde (~) to distinguish a
quantity that pertains to the two-body problem from its three-body
counterpart. )

® We label the first member of this set with / = 1, not /= 0.
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¢, and d,,; by

tm = f TRT(K) dk, ®)

d, = f TXOT (K dk, ©

whereupon it becomes

éfl(")«%"z + B¢, + d.),

which is the left-hand side of Eq. (7). The first triple
integral on the right-hand side reduces immediately
on using Eq. (A8) of the Appendix, and is

wfu(K),

the first term on the right-hand side of Eq. (7).
For the remaining term on the right-hand side, we
use a slight variant of (3), viz.,

f f u(2)Th(k)e ™ ¥ dk dz =

27(8% + BAOTH(E)
W, ’

and the second triple integral on the right-hand side
reduces to

w1 -%)+ 7]
-2
x (gn(l‘z—) flk' — 2,<)) dx’,

which is the second term on the right-hand side of
Eq. (7). We put all this together now, recognize
that T,(k) = T,(—k) and change the variable of
integration in the last expression from k" toy = k" —
2. We get

if()[(%’f +F)ewt du] = 1,00

s [0 5) +orer )

x @T @ + «)ﬁ(y)) dy. (10)

B

l

R3]

There is one further simplification we can make.
From Eq. (A9) we have

32cnl + dnl = w'nénl' (1 1)

Now the parameter f§ that enters the two-body
equation is still at our disposal. We have already
indicated®* on physical grounds the desirability of
choosing it to equal f, the three-body binding energy.
Now we see a mathematical reason as well, for if we
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do this Eq. (11) becomes
ﬂzcnl + dpy = W0, (12)

and this can be used to simplify the left-hand side of
Eq. (10) so that it becomes

o)y — W) + zﬁ e
2

T

[Canter+ 102+ AT + 30

p31

0
x [ 30Ty +0)]. (13)
This then is the final set of integral equations in the
functions £, («). _ ’

With this at hand we can discuss the three-dimen-
sional problem; its general outline is very similar to
the one-dimensional one, except that vector variables
replace scalar ones. As in one dimension we write a
typical interparticle potential V(r) as

V(r) = —Vou(r/a),

and use the same definition for the energy parameter
f? and potential strength parameter w. Then the basic
equation for the two-body orbital ¢(k, x), Eq. (2)
of Ref. 4, becomes

Pk, x) =

i [l

X eir-(k'—k) + ¢(%k', kK — 2)‘)

% [ei,.(k'—k—%x)_*_ eir~(—k'-k+%%)]} dk’ dr. (14)

We shall again expand ¢ as a function of k, in a
complete set of Sturmian functions. These are defined
as the eigenfunctions of the relative two-body problem
for a potential — Vyu(r/a) with the energy parameter
B* = 2m|E|[R* fixed and the potential strength
parameter W = 2mV,/h? as eigenvalue. They are
discussed in detail in the Appendix. As in one
dimension, and for the same reasons, we shall choose
the energy parameter § to be equal to f.

We shall be concerned mainly with the three-
dimensional Sturmian functions in momentum space;
we call them T, (k). The vector index s stands for the
multiple quantum numbers that are appropriate to the
three dimensions; we shall specify them more closely
later. But writing them in the present form for the
moment we retain a very useful similarity with the
one-dimension case. Thus we expand ¢(k, %) much
as in Eq. (5),

ok, %) = 3 T(K)F,(x), (15)
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and inserting this in (14) can use essentially the same
algebra and subsidiary equations as before. We
therefore omit the details, and simply record the
basic set of equations, the analogs of Egs. (13),
for the functions F,(x). These are

FLOO, ~ ) + 2 5 Foc,

=2 f [y + %2 + £]
wl
x {To(y + %/2) + T, (—y — %/2)}
X Y F(V)T(y/2 + ») dy, (16)
where ’

Cu= [ TI00T00 dk an

Now the form (15) for ¢(k, x) is really too general
if we are interested in the ground state, which pre-
sumably corresponds to zero angular momentum.
For we have shown previously that the most general
form for this case is

(p(k’ K) = lzo (pl(ks K)Pl(COS 'Y)’ (18)
where y is the angle between k and x. This limits the
form of the functions F,(x), as we show now. As we
discuss in the Appendix the vector index s that labels
the functions T,(k) can be taken to stand for the three
conventional quantum numbers nlm, with T,(k) of the
form

Ts(k) - Tnl(k) Ylm(gk)'
Thus the expansion (15) can be written
q)(k, K) = Z Tnl(k) Ylm(Qk)Fnlm(K)-

nlm

If we compare this to (18), in which we imagine
P,(cos y) expanded by the addition theorem, we
conclude that F,,,,(») is of the form

Fnlm(u) - Fnl(K)Y;km(Qx)-
If then we put (19) into (16) we get
F’nl(K) Yfm(Qx)(Wm - W)

3K2 *
+— z Fn’l’(")Yl'm’(gx)cnlmn'l'm’

4 n'l’'m’
f [(y + %/27 + 1 + (=)
nl
X Tully + #/2DY o Q)
x { S ForO)YE Q) ToAly/2 + 1)

»'Um’

(19)

|=

=

x Y,,m,(gy,m)} Ve dy dQ,. (20)
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This equation can now be simplified in several ways.
First, for the summation over m’ under the integral
sign we can write

2 Yl:n'(Qv)Yl'm'(Qv/MK) = [(21' + 1)/417]P,:(COS .u):

where p is the angle between y and y/2 + x. Moreover,
since Eq. (20) holds for arbitrary m we can conven-
iently set m = 0, whereupon

Yi( Q) — [(21 + 1)/4m1EP (cos 6,)

where 6, is the angle between x and the z axis. If
we then multiply by sin 6, and integrate over 6, we get

., 3’
Fnl(K)(wnl - W) + T ZFn/z(K)ano,n’zo

—r@+) f [ + %27 + B0 + (=)D

War 87

X T,y + %/2])P[(cos 6, .,2)P(cos 6,)

X {Z,(Zl’ + DF (0T, (1y/2 + %[)P;(cos ,4)}

X yZ ;in 0,dydQ,do,. 21)
Then this is the final set of equations.

ITII. APPLICATIONS

As anexample we apply Egs. (13) to a square-well
interparticle potential’® which is defined by

1, |z <1
u(z)“{o, 2| > 1.

The two-body functions T,(k), which are discussed in
the Appendix, are then

2 { B+ o))
@mL + (sin 20,/2a,)1 V(B + K)oy + K)
[oc,, sin (o, — k) . }
X | 22— —2 | cosa,sink } . (22)

Ly, —

T (k) =

The relation between the energy parameter j and well
strength W, is given by

o, tan a, = f (23)
with

an = (F, — FOL. (24)
With these results, we are now ready to discuss the
numerical solutions of Eqs. (13). Since this is an
infinite set of equations, we must of course truncate it.

We shall begin by truncating it as severely as possible,

10 [n Ref. 7 Rotenberg has remarked that the Sturmian set is not
complete in regions of space where the potential is zero; however,
this seems to cause no difficulty in the present problem.
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i.e., by assuming only f; is different from zero;
later we discuss the error that this involves.
With this assumption Eqs. (13) reduce to the single

)f[(y+§)2+ﬂ2]

i) = 2w
@5)

2
WI(WI — W + '3%011

K

X T (y + 2) T(y/2 + ®)f,(y) dy.

According to the prescription above in which f is
taken to be equal to 8, the parameter , is determined
according to (24) from

%y — B} tan (b, — 9t = 6.
If then we consider that this equation is to be satisfied
by fixing £ and then solving for W, we can consider
as known. The functions Ty(y + «/2) and T,(y/2 +
«) that enter (13), and that are defined by Eq. (22),

are then well-determined. If we put them into (25)
explicitly we get the basic equation

Aw(p® + o)*
W (W, — w + $xle)[1 + (sin 20/20,)]
L)

L e TR

2

Silk) =

x {ocl sin (e, — ¥/2 — &)
(o4 — /2 — k)

» {ocl sin(o; — y — «/2)
(g —y — k/[2)

+ cos o, sin (y/2 + K)}

+ cos oy sin (y + (K/Z)J} dy.

(26)

To solve this equation we have approximated the
integral by a sum, and thereby converted it to a set of
linear equations whose vanishing determinant gives
the relation between f and w that we seek. To check
the approximation made in truncating the set of
Eqs. (13) we have also similarly solved the analogous
pair and triad of equations that are obtained by
truncating less severely, i.e., when f; and f, are
assumed nonzero, and likewise for f;, f;, and f;.
The results are given in Table I.

We see that there is a very small difference in the
numerical values for the three different cases we con-
sider. The approximation of keeping only f; is thus a
very good one. We see this from another point of
view if we look at the functions f; , f;, and f; which are
plotted in Fig. 1. The small differences among the
numerical values in Table I are reflected in the fact
that £, and f; are indeed small compared with f; .

Although these results are quite satisfactory,
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TasLE 1. The binding-energy parameter §* = m |E| a®/h® vs
the potential strength parameter w = mV,a®/h®, for one-
dimensional, three-body problem with square-well interparticle
potentials of strength ¥, and width 2a. The last three columns
give the results obtained by truncating Eqs. (13) successively,
i.., by first keeping only f;, then f; and f,, and finally frand f;
andf,.

ﬁ‘a
With With With
w I frand f, fisfe,and f
0.5 0.57920 0.57920 0.57895
1.0 1.6210 1.6210 1.6231
1.5 2.8204 2.8217 2.8214
2.0 4.0958 4,0998 4.0997

considerable computing capacity is needed to solve
the equations when f;, f;, and f; are included. Since
/> and f; are indeed small, it is then natural to see if
they can be obtained to sufficient accuracy from f;
itself, in an iterative way. This is, if possible, clearly
desirable, since it reduces the problem from that of
solving several coupled integral equations to that of
solving a single one with some kind of subsequent
integration.

To show that this is indeed possible, we do it. In
(13) then we set n = 2, restrict the sum on the left-
hand side to /=1 and /=2, and keep only the
presumed dominant term corresponding to /=1
under the integral sign. Then our approximate
expression for f; is

~ 3y fr(k)
foK) ~ 4[w2 — w4+ 3_K2622:|
4
2w
+ 2

wz[wz —w 4+ 37'( c22:|

INCERRE

xn@+QMww. @7

We have calculated fy(x) numerically from this
equation for the case w = 2; the results are presented
in Fig. 2 and compared with the “exact” result for
f; obtained as described above. The agreement is
quite good.

It is instructive to look at the qualitative reasons
that f; is everywhere small, since very similar reasons
will apply for the three-dimensional case. Part of the
reason is the fact that W, is fairly large, usually an
order of magnitude larger than w,. For example,
for w=1, w, = 13.3; for w =2, W, = 14.4. With
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(k) x 20

f,(k) x 20

0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

K —

FiG. 1. The functions f(x), fa(x), f3(x) as calculated numerically
from the truncated set of Egs. (13); w=1.

this in mind we see that the first term on the right-hand
side of Eq. (19) is small on two accounts; first, there
is the factor w, in the denominator; second, since
fi(x) peaks at the origin (and is in fact normalized to
unity there), «? is large when f; is small and vice
versa, and their product turns out always to be small.
The term on the right-hand side that contains the
integral is small because the integral is of order unity,
‘but the factor that multiplies it is of order w/WwZ.
The higher functions f3, etc., can be estimated in much
the same way, and they are still smaller for similar
but stronger reasons.

The solution of Egs. (21) for the three-dimensional
case is begun along the same lines; it is of course
more complicated in that a double truncation, in the
two indices n and / are involved. One would expect,
a priori, almost as good convergence as for the one-
dimensional case since we have already found®*
that the truncation in / causes small error, and the
truncation as a function of # is very similar to that in
one dimension. We have made a preliminary investi-
gation of this in that we have solved numerically the
truncated Eq. (21) keeping only Fj,. The answers
we get do not, however, agree with those due to
Kalos!!; we have still to resolve this. It may be that
Kalos’ results are in error, although this seems
unlikely, or that the truncation we have been forced
to make is much worse than in one dimension,?
or even that there may be some difficulty due to the
fact that the Sturmian functions for a cutoff potential
do not form a complete set for expansion outside the
cutoff region. But these matters demand more
discussion than is appropriate for the present paper,

11 M. H. Kalos, Phys. Rev. 128, 1791 (1962).
12 1. Eyges, J. Math. Phys. 7, 938 (1966).
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+.005 [

0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

+.010%

FiG. 2. The function f, calculated approximately from Egq. (19)
and the zeroth-order expression for f;, compared with the same as
calculated as for Fig. 1.

and we shall leave them in abeyance for the moment,
contenting ourselves with the one-dimensional results
and with the fact that a generalization of this method
has proved itself elsewhere!® for the He atom, i.e.,
for Coulomb interparticle potentials.

1V. DISCUSSION

The present method has now been expounded in
several papers; it seems worthwhile at this point to
summarize it, and highlight its basic features, so that
the essentials stand out. Moreover, Fadeev® has
discussed the scattering problem with a method that
has some resemblance to this one, and it is worth
pointing out both the similarities and the differences.

The first feature is the splitting of the wavefunction
into three parts, as in Eq. (12) of Ref. 2. The motiva-
tion for this is described at some length in the earlier
papers, and we shall not repeat it. We note, however,
that a similar technique was later applied by Fadeev,
who in the scattering problem split the ¢ matrix
analogously into three parts. This splitting has by
now been proven advantageous in several ways; it
turns out that these “partial wavefunctions” generally
satisfy simpler equations than the total wavefunctions.
For example, the scattering problem for separable
potentials can be solved with it,5 as can the problem
of the three repulsive d functions in a box,!? and with
it, as one of us has shown,® even the problem of the
He atom becomes tractable.

The next point of the method, which is conceptually
independent of the previous one, is the expansion of
the partial wavefunctions or “two-body orbitals™ in a
complete set of two-body functions. These are most
naturally taken to be the eigenfunctions that corre-
spond to the interparticle potential acting between any
pair. Analogously, in the scattering problem Fadeev

13 J. Jasperse, thesis, Northeastern University (1966); J. Jasperse
and M. Friedman, Phys. Rev. 159,.69 (1967).
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expresses the three-body ¢ matrix in terms of all
possible two-body ¢ matrices. The advantage of this
procedure in the present case is that it reduces the
equations for the orbitals to fairly simple and trans-
parent form, since one can use equations like (A8) to
simplify what would otherwise be complicated inte-
grals. Thus, the expansion in a two-body set removes
any explicit appearance of the potentials from the
three-body equations.

The third feature of the method is essentially the
observation that the two-body expansion basis we have
just discussed may be the most natural, but it is not
necessarily the most advantageous. As we have shown,
we can expand in eigenfunctions of not only the true
interparticle potential, but also of one with the same
shape and enhanced strength. This gives an extra
parameter, which can be exploited to considerable
advantage. As we have seen if we adopt the pre-
scriptions given in the text for this parameter, we
simplify the form of the equations and insure the
correctness of the asymptotic form of the two-body
orbitals.

The fourth step in the method, and this is the innova-
tion of the present paper, is of course, to choose not
an ordinary set of two-body functions, but the Stur-
mian set. One then retains all the previous advantages,
and also does away with continuum problems
Moreover, the problem of truncating the equations
becomes relatively transparent, as we have seen, in
that estimates of the higher-order functions are given in
terms of the Sturmian eigenvalues, for example, as
in Eq. (27).
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APPENDIX: STURMIAN FUNCTIONS

We first treat one dimension for which the Schré-
dinger equation™ for the potential

V(x) = —Vou(x/a) (Al)
and binding energy E = — |E|is
Bt
—22Y  Vaxjayy = ~|Ely.  (A2)
m dx

It will be general enough for us to assume that the
potential u(x/a) is symmetric about the origin. Then
the eigenfunctions of v split up into two groups: the

14 Note the factor m instead of the usual 2m in the denominator of
this equation. This comes in because x is really a relative variable
and m is really the reduced mass,
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symmetric ones which we call S}, and the antisymmet-
ric ones, which we do not need to consider. Now we
set

z=xla, B*=m|E|a¥i2, W = mV,a®i2; (A3)

the tildes (~) over the parameters # and w emphasize
that they refer to a two-body problem. We also put a
subscript on W to emphasize that it is now one of a
set of eigenvalues, and rewrite Eq..(A2) for the
specifically symmetric function S,

d2Sl

— = (Wu(z) + 7S, = 0. (A4)
dz*
The Fourier transform of S, is T,(k),
1 * —ikz
=5 s@cte @y

and it satisfies

_ Wl ® [ n iz(k'—k) '
T(k) = 2————-7T(k2 o) f_mf_wu(z)ﬂ(k )e dz dk'.
(A6)

The orthogonality relation for the S;, obtained from
(A4) by multiplying it by S}, integrating, etc., is not
quite the standard one but reads

f © SH2)S(2u(z) dz = 8.

-0

(A7)

This equation becomes, in terms of T and T,

2i f f f T T,(K)e** —Pu(z) dk di’ dz = 9,,,.
T

(A%)
This last equation, used in conjunction with (A6),

gives the further useful relation

f_w(kz + BTR(OT(k) dk = 8,0, (A9

For the one-dimensional application in the text
we need the symmetric Sturmian set for the potential

I, zZl <1
u(z) =
0, |z >1.
This is elementary to calculate; the functions are
lzl <1,
N, cos a, exp [B(1 — |z)], |z| > 1,

N, cos a,z,
S.(2) =
where
oy = (wn - 32)é
The normalization constant N, is
i =
N, = (1 n sin o, COS ocn) )

L%
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and the relation between the energy parameter f
and the strength parameter W, obtained by matching
solutions at |z| = 1 is

a, tan a, = f.
The Fourier transform T, (k) turns out to be
_ 2N, { B+ o2 l:oc,, sin («,, — k)
@mE B + 1) + b
+ cos a,, sin k}] . (A10)

T, (k)

o, —k

Now we turn to the three-dimensional case, which
is closely analogous to the one-dimensional one,
except that scalar variables become vector ones.
Thus, consider the Schrédinger equation for the
relative motion of two particles with interparticle
distance r’, and interparticle potential ¥(#’). With

V(r') = —Vou(r'la),
we have with
r=r'la

and the same definitions as in Eq. (A3) for f and W,
Vey — (wu(r) + B2y = 0. (Al])

The set of solutions of this equation with § fixed and
W considered as eigenvalues are the Sturmian functions,
which we call S(r). They are labeled by the multiple
quantum numbers of three-dimensions, which we can
represent by a vector subscript 1. Thus as a function
of r they satisfy the relabeled Eq. (All),

V2S, — (Wu(r) + f3)S; = 0. (A12)
We call the Fourier transform 7;(k),
1 ‘
T(K) = —— | S(r)e® ' dr. (A13)
I( ) (211)% 1

With this vector notation the properties of the S)(r)
and 7y(k) are very close to those of their one-dimen-
sional counterparts. Thus the normalization condition
analogous to (A7) reads

f S*OS,Ou(r) dr = 6. (A14)

L. EYGES AND J. R. JASPERSE

Similarly, the analogs of (A6) and (A9) are

ST 5 f f w() K )e™ ¥ dr dic,

T(k) = R

and
f (K + BTEK)T(K) dK = by

For practical applications we must of course specify
the functions 7\(k) more concretely. If then we
consider the vector subscript 1 to stand for the three
conventional quantum numbers n/m of three dimen-
sions we can think of the functions 7y(k) as products
of a function of k and a spherical harmonic

Ti(k) = Ty(k) Yy (C20).
Similarly,

Sl(r) - Snl(r) Ylm(Qr) and wl > Wy

Now we consider specifically the Sturmian set for
the square well
0, 0<r«i

) = {1, r>1

We shall be particularly interested in the case / = 0
for which the functions §,, are readily found to be,
with «, = (W,, — ‘32)%, o, cot o, = -8,

N, sin a,r/r, r<l
Spo = ] (A15)
Nosin a, exp f(1 — r)fr, r> 1.

The normalization constant N,, is determined from
the relation (A14) which reads

1
f IS(MIErtdr =1, (A16)
0
and from which we find
N, = [2/( — (sin 2a,/20, )] (A17)

From the result (A15) we also find the expression

for Tno(k)a
2 2
Tl = W)

T emoa
V(1= 2 e + O+ K

o

{:c sin («, — k)

— sin «,, cos k} .
(“n - k)
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